
Data Exchange in the Relational and RDF Worlds

Marcelo Arenas

Department of Computer Science
Pontificia Universidad Católica de Chile

This is joint work with Jorge Pérez, Juan Reutter,
Cristian Riveros and Juan Sequeda

M. Arenas – Data Exchange in the Relational and RDF Worlds 1 / 74

The problem of data exchange

Given: A source schema S, a target schema T and a specification
ΣST of the relationship between these schemas

Data exchange: Problem of materializing an instance of T given
an instance of S

◮ Target instance should reflect the source data as accurately as
possible, given the constraints imposed by ΣST and T

◮ It should be efficiently computable

◮ It should allow one to evaluate queries on the target in a way
that is semantically consistent with the source data

M. Arenas – Data Exchange in the Relational and RDF Worlds 2 / 74

Data exchange in a picture

Query Q

Schema S

ΣST

Schema T

M. Arenas – Data Exchange in the Relational and RDF Worlds 3 / 74

Data exchange in a picture

Query Q

Schema S

ΣST

Schema T

M. Arenas – Data Exchange in the Relational and RDF Worlds 3 / 74

Data exchange in a picture

Query Q

Schema S

ΣST

Schema T

M. Arenas – Data Exchange in the Relational and RDF Worlds 3 / 74

Data exchange in a picture

Schema TSchema S

ΣST

M. Arenas – Data Exchange in the Relational and RDF Worlds 3 / 74

Data exchange in a picture

Query Q

Schema S

ΣST

Schema T

M. Arenas – Data Exchange in the Relational and RDF Worlds 3 / 74

Data exchange: Some fundamental questions

Why is data exchange an interesting problem?

◮ Is it a difficult problem?

What are the challenges in the area?

◮ What is a good language for specifying the relationship
between source and target data?

◮ What is a good instance to materialize? Why is it good?

◮ What does it mean to answer a queries over target data?

◮ How do we answer queries over target data? Can we do this
efficiently?

M. Arenas – Data Exchange in the Relational and RDF Worlds 4 / 74

Outline of the talk

◮ Relational data exchange

◮ Translating relational data into RDF

◮ Metadata management

◮ Composition, inverse

◮ Concluding remarks

M. Arenas – Data Exchange in the Relational and RDF Worlds 5 / 74

Outline of the talk

◮ Relational data exchange

◮ Translating relational data into RDF

◮ Metadata management

◮ Composition, inverse

◮ Concluding remarks

M. Arenas – Data Exchange in the Relational and RDF Worlds 6 / 74

Data exchange in relational databases

It has been extensively studied in the relational world.

◮ It has also been implemented: IBM Clio

Relational data exchange setting:

◮ Source and target schemas: Relational schemas

◮ Relationship between source and target schemas:
Source-to-target tuple-generating dependencies (st-tgds)

Semantics of data exchange has been precisely defined.

◮ Efficient algorithms for materializing target instances and for
answering queries over the target schema have been developed

M. Arenas – Data Exchange in the Relational and RDF Worlds 7 / 74

Schema mapping: The key component in relational data

exchange

Schema mapping: M = (S,T,ΣST)

◮ S and T are disjoint relational schemas

◮ ΣST is a finite set of st-tgds:

∀x̄∀ȳ (ϕ(x̄ , ȳ)→ ∃z̄ ψ(x̄ , z̄))

ϕ(x̄ , ȳ): conjunction of relational atomic formulas over S

ψ(x̄ , z̄): conjunction of relational atomic formulas over T

M. Arenas – Data Exchange in the Relational and RDF Worlds 8 / 74

Relational schema mappings: An example

Example

◮ S: book(title, author name, affiliation)

◮ T: writer(name, book title, year)

◮ ΣST:

∀x1∀x2∀y1 (book(x1, x2, y1)→ ∃z1 writer(x2, x1, z1))

M. Arenas – Data Exchange in the Relational and RDF Worlds 9 / 74

Relational schema mappings: An example

Example

◮ S: book(title, author name, affiliation)

◮ T: writer(name, book title, year)

◮ ΣST:

∀x1∀x2∀y1 (book(x1, x2, y1)→ ∃z1 writer(x2, x1, z1))

Note

We omit universal quantifiers in st-tgds:

book(x1, x2, y1)→ ∃z1 writer(x2, x1, z1)

M. Arenas – Data Exchange in the Relational and RDF Worlds 9 / 74

Relational data exchange problem

Fixed: M = (S,T,ΣST)

Problem: Given instance I of S, find an instance J of T such that
(I , J) satisfies ΣST

◮ (I , J) satisfies ϕ(x̄ , ȳ)→ ∃z̄ ψ(x̄ , z̄) if whenever I satisfies
ϕ(ā, b̄), there is a tuple c̄ such that J satisfies ψ(ā, c̄)

M. Arenas – Data Exchange in the Relational and RDF Worlds 10 / 74

Relational data exchange problem

Fixed: M = (S,T,ΣST)

Problem: Given instance I of S, find an instance J of T such that
(I , J) satisfies ΣST

◮ (I , J) satisfies ϕ(x̄ , ȳ)→ ∃z̄ ψ(x̄ , z̄) if whenever I satisfies
ϕ(ā, b̄), there is a tuple c̄ such that J satisfies ψ(ā, c̄)

Notation

J is a solution for I underM

◮ SolM(I): Set of solutions for I under M

M. Arenas – Data Exchange in the Relational and RDF Worlds 10 / 74

The notion of solution: First example

Example

Consider mappingM specified by:

book(x1, x2, y1)→ ∃z1 writer(x2, x1, z1)

Given I :
book title author name affiliation

Algebra Hungerford U. Washington
Real Analysis Royden Stanford

M. Arenas – Data Exchange in the Relational and RDF Worlds 11 / 74

The notion of solution: First example

Example

Consider mappingM specified by:

book(x1, x2, y1)→ ∃z1 writer(x2, x1, z1)

Given I :
book title author name affiliation

Algebra Hungerford U. Washington
Real Analysis Royden Stanford

Solution J1:
writer name book title year

Hungerford Algebra 1974
Royden Real Analysis 1988

M. Arenas – Data Exchange in the Relational and RDF Worlds 11 / 74

The notion of solution: First example

Example

Consider mappingM specified by:

book(x1, x2, y1)→ ∃z1 writer(x2, x1, z1)

Given I :
book title author name affiliation

Algebra Hungerford U. Washington
Real Analysis Royden Stanford

Solution J1:
writer name book title year

Hungerford Algebra 1974
Royden Real Analysis 1988

Solution J2:
writer name book title year

Hungerford Algebra n1

Royden Real Analysis n2

M. Arenas – Data Exchange in the Relational and RDF Worlds 11 / 74

The notion of solution: Second example

Example

◮ S: employee(name)

◮ T: dept(name, number)

◮ ΣST: employee(x)→ ∃y dept(x , y)

Solutions for I = {employee(Peter)}:

M. Arenas – Data Exchange in the Relational and RDF Worlds 12 / 74

The notion of solution: Second example

Example

◮ S: employee(name)

◮ T: dept(name, number)

◮ ΣST: employee(x)→ ∃y dept(x , y)

Solutions for I = {employee(Peter)}:

J1: dept(Peter,1)

M. Arenas – Data Exchange in the Relational and RDF Worlds 12 / 74

The notion of solution: Second example

Example

◮ S: employee(name)

◮ T: dept(name, number)

◮ ΣST: employee(x)→ ∃y dept(x , y)

Solutions for I = {employee(Peter)}:

J1: dept(Peter,1)

J2: dept(Peter,1), dept(Peter,2)

M. Arenas – Data Exchange in the Relational and RDF Worlds 12 / 74

The notion of solution: Second example

Example

◮ S: employee(name)

◮ T: dept(name, number)

◮ ΣST: employee(x)→ ∃y dept(x , y)

Solutions for I = {employee(Peter)}:

J1: dept(Peter,1)

J2: dept(Peter,1), dept(Peter,2)

J3: dept(Peter,1), dept(John,1)

M. Arenas – Data Exchange in the Relational and RDF Worlds 12 / 74

The notion of solution: Second example

Example

◮ S: employee(name)

◮ T: dept(name, number)

◮ ΣST: employee(x)→ ∃y dept(x , y)

Solutions for I = {employee(Peter)}:

J1: dept(Peter,1)

J2: dept(Peter,1), dept(Peter,2)

J3: dept(Peter,1), dept(John,1)

J4: dept(Peter,n1)

M. Arenas – Data Exchange in the Relational and RDF Worlds 12 / 74

The notion of solution: Second example

Example

◮ S: employee(name)

◮ T: dept(name, number)

◮ ΣST: employee(x)→ ∃y dept(x , y)

Solutions for I = {employee(Peter)}:

J1: dept(Peter,1)

J2: dept(Peter,1), dept(Peter,2)

J3: dept(Peter,1), dept(John,1)

J4: dept(Peter,n1)

J5: dept(Peter, n1), dept(Peter,n2)

M. Arenas – Data Exchange in the Relational and RDF Worlds 12 / 74

Canonical universal solution

Question

What is a good instance to materialize?

M. Arenas – Data Exchange in the Relational and RDF Worlds 13 / 74

Canonical universal solution

Question

What is a good instance to materialize?

Algorithm

Input : (S,T,ΣST) and an instance I of S

Output : Canonical universal solution J⋆ for I underM

let J⋆ := empty instance of T

for every ϕ(x̄ , ȳ)→ ∃z̄ ψ(x̄ , z̄) in ΣST do

for every ā, b̄ such that I satisfies ϕ(ā, b̄) do

create a fresh tuple n̄ of pairwise distinct null values
insert ψ(ā, n̄) into J⋆

M. Arenas – Data Exchange in the Relational and RDF Worlds 13 / 74

Canonical universal solution: Example

Example

Consider mappingM specified by dependency:

employee(x) → ∃y dept(x , y)

Canonical universal solution for I = {employee(Peter), employee(John)}:

◮ For a = Peter do

◮ Create a fresh null value n1

◮ Insert dept(Peter , n1) into J⋆

◮ For a = John do

◮ Create a fresh null value n2

◮ Insert dept(John, n2) into J⋆

Result: J⋆ = {dept(Peter , n1), dept(John, n2)}

M. Arenas – Data Exchange in the Relational and RDF Worlds 14 / 74

Query answering in data exchange

Given: MappingM, source instance I and query Q over the target
schema

◮ What does it mean to answer Q?

M. Arenas – Data Exchange in the Relational and RDF Worlds 15 / 74

Query answering in data exchange

Given: MappingM, source instance I and query Q over the target
schema

◮ What does it mean to answer Q?

Definition (Certain answers)

certainM(Q, I) =
⋂

J is a solution for I under M

Q(J)

M. Arenas – Data Exchange in the Relational and RDF Worlds 15 / 74

Certain answers: Example

Example

Consider mappingM specified by:

employee(x) → ∃y dept(x , y)

Given instance I = {employee(Peter)}:

certainM(∃y dept(x , y), I) = {Peter}
certainM(dept(x , y), I) = ∅

M. Arenas – Data Exchange in the Relational and RDF Worlds 16 / 74

Query rewriting: An approach for answering queries

How can we compute certain answers?

◮ Näıve algorithm does not work: infinitely many solutions

M. Arenas – Data Exchange in the Relational and RDF Worlds 17 / 74

Query rewriting: An approach for answering queries

How can we compute certain answers?

◮ Näıve algorithm does not work: infinitely many solutions

Approach proposed in [FKMP03]: Query Rewriting

Given a mappingM and a target query Q, compute a query
Q⋆ such that for every source instance I with canonical
universal solution J⋆:

certainM(Q, I) = Q⋆(J⋆)

M. Arenas – Data Exchange in the Relational and RDF Worlds 17 / 74

Query rewriting over the canonical universal solution

Theorem (FKMP03)

Given a mappingM specified by st-tgds and a union of
conjunctive queries Q, there exists a query Q⋆ such that for every
source instance I with canonical universal solution J⋆:

certainM(Q, I) = Q⋆(J⋆)

M. Arenas – Data Exchange in the Relational and RDF Worlds 18 / 74

Query rewriting over the canonical universal solution

Theorem (FKMP03)

Given a mappingM specified by st-tgds and a union of
conjunctive queries Q, there exists a query Q⋆ such that for every
source instance I with canonical universal solution J⋆:

certainM(Q, I) = Q⋆(J⋆)

Proof idea: Assume that C(a) holds whenever a is a constant.

Then:

Q⋆(x1, . . . , xm) = C(x1) ∧ · · · ∧ C(xm) ∧Q(x1, . . . , xm)

M. Arenas – Data Exchange in the Relational and RDF Worlds 18 / 74

Query rewriting over the canonical solution: Example

Example

Let M be specified by:

employee(x) → ∃y dept(x , y)

Let Q1(x) = ∃y dept(x , y) and Q2(x , y) = dept(x , y):

Q⋆

1 (x) = C(x) ∧ ∃y dept(x , y)

Q⋆

2 (x , y) = C(x) ∧ C(y) ∧ dept(x , y)

Let I = {employee(Peter), employee(John)}:

J⋆ = {dept(Peter , n1), dept(John, n2)}

Then:

certainM(Q1, I) = {Peter , John} Q⋆

1 (J⋆) = {Peter , John}
certainM(Q2, I) = ∅ Q⋆

2 (J⋆) = ∅

M. Arenas – Data Exchange in the Relational and RDF Worlds 19 / 74

Computing certain answers: Complexity

Data complexity: Data exchange setting and query are considered
to be fixed.

◮ Is this a reasonable assumption?

Corollary (FKMP03)

For mappings given by st-tgds, certain answers for UCQ can be
computed in polynomial time (data complexity)

M. Arenas – Data Exchange in the Relational and RDF Worlds 20 / 74

Relational data exchange: Some lessons learned

Key steps in the development of the area:

◮ Definition of schema mappings: Precise syntax and semantics
◮ Definition of the notion of solution

◮ Identification of good solutions

◮ Polynomial time algorithms for materializing good solutions

◮ Definition of target queries: Precise semantics

◮ Polynomial time algorithms for computing certain answers for
UCQ

M. Arenas – Data Exchange in the Relational and RDF Worlds 21 / 74

Outline of the talk

◮ Relational data exchange

◮ Translating relational data into RDF

◮ Metadata management

◮ Composition, inverse

◮ Concluding remarks

M. Arenas – Data Exchange in the Relational and RDF Worlds 22 / 74

RDF in a nutshell

RDF is the W3C proposed framework for representing information
in the Web:

◮ URI vocabulary
◮ A URI is an atomic piece of data, and it identifies an abstract

resource

◮ Syntax based on directed labeled graphs
◮ URIs are used as node labels and edge labels

◮ Schema definition language (RDFS): Define new vocabulary
◮ Typing, inheritance of classes and properties, . . .

◮ Formal semantics

M. Arenas – Data Exchange in the Relational and RDF Worlds 23 / 74

An example of an RDF graph: DBLP

inPods:FaginLN01 :Moni Naor

:Amnon Lotem

:Ronald Fagin

inPods:2001

"Optimal Aggregation ..."

dc:creator
dc:creator

dc:
cre

ato
r

dct:isPartOf

dc:title
sw:series

conf:pods

<http://purl.org/dc/elements/1.1/>

: <http://dblp.l3s.de/d2r/resource/authors/>

conf: <http://dblp.l3s.de/d2r/resource/conferences/>

inPods: <http://dblp.l3s.de/d2r/resource/publications/conf/pods/>

sw: <http://swrc.ontoware.org/ontology#>

dc:

dct: <http://purl.org/dc/terms/>

M. Arenas – Data Exchange in the Relational and RDF Worlds 24 / 74

A second example of an RDF graph: DBpedia

DBpedia

DBLP

inPods:FaginLN01

:Ronald Fagin

dbpedia:Ronald Fagin dbpedia:Oklahoma

yago:ResearchWorker

dc:creator

owl
:sa

meA
s

dbo:birthPlace

rdf:type

rdfs:subClassOf
yago:DatabaseResearchers

<http://dbpedia.org/ontology/>

<http://www.w3.org/2000/01/rdf-schema#>

owl:

rdfs:

<http://www.w3.org/1999/02/22-rdf-syntax-ns#>rdf:

<http://dbpedia.org/resource/>dbpedia:

yago: <http://dbpedia.org/class/yago>

: <http://dblp.l3s.de/d2r/resource/authors/>

dbo:

<http://www.w3.org/2002/07/owl#>

M. Arenas – Data Exchange in the Relational and RDF Worlds 25 / 74

RDF formal model

Subject Object
Predicate

LB

U

U UB

U : set of URIs

B : set of blank nodes

L : set of literals

M. Arenas – Data Exchange in the Relational and RDF Worlds 26 / 74

RDF formal model

Subject Object
Predicate

LB

U

U UB

U : set of URIs

B : set of blank nodes

L : set of literals

(s, p, o) ∈ (U ∪ B)×U× (U ∪ B ∪ L) is called an RDF triple

M. Arenas – Data Exchange in the Relational and RDF Worlds 26 / 74

RDF formal model

Subject Object
Predicate

LB

U

U UB

U : set of URIs

B : set of blank nodes

L : set of literals

(s, p, o) ∈ (U ∪ B)×U× (U ∪ B ∪ L) is called an RDF triple

A set of RDF triples is called an RDF graph

M. Arenas – Data Exchange in the Relational and RDF Worlds 26 / 74

Data exchange in the RDF world

We have witnessed a constant growth in the amount of RDF data
available on the Web

◮ Also in the number of applications for this data

This has generated an increasing interest in publishing relational
data as RDF

◮ Resulted in the creation of the W3C RDB2RDF Working
Group

M. Arenas – Data Exchange in the Relational and RDF Worlds 27 / 74

Data exchange in the RDF world

The problem of translating relational data into RDF can be seen as
a data exchange problem

◮ Schema mappings can be used to describe how the relational
data is to be mapped into RDF

We will explore this connection.

◮ We start by formalizing one of the proposals of the W3C

M. Arenas – Data Exchange in the Relational and RDF Worlds 28 / 74

Data exchange in the RDF world

Some interesting consequences of our study:

◮ It gives us a mapping language that can be easily extended to
deal with RDF-to-RDF data exchange tasks

◮ It help us in recognizing new problems that should be studied
in the area of data exchange

M. Arenas – Data Exchange in the Relational and RDF Worlds 29 / 74

The direct mapping

This mapping is defined in:

A Direct Mapping of Relational Data to RDF. W3C Working
Draft. Editors: M. Arenas, E. Prud’hommeaux and J. Sequeda

The direct mapping defines a default way to translate relational
databases into RDF.

◮ We provide a formalization of this mapping

M. Arenas – Data Exchange in the Relational and RDF Worlds 30 / 74

The direct mapping

Input: A relational schema and a database instance of this schema

Output: An RDF graph

M. Arenas – Data Exchange in the Relational and RDF Worlds 31 / 74

The direct mapping

Input: A relational schema and a database instance of this schema

Output: An RDF graph

We start by describing how the input is specified

M. Arenas – Data Exchange in the Relational and RDF Worlds 31 / 74

Translating relational data into RDF: Running example

Consider the following relational schema:

◮ person(ssn, name): ssn is the primary key

◮ student(number, degree, ssn): number is the primary key, ssn
is a foreign key to ssn in person

Consider the following instance:

person ssn name
123 Peter Smith
456 John Brown
789 George Taylor

student number degree ssn
1 CS 123
2 Math 456

M. Arenas – Data Exchange in the Relational and RDF Worlds 32 / 74

Input: Relational schema

These predicates are used to store a relational schema:

◮ Rel(r): r is a relation name

M. Arenas – Data Exchange in the Relational and RDF Worlds 33 / 74

Input: Relational schema

These predicates are used to store a relational schema:

◮ Rel(r): r is a relation name

Example: Rel(person), Rel(student)

M. Arenas – Data Exchange in the Relational and RDF Worlds 33 / 74

Input: Relational schema

These predicates are used to store a relational schema:

◮ Rel(r): r is a relation name

Example: Rel(person), Rel(student)

◮ Attr(a, r): a is an attribute of relation r

M. Arenas – Data Exchange in the Relational and RDF Worlds 33 / 74

Input: Relational schema

These predicates are used to store a relational schema:

◮ Rel(r): r is a relation name

Example: Rel(person), Rel(student)

◮ Attr(a, r): a is an attribute of relation r

Example: Attr(ssn, person), Attr(name, person)

M. Arenas – Data Exchange in the Relational and RDF Worlds 33 / 74

Input: Relational schema

◮ PKn(a1, . . . , an, r): (a1, . . . , an) (n ≥ 1) is a primary key in r

M. Arenas – Data Exchange in the Relational and RDF Worlds 34 / 74

Input: Relational schema

◮ PKn(a1, . . . , an, r): (a1, . . . , an) (n ≥ 1) is a primary key in r

Example: PK1(ssn, person)

M. Arenas – Data Exchange in the Relational and RDF Worlds 34 / 74

Input: Relational schema

◮ PKn(a1, . . . , an, r): (a1, . . . , an) (n ≥ 1) is a primary key in r

Example: PK1(ssn, person)

◮ FKn(a1, . . . , an, r , b1, . . . , bn, s): (a1, . . . , an) (n ≥ 1) is a
foreign key in relation r that references to (b1, . . . , bn) in
relation s

M. Arenas – Data Exchange in the Relational and RDF Worlds 34 / 74

Input: Relational schema

◮ PKn(a1, . . . , an, r): (a1, . . . , an) (n ≥ 1) is a primary key in r

Example: PK1(ssn, person)

◮ FKn(a1, . . . , an, r , b1, . . . , bn, s): (a1, . . . , an) (n ≥ 1) is a
foreign key in relation r that references to (b1, . . . , bn) in
relation s

Example: FK1(ssn, student, ssn, person)

M. Arenas – Data Exchange in the Relational and RDF Worlds 34 / 74

Input: A database instance

This predicate is used to store the tuples in a database instance:

◮ Value(v , a, t, r): v is the value of attribute a in a tuple with
identifier t in relation r

M. Arenas – Data Exchange in the Relational and RDF Worlds 35 / 74

Input: A database instance

This predicate is used to store the tuples in a database instance:

◮ Value(v , a, t, r): v is the value of attribute a in a tuple with
identifier t in relation r

For example, the following relation:

student number degree ssn
1 CS 123
2 Math 456

is stored by using the following facts:

Value(1, number, t1, student)
Value(CS, degree, t1, student)
Value(123, ssn, t1, student)
Value(2, number, t2, student)
Value(Math, degree, t2, student)
Value(456, ssn, t2, student)

M. Arenas – Data Exchange in the Relational and RDF Worlds 35 / 74

Generating IRIs

IRIs are an essential component of RDF graphs.

A way to generate IRIs for the produced RDF triples has to be
provided.

◮ IRIs should be generated for relations, attributes and tuples

M. Arenas – Data Exchange in the Relational and RDF Worlds 36 / 74

Generating IRIs

IRIs are an essential component of RDF graphs.

A way to generate IRIs for the produced RDF triples has to be
provided.

◮ IRIs should be generated for relations, attributes and tuples

Assume given a base IRI (http://exa.org/), and the following
family of built-in predicates (n ≥ 2):

◮ Concatn(s1, . . . , sn, s) holds if s is the concatenation of the
strings s1, . . ., sn

M. Arenas – Data Exchange in the Relational and RDF Worlds 36 / 74

Generating IRIs

IRIs are an essential component of RDF graphs.

A way to generate IRIs for the produced RDF triples has to be
provided.

◮ IRIs should be generated for relations, attributes and tuples

Assume given a base IRI (http://exa.org/), and the following
family of built-in predicates (n ≥ 2):

◮ Concatn(s1, . . . , sn, s) holds if s is the concatenation of the
strings s1, . . ., sn

◮ It can be defined by using the usual Concat(·, ·, ·)

M. Arenas – Data Exchange in the Relational and RDF Worlds 36 / 74

Generating IRIs for relations

This rule generates IRIs for relations:

RelationIRI(X ,Y) ← Rel(X),Concat2(http://exa.org/,X ,Y)

M. Arenas – Data Exchange in the Relational and RDF Worlds 37 / 74

Generating IRIs for relations

This rule generates IRIs for relations:

RelationIRI(X ,Y) ← Rel(X),Concat2(http://exa.org/,X ,Y)

Example

http://exa.org/person and http://exa.org/student

M. Arenas – Data Exchange in the Relational and RDF Worlds 37 / 74

Generating IRIs for attributes

The following family of rules generates IRIs for attributes (n ≥ 1):

AttrIRIn(X1, . . . ,Xn,Y ,Z)←

Rel(Y),Attr(X1,Y), . . . ,Attr(Xn,Y),

Concat2+2n(http://exa.org/,Y , "#",X1, ",",

X2, ",", . . . , ",",Xn,Z)

M. Arenas – Data Exchange in the Relational and RDF Worlds 38 / 74

Generating IRIs for attributes

The following family of rules generates IRIs for attributes (n ≥ 1):

AttrIRIn(X1, . . . ,Xn,Y ,Z)←

Rel(Y),Attr(X1,Y), . . . ,Attr(Xn,Y),

Concat2+2n(http://exa.org/,Y , "#",X1, ",",

X2, ",", . . . , ",",Xn,Z)

Example

◮ http://example.org/student#number is generated for
attribute number in relation student

◮ http://example.org/student#number,degree,ssn is
generated for attributes number, degree, ssn in relation
student

M. Arenas – Data Exchange in the Relational and RDF Worlds 38 / 74

Generating IRIs for tuples

The following family of rules generates IRIs for tuples (n ≥ 1):

TupleID(X ,Y ,Z) ←

Rel(Y),PKn(X1, . . . ,Xn,Y),

Value(V1,X1,X ,Y), . . . ,Value(Vn,Xn,X ,Y),

Concat2+4n(http://exa.org/,Y , "#",X1, "=",V1, ",",

X2, "=",V2, . . . , ",",Xn, "=",Vn,Z)

M. Arenas – Data Exchange in the Relational and RDF Worlds 39 / 74

Generating IRIs for tuples

The following family of rules generates IRIs for tuples (n ≥ 1):

TupleID(X ,Y ,Z) ←

Rel(Y),PKn(X1, . . . ,Xn,Y),

Value(V1,X1,X ,Y), . . . ,Value(Vn,Xn,X ,Y),

Concat2+4n(http://exa.org/,Y , "#",X1, "=",V1, ",",

X2, "=",V2, . . . , ",",Xn, "=",Vn,Z)

Example

◮ http://exa.org/student#number=1 is generated for tuple
t1 in relation student

◮ Recall that PK1(number, student) and
Value(1, number, t1, student) hold in our running example

M. Arenas – Data Exchange in the Relational and RDF Worlds 39 / 74

Generating IRIs for tuples

One extra case need to be considered: Some relations may not
have a primary key.

HasPK(X) ← PKn(X1, . . . ,Xn,X) (n ≥ 1)

TupleID(X ,Y ,Z) ← Rel(Y),Value(V ,A,X ,Y),¬HasPK(X),

Concat3(:,Y , ,X ,Z)

M. Arenas – Data Exchange in the Relational and RDF Worlds 40 / 74

Generating IRIs for tuples

One extra case need to be considered: Some relations may not
have a primary key.

HasPK(X) ← PKn(X1, . . . ,Xn,X) (n ≥ 1)

TupleID(X ,Y ,Z) ← Rel(Y),Value(V ,A,X ,Y),¬HasPK(X),

Concat3(:,Y , ,X ,Z)

Example

If student does not have a primary key, then the following blank
node would be the identifier of tuple t1:

:student t1

M. Arenas – Data Exchange in the Relational and RDF Worlds 40 / 74

Defining the mapping

We have the necessary ingredients to introduce the rules that
define the direct mapping

The mapping generates three types of triples.

◮ Table triples: For each relation, store the tuples that belong
to it

◮ Literal triples: For each tuple, store the values in each of its
attributes

◮ Reference triples: Store the references generated by foreign
keys

M. Arenas – Data Exchange in the Relational and RDF Worlds 41 / 74

Generating table triples

This rule generates table triples:

Triple(S , rdf:type,O) ←

Rel(X),Value(V ,A,Y ,X),

TupleID(Y ,X , S),RelationIRI(X ,O)

M. Arenas – Data Exchange in the Relational and RDF Worlds 42 / 74

Generating table triples

This rule generates table triples:

Triple(S , rdf:type,O) ←

Rel(X),Value(V ,A,Y ,X),

TupleID(Y ,X , S),RelationIRI(X ,O)

Example

The following triples are generated for relation student:

Triple(http://exa.org/student#number=1, rdf:type,

http://exa.org/student)

Triple(http://exa.org/student#number=2, rdf:type,

http://exa.org/student)

M. Arenas – Data Exchange in the Relational and RDF Worlds 42 / 74

Generating literal triples

The following rule generates literal triples:

Triple(S ,P ,O) ←

Rel(X),Value(O,A,Y ,X),

TupleID(Y ,X , S),AttrIRI(A,X ,P)

M. Arenas – Data Exchange in the Relational and RDF Worlds 43 / 74

Generating literal triples

The following rule generates literal triples:

Triple(S ,P ,O) ←

Rel(X),Value(O,A,Y ,X),

TupleID(Y ,X , S),AttrIRI(A,X ,P)

Example

The following triples are generated from facts
Value(1, number, t1, student) and Value(CS, degree, t1, student):

Triple(http://exa.org/student#number=1,

http://exa.org/student#number, 1)

Triple(http://exa.org/student#number=1,

http://exa.org/student#degree, CS)

M. Arenas – Data Exchange in the Relational and RDF Worlds 43 / 74

Generating literal triples: A modification

Relational databases with null values have to be consider.

Recall that C(a) holds if a is a constant

◮ C(a) holds if a is not the null value

M. Arenas – Data Exchange in the Relational and RDF Worlds 44 / 74

Generating literal triples: A modification

Relational databases with null values have to be consider.

Recall that C(a) holds if a is a constant

◮ C(a) holds if a is not the null value

The following is the actual rule used to generate literal triples:

Triple(S ,P ,O) ←

Rel(X),Value(O,A,Y ,X),C(O),

TupleID(Y ,X , S),AttrIRI(A,X ,P)

M. Arenas – Data Exchange in the Relational and RDF Worlds 44 / 74

Generating reference triples

This family of rules is used to generate reference triples (n ≥ 1):

Triple(S ,P ,O) ←

FKn(X1, . . . ,Xn,X ,Y1, . . . ,Yn,Y),

Value(V1,X1,U,X), . . . ,Value(Vn,Xn,U,X),

C(V1), . . . ,C(Vn),

Value(V1,Y1,W ,Y), . . . ,Value(Vn,Yn,W ,Y),

TupleID(U,X , S),

AttrIRI(X1, . . . ,Xn,X ,P),

TupleID(W ,Y ,O)

M. Arenas – Data Exchange in the Relational and RDF Worlds 45 / 74

Generating reference triples

Example

Recall that attribute ssn is a foreign key in relation student that
references the attribute ssn in relation person.

Then from the facts Value(123, ssn, t1, student) and
Value(123, ssn, t3, person), the following triple is generated:

Triple(http://exa.org/student#number=1,

http://exa.org/student#ssn,

http://exa.org/person#ssn=123)

M. Arenas – Data Exchange in the Relational and RDF Worlds 46 / 74

What we have learned?

We have a mapping language that:

◮ can be used to encode the direct mapping proposed by the
W3C

◮ can be used by a user to express her/his own rules for
translating relational data into RDF

◮ can be easily extended to deal with RDF-to-RDF data
exchange tasks

M. Arenas – Data Exchange in the Relational and RDF Worlds 47 / 74

What we have learned?

We have a mapping language that:

◮ can be used to encode the direct mapping proposed by the
W3C

◮ can be used by a user to express her/his own rules for
translating relational data into RDF

◮ can be easily extended to deal with RDF-to-RDF data
exchange tasks

M. Arenas – Data Exchange in the Relational and RDF Worlds 47 / 74

What we have learned?

We have a mapping language that:

◮ can be used to encode the direct mapping proposed by the
W3C

◮ can be used by a user to express her/his own rules for
translating relational data into RDF

◮ can be easily extended to deal with RDF-to-RDF data
exchange tasks

M. Arenas – Data Exchange in the Relational and RDF Worlds 47 / 74

What we have learned?

We have a mapping language that:

◮ can be used to encode the direct mapping proposed by the
W3C

◮ can be used by a user to express her/his own rules for
translating relational data into RDF

◮ can be easily extended to deal with RDF-to-RDF data
exchange tasks

M. Arenas – Data Exchange in the Relational and RDF Worlds 47 / 74

The direct mapping from a relational data exchange point

of view

Semantics of the translation process can be defined as in the
relational case.

◮ This is appropriate for the open-world semantics of RDF

◮ We are just interested in materializing the canonical universal
solution

M. Arenas – Data Exchange in the Relational and RDF Worlds 48 / 74

The direct mapping from a relational data exchange point

of view

Semantics of the translation process can be defined as in the
relational case.

◮ This is appropriate for the open-world semantics of RDF

◮ We are just interested in materializing the canonical universal
solution

But some new problems need to be addressed.

M. Arenas – Data Exchange in the Relational and RDF Worlds 48 / 74

Relational data exchange: Some issues to consider

Raised issues that we know how to address:

◮ Mapping rules may contain constants

◮ Mapping rules may need to use negation in the left-hand side

◮ Mapping rules may need to generate fresh identifiers (IRIs)
◮ Second-order tuple-generating dependencies

M. Arenas – Data Exchange in the Relational and RDF Worlds 49 / 74

Relational data exchange: Some issues to consider

Raised issues that we know how to address:

◮ Mapping rules may contain constants

◮ Mapping rules may need to use negation in the left-hand side

◮ Mapping rules may need to generate fresh identifiers (IRIs)
◮ Second-order tuple-generating dependencies

M. Arenas – Data Exchange in the Relational and RDF Worlds 49 / 74

Relational data exchange: Some issues to consider

Raised issues that we know how to address:

◮ Mapping rules may contain constants

◮ Mapping rules may need to use negation in the left-hand side

◮ Mapping rules may need to generate fresh identifiers (IRIs)
◮ Second-order tuple-generating dependencies

M. Arenas – Data Exchange in the Relational and RDF Worlds 49 / 74

Relational data exchange: Some issues to consider

Raised issues that we know how to address:

◮ Mapping rules may contain constants

◮ Mapping rules may need to use negation in the left-hand side

◮ Mapping rules may need to generate fresh identifiers (IRIs)
◮ Second-order tuple-generating dependencies

M. Arenas – Data Exchange in the Relational and RDF Worlds 49 / 74

Relational data exchange: Some issues to consider

Raised issues that we know how to address:

◮ Mapping rules may contain constants

◮ Mapping rules may need to use negation in the left-hand side

◮ Mapping rules may need to generate fresh identifiers (IRIs)
◮ Second-order tuple-generating dependencies

M. Arenas – Data Exchange in the Relational and RDF Worlds 49 / 74

Relational data exchange: Some issues to consider

Raised issues that are more complex:

◮ Mapping rules may need to use built-in predicates

◮ Source instances may contain null values
◮ What is the semantics of null values in a relational database?

There is a value but it is not known, or there is no value

◮ How null values should be treated in a data exchange system?
See [APR11] for the relational case

◮ Keys and foreign keys have to be translated

M. Arenas – Data Exchange in the Relational and RDF Worlds 50 / 74

Relational data exchange: Some issues to consider

Raised issues that are more complex:

◮ Mapping rules may need to use built-in predicates

◮ Source instances may contain null values
◮ What is the semantics of null values in a relational database?

There is a value but it is not known, or there is no value

◮ How null values should be treated in a data exchange system?
See [APR11] for the relational case

◮ Keys and foreign keys have to be translated

M. Arenas – Data Exchange in the Relational and RDF Worlds 50 / 74

Relational data exchange: Some issues to consider

Raised issues that are more complex:

◮ Mapping rules may need to use built-in predicates

◮ Source instances may contain null values
◮ What is the semantics of null values in a relational database?

There is a value but it is not known, or there is no value

◮ How null values should be treated in a data exchange system?
See [APR11] for the relational case

◮ Keys and foreign keys have to be translated

M. Arenas – Data Exchange in the Relational and RDF Worlds 50 / 74

Relational data exchange: Some issues to consider

Raised issues that are more complex:

◮ Mapping rules may need to use built-in predicates

◮ Source instances may contain null values
◮ What is the semantics of null values in a relational database?

There is a value but it is not known, or there is no value

◮ How null values should be treated in a data exchange system?
See [APR11] for the relational case

◮ Keys and foreign keys have to be translated

M. Arenas – Data Exchange in the Relational and RDF Worlds 50 / 74

Relational data exchange: Some issues to consider

Raised issues that are more complex:

◮ Mapping rules may need to use built-in predicates

◮ Source instances may contain null values
◮ What is the semantics of null values in a relational database?

There is a value but it is not known, or there is no value

◮ How null values should be treated in a data exchange system?
See [APR11] for the relational case

◮ Keys and foreign keys have to be translated

M. Arenas – Data Exchange in the Relational and RDF Worlds 50 / 74

Relational data exchange: Some issues to consider

Raised issues that are more complex:

◮ Mapping rules may need to use built-in predicates

◮ Source instances may contain null values
◮ What is the semantics of null values in a relational database?

There is a value but it is not known, or there is no value

◮ How null values should be treated in a data exchange system?
See [APR11] for the relational case

◮ Keys and foreign keys have to be translated

M. Arenas – Data Exchange in the Relational and RDF Worlds 50 / 74

Relational data exchange: Some issues to consider

Raised issues that are more complex:

◮ Mapping rules may need to use built-in predicates

◮ Source instances may contain null values
◮ What is the semantics of null values in a relational database?

There is a value but it is not known, or there is no value

◮ How null values should be treated in a data exchange system?
See [APR11] for the relational case

◮ Keys and foreign keys have to be translated

M. Arenas – Data Exchange in the Relational and RDF Worlds 50 / 74

Relational data exchange: Some issues to consider

Raised issues that are more complex:

◮ Mapping rules may need to use built-in predicates

◮ Source instances may contain null values
◮ What is the semantics of null values in a relational database?

There is a value but it is not known, or there is no value

◮ How null values should be treated in a data exchange system?
See [APR11] for the relational case

◮ Keys and foreign keys have to be translated

M. Arenas – Data Exchange in the Relational and RDF Worlds 50 / 74

An important question about the direct mapping

Is the direct mapping information preserving?

More generally: Is a mapping defined in the language just
presented information preserving?

◮ How much of the initial information is preserved?

◮ How much of the initial instance can be reconstructed?

This fundamental issue has been studied in the context of
relational data exchange.

◮ We will give a brief introduction to the theory that can help
to answer this type of questions: Metadata management

M. Arenas – Data Exchange in the Relational and RDF Worlds 51 / 74

An important question about the direct mapping

Is the direct mapping information preserving?

More generally: Is a mapping defined in the language just
presented information preserving?

◮ How much of the initial information is preserved?

◮ How much of the initial instance can be reconstructed?

This fundamental issue has been studied in the context of
relational data exchange.

◮ We will give a brief introduction to the theory that can help
to answer this type of questions: Metadata management

M. Arenas – Data Exchange in the Relational and RDF Worlds 51 / 74

An important question about the direct mapping

Is the direct mapping information preserving?

More generally: Is a mapping defined in the language just
presented information preserving?

◮ How much of the initial information is preserved?

◮ How much of the initial instance can be reconstructed?

This fundamental issue has been studied in the context of
relational data exchange.

◮ We will give a brief introduction to the theory that can help
to answer this type of questions: Metadata management

M. Arenas – Data Exchange in the Relational and RDF Worlds 51 / 74

An important question about the direct mapping

Is the direct mapping information preserving?

More generally: Is a mapping defined in the language just
presented information preserving?

◮ How much of the initial information is preserved?

◮ How much of the initial instance can be reconstructed?

This fundamental issue has been studied in the context of
relational data exchange.

◮ We will give a brief introduction to the theory that can help
to answer this type of questions: Metadata management

M. Arenas – Data Exchange in the Relational and RDF Worlds 51 / 74

An important question about the direct mapping

Is the direct mapping information preserving?

More generally: Is a mapping defined in the language just
presented information preserving?

◮ How much of the initial information is preserved?

◮ How much of the initial instance can be reconstructed?

This fundamental issue has been studied in the context of
relational data exchange.

◮ We will give a brief introduction to the theory that can help
to answer this type of questions: Metadata management

M. Arenas – Data Exchange in the Relational and RDF Worlds 51 / 74

An important question about the direct mapping

Is the direct mapping information preserving?

More generally: Is a mapping defined in the language just
presented information preserving?

◮ How much of the initial information is preserved?

◮ How much of the initial instance can be reconstructed?

This fundamental issue has been studied in the context of
relational data exchange.

◮ We will give a brief introduction to the theory that can help
to answer this type of questions: Metadata management

M. Arenas – Data Exchange in the Relational and RDF Worlds 51 / 74

Outline of the talk

◮ Relational data exchange

◮ Translating relational data into RDF

◮ Metadata management

◮ Composition, inverse

◮ Concluding remarks

M. Arenas – Data Exchange in the Relational and RDF Worlds 52 / 74

Relational data exchange: Some practical lesson learned

Creating schema mappings is a time consuming and expensive
process

◮ Manual or semi-automatic process in general

M. Arenas – Data Exchange in the Relational and RDF Worlds 53 / 74

Relational data exchange: Some practical lesson learned

Creating schema mappings is a time consuming and expensive
process

◮ Manual or semi-automatic process in general

Key question: Can we reuse existing schema mapping?

M. Arenas – Data Exchange in the Relational and RDF Worlds 53 / 74

Can we reuse schema mappings?

ΣSU

ΣST

S T U

ΣTU

M. Arenas – Data Exchange in the Relational and RDF Worlds 54 / 74

Can we reuse schema mappings?

ΣSU

ΣST

S T U

ΣTU

M. Arenas – Data Exchange in the Relational and RDF Worlds 54 / 74

Can we reuse schema mappings?

ΣSU?

ΣST

S T U

ΣTU

M. Arenas – Data Exchange in the Relational and RDF Worlds 54 / 74

Can we reuse schema mappings?

ΣSU?

ΣST

S T U

ΣTU

We need some operators for schema mappings

M. Arenas – Data Exchange in the Relational and RDF Worlds 54 / 74

Can we reuse schema mappings?

ΣSU = ΣST ◦ ΣTU

ΣST

S T U

ΣTU

We need some operators for schema mappings

◮ Composition in the above case

M. Arenas – Data Exchange in the Relational and RDF Worlds 54 / 74

Metadata management

Contributions mentioned in the previous slides are just a first step
towards the development of a general framework for data exchange.

In fact, as pointed in [B03],

many information system problems involve not only the design
and integration of complex application artifacts, but also their
subsequent manipulation.

M. Arenas – Data Exchange in the Relational and RDF Worlds 55 / 74

Metadata management

This has motivated the need for the development of a general
infrastructure for managing schema mappings.

The problem of managing schema mappings is called metadata

management.

High-level algebraic operators, such as compose, are used to
manipulate mappings.

◮ What other operators are needed?

M. Arenas – Data Exchange in the Relational and RDF Worlds 56 / 74

More operators are needed

ΣVS?

ΣST

S T U

ΣTU

V

ΣSVΣVS = Σ−1
SV

(Σ−1
VS ◦ ΣST) ◦ ΣTUΣ−1

VS ◦ ΣST

M. Arenas – Data Exchange in the Relational and RDF Worlds 57 / 74

More operators are needed

ΣVS?

ΣST

S T U

ΣTU

V

ΣSVΣVS = Σ−1
SV

(Σ−1
VS ◦ ΣST) ◦ ΣTUΣ−1

VS ◦ ΣST

M. Arenas – Data Exchange in the Relational and RDF Worlds 57 / 74

More operators are needed

ΣVS?

ΣST

S T U

ΣTU

V

ΣSV

(Σ−1
VS ◦ ΣST) ◦ ΣTUΣ−1

VS ◦ ΣST

ΣVS = Σ−1
SV

M. Arenas – Data Exchange in the Relational and RDF Worlds 57 / 74

More operators are needed

ΣVS = Σ−1
SV

ΣST

S T U

ΣTU

V

ΣSV

(Σ−1
VS ◦ ΣST) ◦ ΣTUΣ−1

VS ◦ ΣST

An inverse operator is needed in this case

M. Arenas – Data Exchange in the Relational and RDF Worlds 57 / 74

More operators are needed

Σ−1
SV ◦ ΣST

ΣST

S T U

ΣTU

V

ΣSV

(Σ−1
VS ◦ ΣST) ◦ ΣTU

ΣVS = Σ−1
SV

An inverse operator is needed in this case

◮ Combined with the composition operator

M. Arenas – Data Exchange in the Relational and RDF Worlds 57 / 74

More operators are needed

Σ−1
SV ◦ ΣST

ΣST

S T U

ΣTU

V

ΣSV

(Σ−1
SV ◦ ΣST) ◦ ΣTU

ΣVS = Σ−1
SV

An inverse operator is needed in this case

◮ Combined with the composition operator

M. Arenas – Data Exchange in the Relational and RDF Worlds 57 / 74

The inverse operator: How much of the initial instance can

be reconstructed?

Schema TSchema S

ΣST

M. Arenas – Data Exchange in the Relational and RDF Worlds 58 / 74

The inverse operator: How much of the initial instance can

be reconstructed?

Schema TSchema S

ΣST

M. Arenas – Data Exchange in the Relational and RDF Worlds 58 / 74

Defining the inverse operator: The composition operator

Notation

We can view a mappingM as a set of pairs:

(I , J) ∈M iff J ∈ SolM(I)

M. Arenas – Data Exchange in the Relational and RDF Worlds 59 / 74

Defining the inverse operator: The composition operator

Notation

We can view a mappingM as a set of pairs:

(I , J) ∈M iff J ∈ SolM(I)

Definition (FKPT04)

Let M12 be a mapping from S1 to S2, andM23 a mapping from
S2 to S3:

M12 ◦M23 = {(I1, I3) |

∃I2 : (I1, I2) ∈M12 and (I2, I3) ∈M23}

M. Arenas – Data Exchange in the Relational and RDF Worlds 59 / 74

The inverse operator

Question

What is the semantics of the inverse operator?

This turns out to be a very difficult question.

We consider three notions of inverse here:

◮ Fagin-inverse

◮ Quasi-inverse

◮ Maximum recovery

M. Arenas – Data Exchange in the Relational and RDF Worlds 60 / 74

The notion of Fagin-inverse

Intuition: A mapping composed with its inverse should be equal to
the identity mapping

M. Arenas – Data Exchange in the Relational and RDF Worlds 61 / 74

The notion of Fagin-inverse

Intuition: A mapping composed with its inverse should be equal to
the identity mapping

What is the identity mapping?

◮ IdS = {(I , I) | I is an instance of S}?

M. Arenas – Data Exchange in the Relational and RDF Worlds 61 / 74

The notion of Fagin-inverse

Intuition: A mapping composed with its inverse should be equal to
the identity mapping

What is the identity mapping?

◮ IdS = {(I , I) | I is an instance of S}?

For mapping specified by st-tgds, IdS is not the right notion.

◮ IdS = {(I1, I2) | I1, I2 are instances of S and I1 ⊆ I2}

M. Arenas – Data Exchange in the Relational and RDF Worlds 61 / 74

The notion of Fagin-inverse: Formal definition

Definition (F06)

Let M be a mapping from S1 to S2, andM⋆ a mapping from S2

to S1. Then M⋆ is a Fagin-inverse ofM if:

M◦M⋆ = IdS1

M. Arenas – Data Exchange in the Relational and RDF Worlds 62 / 74

The notion of Fagin-inverse: Formal definition

Definition (F06)

Let M be a mapping from S1 to S2, andM⋆ a mapping from S2

to S1. Then M⋆ is a Fagin-inverse ofM if:

M◦M⋆ = IdS1

Example

Consider mappingM specified by:

A(x) → R(x) ∧ ∃y S(x , y)

Then the following are Fagin-inverses ofM:

M⋆

1 : R(x)→ A(x)
M⋆

2 : S(x , y)→ A(x)

M. Arenas – Data Exchange in the Relational and RDF Worlds 62 / 74

Is Fagin-inverse the right notion of inverse for mappings?

On the positive side: It is a natural notion

◮ With good computational properties

On the negative side: A mapping specified by st-tgds is not
guaranteed to admit a Fagin-inverse

◮ For example: Mapping specified by A(x , y)→ R(x) does not
admit a Fagin-inverse

In fact: This notion turns out to be rather restrictive, as it is rare
that a schema mapping possesses a Fagin-inverse.

M. Arenas – Data Exchange in the Relational and RDF Worlds 63 / 74

Is Fagin-inverse the right notion of inverse for mappings?

The notion of quasi-inverse was introduced in [FKPT07] to
overcome this limitation.

◮ The idea is to relax the notion of Fagin-inverse by not
differentiating between source instances that are equivalent
for data exchange purposes

Numerous non-Fagin-invertible mappings possess natural and
useful quasi-inverses.

◮ But there are still simple mappings specified by st-tgds that
have no quasi-inverse

The notion of maximum recovery overcome this limitation.

M. Arenas – Data Exchange in the Relational and RDF Worlds 64 / 74

Recovery: specifies how to recover sound information

Data may be lost in the exchange through a mappingM
◮ We would like to find a mappingM⋆ that at least recovers

sound data w.r.t. M
◮ M⋆ is called a recovery ofM

M. Arenas – Data Exchange in the Relational and RDF Worlds 65 / 74

Recovery: specifies how to recover sound information

Data may be lost in the exchange through a mappingM
◮ We would like to find a mappingM⋆ that at least recovers

sound data w.r.t. M
◮ M⋆ is called a recovery ofM

Example

Consider a mappingM specified by:

emp(x , y , z) ∧ y 6= z → shuttle(x , z)

What mappings are recoveries ofM?

M. Arenas – Data Exchange in the Relational and RDF Worlds 65 / 74

Recovery: specifies how to recover sound information

Data may be lost in the exchange through a mappingM
◮ We would like to find a mappingM⋆ that at least recovers

sound data w.r.t. M
◮ M⋆ is called a recovery ofM

Example

Consider a mappingM specified by:

emp(x , y , z) ∧ y 6= z → shuttle(x , z)

What mappings are recoveries ofM?

M⋆

1 : shuttle(x , z) → ∃u∃v emp(x , u, v)

M. Arenas – Data Exchange in the Relational and RDF Worlds 65 / 74

Recovery: specifies how to recover sound information

Data may be lost in the exchange through a mappingM
◮ We would like to find a mappingM⋆ that at least recovers

sound data w.r.t. M
◮ M⋆ is called a recovery ofM

Example

Consider a mappingM specified by:

emp(x , y , z) ∧ y 6= z → shuttle(x , z)

What mappings are recoveries ofM?

M⋆

1 : shuttle(x , z) → ∃u∃v emp(x , u, v) X

M. Arenas – Data Exchange in the Relational and RDF Worlds 65 / 74

Recovery: specifies how to recover sound information

Data may be lost in the exchange through a mappingM
◮ We would like to find a mappingM⋆ that at least recovers

sound data w.r.t. M
◮ M⋆ is called a recovery ofM

Example

Consider a mappingM specified by:

emp(x , y , z) ∧ y 6= z → shuttle(x , z)

What mappings are recoveries ofM?

M⋆

1 : shuttle(x , z) → ∃u∃v emp(x , u, v) X

M⋆

2 : shuttle(x , z) → ∃u emp(x , u, z)

M. Arenas – Data Exchange in the Relational and RDF Worlds 65 / 74

Recovery: specifies how to recover sound information

Data may be lost in the exchange through a mappingM
◮ We would like to find a mappingM⋆ that at least recovers

sound data w.r.t. M
◮ M⋆ is called a recovery ofM

Example

Consider a mappingM specified by:

emp(x , y , z) ∧ y 6= z → shuttle(x , z)

What mappings are recoveries ofM?

M⋆

1 : shuttle(x , z) → ∃u∃v emp(x , u, v) X

M⋆

2 : shuttle(x , z) → ∃u emp(x , u, z) X

M. Arenas – Data Exchange in the Relational and RDF Worlds 65 / 74

Recovery: specifies how to recover sound information

Data may be lost in the exchange through a mappingM
◮ We would like to find a mappingM⋆ that at least recovers

sound data w.r.t. M
◮ M⋆ is called a recovery ofM

Example

Consider a mappingM specified by:

emp(x , y , z) ∧ y 6= z → shuttle(x , z)

What mappings are recoveries ofM?

M⋆

1 : shuttle(x , z) → ∃u∃v emp(x , u, v) X

M⋆

2 : shuttle(x , z) → ∃u emp(x , u, z) X
M⋆

3 : shuttle(x , z) → ∃u emp(x , z, u)

M. Arenas – Data Exchange in the Relational and RDF Worlds 65 / 74

Recovery: specifies how to recover sound information

Data may be lost in the exchange through a mappingM
◮ We would like to find a mappingM⋆ that at least recovers

sound data w.r.t. M
◮ M⋆ is called a recovery ofM

Example

Consider a mappingM specified by:

emp(x , y , z) ∧ y 6= z → shuttle(x , z)

What mappings are recoveries ofM?

M⋆

1 : shuttle(x , z) → ∃u∃v emp(x , u, v) X

M⋆

2 : shuttle(x , z) → ∃u emp(x , u, z) X
M⋆

3 : shuttle(x , z) → ∃u emp(x , z, u) ×

M. Arenas – Data Exchange in the Relational and RDF Worlds 65 / 74

Maximum recovery: The most informative recovery

Example

Consider again mappingM specified by:

emp(x , y , z) ∧ y 6= z → shuttle(x , z)

These mappings are recoveries ofM:

M⋆

1 : shuttle(x , z) → ∃u∃v emp(x , u, v)
M⋆

2 : shuttle(x , z) → ∃u emp(x , u, z)

M. Arenas – Data Exchange in the Relational and RDF Worlds 66 / 74

Maximum recovery: The most informative recovery

Example

Consider again mappingM specified by:

emp(x , y , z) ∧ y 6= z → shuttle(x , z)

These mappings are recoveries ofM:

M⋆

1 : shuttle(x , z) → ∃u∃v emp(x , u, v)
M⋆

2 : shuttle(x , z) → ∃u emp(x , u, z)

Intuitively: M⋆

2 is better thanM⋆

1

M. Arenas – Data Exchange in the Relational and RDF Worlds 66 / 74

Maximum recovery: The most informative recovery

Example

Consider again mappingM specified by:

emp(x , y , z) ∧ y 6= z → shuttle(x , z)

These mappings are recoveries ofM:

M⋆

1 : shuttle(x , z) → ∃u∃v emp(x , u, v)
M⋆

2 : shuttle(x , z) → ∃u emp(x , u, z)
M⋆

4 : shuttle(x , z) → ∃u emp(x , u, z) ∧ u 6= z

Intuitively: M⋆

2 is better thanM⋆

1

M. Arenas – Data Exchange in the Relational and RDF Worlds 66 / 74

Maximum recovery: The most informative recovery

Example

Consider again mappingM specified by:

emp(x , y , z) ∧ y 6= z → shuttle(x , z)

These mappings are recoveries ofM:

M⋆

1 : shuttle(x , z) → ∃u∃v emp(x , u, v)
M⋆

2 : shuttle(x , z) → ∃u emp(x , u, z)
M⋆

4 : shuttle(x , z) → ∃u emp(x , u, z) ∧ u 6= z

Intuitively: M⋆

2 is better thanM⋆

1

M⋆

4 is better thanM⋆

2 andM⋆

1

M. Arenas – Data Exchange in the Relational and RDF Worlds 66 / 74

Maximum recovery: The most informative recovery

Example

Consider again mappingM specified by:

emp(x , y , z) ∧ y 6= z → shuttle(x , z)

These mappings are recoveries ofM:

M⋆

1 : shuttle(x , z) → ∃u∃v emp(x , u, v)
M⋆

2 : shuttle(x , z) → ∃u emp(x , u, z)
M⋆

4 : shuttle(x , z) → ∃u emp(x , u, z) ∧ u 6= z

Intuitively: M⋆

2 is better thanM⋆

1

M⋆

4 is better thanM⋆

2 andM⋆

1

We would like to find a recovery ofM that is better than any
other recovery: Maximum recovery

M. Arenas – Data Exchange in the Relational and RDF Worlds 66 / 74

The notion of recovery: Formalization

Definition (APR08)

Let M be a mapping from S1 to S2 andM⋆ a mapping from S2

to S1. Then M⋆ is a recovery ofM if:

for every instance I of S1: (I , I) ∈M ◦M⋆

M. Arenas – Data Exchange in the Relational and RDF Worlds 67 / 74

The notion of recovery: Formalization

Definition (APR08)

Let M be a mapping from S1 to S2 andM⋆ a mapping from S2

to S1. Then M⋆ is a recovery ofM if:

for every instance I of S1: (I , I) ∈M ◦M⋆

Example

Consider again mappingM specified by:

emp(x , y , z) ∧ y 6= z → shuttle(x , z)

This mapping is not a recovery ofM:

M⋆

3: shuttle(x , z) → ∃u emp(x , z , u)

M. Arenas – Data Exchange in the Relational and RDF Worlds 67 / 74

The notion of recovery: Formalization

Example (Cont’d)

On the other hand, these mappings are recoveries ofM:

M⋆

1: shuttle(x , z) → ∃u∃v emp(x , u, v)
M⋆

2: shuttle(x , z) → ∃u emp(x , u, z)
M⋆

4: shuttle(x , z) → ∃u emp(x , u, z) ∧ u 6= z

M. Arenas – Data Exchange in the Relational and RDF Worlds 68 / 74

The notion of maximum recovery

M

I

M. Arenas – Data Exchange in the Relational and RDF Worlds 69 / 74

The notion of maximum recovery

M

M⋆

1

I

M. Arenas – Data Exchange in the Relational and RDF Worlds 69 / 74

The notion of maximum recovery

M⋆

2

M

M⋆

1

I

M. Arenas – Data Exchange in the Relational and RDF Worlds 69 / 74

The notion of maximum recovery

M⋆

2

M

M⋆

1

I
M⋆

3

M. Arenas – Data Exchange in the Relational and RDF Worlds 69 / 74

The notion of maximum recovery

M⋆

2

M

M⋆

1

I
M⋆

3

Definition (APR08)

M⋆ is a maximum recovery of M if:

◮ M⋆ is a recovery ofM

◮ for every recovery M′ ofM: M◦M⋆ ⊆M◦M′

M. Arenas – Data Exchange in the Relational and RDF Worlds 69 / 74

On the existence of maximum recoveries

Maximum recoveries overcome one of the limitations of
Fagin-inverses and quasi-inverses.

M. Arenas – Data Exchange in the Relational and RDF Worlds 70 / 74

On the existence of maximum recoveries

Maximum recoveries overcome one of the limitations of
Fagin-inverses and quasi-inverses.

Theorem (APR08)

Every mapping specified by st-tgds has a maximum recovery.

M. Arenas – Data Exchange in the Relational and RDF Worlds 70 / 74

On the existence of maximum recoveries

Maximum recoveries overcome one of the limitations of
Fagin-inverses and quasi-inverses.

Theorem (APR08)

Every mapping specified by st-tgds has a maximum recovery.

Example

Consider a mappingM specified by:

P(x , y) ∧ P(y , z) → R(x , z) ∧ T (y)

M has neither an inverse nor a quasi-inverse [FKPT07]. A maximum
recovery of M is specified by:

R(x , z) → ∃y P(x , y) ∧ P(y , z)

T (y) → ∃x∃z P(x , y) ∧ P(y , z)

M. Arenas – Data Exchange in the Relational and RDF Worlds 70 / 74

Outline of the talk

◮ Relational data exchange

◮ Translating relational data into RDF

◮ Metadata management

◮ Composition, inverse

◮ Concluding remarks

M. Arenas – Data Exchange in the Relational and RDF Worlds 71 / 74

Concluding remarks

◮ The problem of exchanging relational data has been
extensively studied

◮ There is an increasing interest in publishing relational data as
RDF

◮ The problem of translating relational data into RDF can be
seen as a data exchange problem

M. Arenas – Data Exchange in the Relational and RDF Worlds 72 / 74

Concluding remarks

◮ We present a mapping language that can be used to formalize
the direct mapping proposed by the W3C

◮ Can be used by a user to express her/his own rules for
translating relational data into RDF

◮ Can also be used in RDF-to-RDF data exchange tasks

◮ This study help us in recognizing some new problems that
should be addressed in the area of relational data exchange

◮ Some results in the area of metadata management can be
useful in the study of some fundamental properties of the
mapping languages for RDF

M. Arenas – Data Exchange in the Relational and RDF Worlds 73 / 74

Bibliography

[APR08] M. Arenas, J. Pérez, C. Riveros. The recovery of a schema map-
ping: bringing exchanged data back. PODS 2008: 13-22

[APR11] M. Arenas, J. Pérez, J. Reutter. Data Exchange beyond Complete
Data. To appear in PODS 2011.

[B03] P. A. Bernstein. Applying Model Management to Classical Meta
Data Problems. CIDR 2003

[FKMP03] R. Fagin, P. G. Kolaitis, R. J. Miller, L. Popa. Data Exchange:
Semantics and Query Answering. ICDT 2003: 207-224

[FKPT04] R. Fagin, P. G. Kolaitis, L. Popa, W.-C. Tan. Composing Schema
Mappings: Second-Order Dependencies to the Rescue. PODS
2004: 83-94

[F06] R. Fagin. Inverting schema mappings. PODS 2006: 50-59

[FKPT07] R. Fagin, P. G. Kolaitis, L. Popa, W.-C. Tan. Quasi-inverses of
schema mappings. PODS 2007: 123-132

M. Arenas – Data Exchange in the Relational and RDF Worlds 74 / 74

