Programación dinámica: un último ejemplo

Dado: matrices $A_{m \times n}$, $B_{n \times r}$, $C_{r \times s}$ de números enteros

Para calcular $A_{m\times n}\cdot B_{n\times r}$ el algoritmo usual realiza $m\cdot n\cdot r$ multiplicaciones de números enteros

¿Cuántas multiplicaciones de enteros realiza el algoritmo usual para calcular $A \cdot B \cdot C$?

Como la multiplicación de matrices es asociativa esto depende de si calculamos $(A \cdot B) \cdot C$ or $A \cdot (B \cdot C)$

► Calcular $(A \cdot B) \cdot C$ requiere de $m \cdot n \cdot r + m \cdot r \cdot s$ multiplicaciones de enteros, mientras que calcular $A \cdot (B \cdot C)$ requiere de $m \cdot n \cdot s + n \cdot r \cdot s$ multiplicaciones de números enteros

Programación dinámica: un último ejemplo

Los números $m \cdot n \cdot r + m \cdot r \cdot s$ y $m \cdot n \cdot s + n \cdot r \cdot s$ pueden ser distintos.

En particular dependiendo de los valores de m y s

Ejemplo

Sea m = 1000 y n = r = s = 2 tenemos que

$$m \cdot n \cdot r + m \cdot r \cdot s = 8000$$

$$m \cdot n \cdot s + n \cdot r \cdot s = 4008$$

En este caso nos conviene calcular $A \cdot (B \cdot C)$

Programación dinámica: un último ejemplo

Problema a resolver: Dada una secuencia de matrices $A_1, A_2, \ldots, A_\ell \ (\ell \geq 1),$ determinar el número mínimo de multiplicaciones de números enteros que debe realizar el algoritmo usual para calcular $A_1 \cdot A_2 \cdot \ldots \cdot A_\ell$

- ▶ Se debe decidir como colocar paréntesis en la expresión $A_1 \cdot A_2 \cdot \ldots \cdot A_\ell$ al utilizar la asociatividad de la multiplicación de matrices
- Suponemos que las matrices tienen los ordenes adecuados para que $A_1 \cdot A_2 \cdot \ldots \cdot A_\ell$ sea calculable

Vamos a resolver este problema usando programación dinámica.

Calculando la multiplicación de una secuencia de matrices

Dada una matriz A, usamos filas(A) y col(A) para denotar el número de filas y columnas de A

Considere una lista de matrices $[A_1, \ldots, A_\ell]$ tales que $\ell \geq 1$ y $\operatorname{col}(A_i) = \operatorname{filas}(A_{i+1})$ para $i \in \{1, \dots, \ell-1\}$

Queremos definir una función **NumMult**($[A_1, \ldots, A_\ell]$) que retorna el número mínimo de multiplicaciones que debe realizar el algoritmo usual para calcular $A_1 \cdot \ldots \cdot A_\ell$

¿Puede ser **NumMult** implementada utilizando programación dinámica?

¿Podemos utilizar programación dinámica?

¿Satisface el problema el principio de optimalidad de sub-problemas?

► Sí

Dado que se satisface el principio de optimalidad de sub-problemas obtenemos la siguiente definición recursiva de **NumMult**:

$$extstyle extstyle ext$$

¿Podemos utilizar programación dinámica?

¿Se satisface el requisito de tener un número pequeño (polinomial) de sub-problemas?

- ightharpoonup Sí, las llamadas posibles son de la forma $\operatorname{NumMult}([A_i,\ldots,A_j])$ con $1 \le i \le j \le \ell$
- ► Tenemos entonces $\frac{\ell \cdot (\ell+1)}{2}$ llamadas a la función **NumMult**

Una última pregunta: ¿cómo calculamos $\operatorname{\textbf{NumMult}}([A_1,\ldots,A_\ell])$ de manera eficiente?

Un enfoque bottom-up para la evaluación

Ejercicio

Construya un algoritmo para calcular una tabla que contiene los valores NumMult($[A_i, \ldots, A_j]$) para $1 \le i \le j \le \ell$

- Para analizar la complejidad del algoritmo considere como operaciones básicas acceder a una celda de la tabla (para leer o escribir), acceder a filas (A_i) y col (A_i) , y sumar, multiplicar y comparar números enteros
- Muestre entonces que el algoritmo para construir la tabla en el peor caso es $O(\ell^3)$

Corolario

Utilizando programación dinámica es posible construir un algoritmo para calcular NumMult($[A_1, \ldots, A_\ell]$) que en el peor caso es $O(\ell^3)$

Dos preguntas finales

¿Cómo podemos modificar el enfoque anterior para retornar una forma óptima para calcular $A_1 \cdot \ldots \cdot A_\ell$?

¿Qué debemos agregar a la tabla para poder obtener esto?

El algoritmo usual no es el algoritmo más eficiente para multiplicar dos matrices de números enteros.

ightharpoonup Dado un algoritmo ${\cal A}$ para calcular la multiplicación de dos matrices, ¿puede ser utilizado el enfoque anterior para obtener una forma óptima para calcular $A_1 \cdot \ldots \cdot A_\ell$?

Dos preguntas finales

Suponga que para multiplicar $A_{m \times n}$ con $B_{n \times p}$ el algoritmo \mathcal{A} realiza f(m, n, p) multiplicaciones de números enteros.

El enfoque descrito en las transparencias anteriores puede ser utilizado considerando la siguiente definición recursiva de **NumMult**:

$$\mathsf{NumMult}([A_1,\ldots,A_\ell]) \ = \ egin{cases} & \displaystyle egin{array}{l} \displaystyle \min_{1\leq i\leq \ell-1} \left\{ \mathsf{NumMult}([A_1,\ldots,A_i]) + \\ & \mathsf{NumMult}([A_{i+1},\ldots,A_\ell]) + \\ & f(\mathsf{filas}(A_1),\mathsf{col}(A_\ell))
ight\} \end{cases}$$