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The problem of data exchange

Given: A source schema S, a target schema T and a specification
ΣST of the relationship between these schemas

Data exchange: Problem of materializing an instance of T given
an instance of S

◮ Target instance should reflect the source data as accurately as
possible, given the constraints imposed by ΣST and T

◮ It should be efficiently computable

◮ It should allow one to evaluate queries on the target in a way
that is semantically consistent with the source data
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Data exchange in a picture
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Data exchange: Some fundamental questions

Why is data exchange an interesting problem?

◮ Is it a difficult problem?

What are the challenges in the area?

◮ What is a good language for specifying the relationship
between source and target data?

◮ What is a good instance to materialize? Why is it good?

◮ What does it mean to answer a queries over target data?

◮ How do we answer queries over target data? Can we do this
efficiently?
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Outline of the talk

◮ Relational data exchange

◮ Translating relational data into RDF

◮ Metadata management

◮ Composition, inverse

◮ Concluding remarks
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Data exchange in relational databases

It has been extensively studied in the relational world.

◮ It has also been implemented: IBM Clio

Relational data exchange setting:

◮ Source and target schemas: Relational schemas

◮ Relationship between source and target schemas:
Source-to-target tuple-generating dependencies (st-tgds)

Semantics of data exchange has been precisely defined.

◮ Efficient algorithms for materializing target instances and for
answering queries over the target schema have been developed
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Schema mapping: The key component in relational data

exchange

Schema mapping: M = (S,T,ΣST)

◮ S and T are disjoint relational schemas

◮ ΣST is a finite set of st-tgds:

∀x̄∀ȳ (ϕ(x̄ , ȳ)→ ∃z̄ ψ(x̄ , z̄))

ϕ(x̄ , ȳ ): conjunction of relational atomic formulas over S

ψ(x̄ , z̄): conjunction of relational atomic formulas over T
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Relational schema mappings: An example

Example

◮ S: book(title, author name, affiliation)

◮ T: writer(name, book title, year)

◮ ΣST:

∀x1∀x2∀y1 (book(x1, x2, y1)→ ∃z1 writer(x2, x1, z1))
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Relational schema mappings: An example

Example

◮ S: book(title, author name, affiliation)

◮ T: writer(name, book title, year)

◮ ΣST:

∀x1∀x2∀y1 (book(x1, x2, y1)→ ∃z1 writer(x2, x1, z1))

Note

We omit universal quantifiers in st-tgds:

book(x1, x2, y1)→ ∃z1 writer(x2, x1, z1)
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Relational data exchange problem

Fixed: M = (S,T,ΣST)

Problem: Given instance I of S, find an instance J of T such that
(I , J) satisfies ΣST

◮ (I , J) satisfies ϕ(x̄ , ȳ )→ ∃z̄ ψ(x̄ , z̄) if whenever I satisfies
ϕ(ā, b̄), there is a tuple c̄ such that J satisfies ψ(ā, c̄)
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Relational data exchange problem

Fixed: M = (S,T,ΣST)

Problem: Given instance I of S, find an instance J of T such that
(I , J) satisfies ΣST

◮ (I , J) satisfies ϕ(x̄ , ȳ )→ ∃z̄ ψ(x̄ , z̄) if whenever I satisfies
ϕ(ā, b̄), there is a tuple c̄ such that J satisfies ψ(ā, c̄)

Notation

J is a solution for I underM

◮ SolM(I ): Set of solutions for I under M
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The notion of solution: First example

Example

Consider mappingM specified by:

book(x1, x2, y1)→ ∃z1 writer(x2, x1, z1)

Given I :
book title author name affiliation

Algebra Hungerford U. Washington
Real Analysis Royden Stanford
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The notion of solution: First example

Example

Consider mappingM specified by:

book(x1, x2, y1)→ ∃z1 writer(x2, x1, z1)

Given I :
book title author name affiliation

Algebra Hungerford U. Washington
Real Analysis Royden Stanford

Solution J1:
writer name book title year

Hungerford Algebra 1974
Royden Real Analysis 1988
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The notion of solution: First example

Example

Consider mappingM specified by:

book(x1, x2, y1)→ ∃z1 writer(x2, x1, z1)

Given I :
book title author name affiliation

Algebra Hungerford U. Washington
Real Analysis Royden Stanford

Solution J1:
writer name book title year

Hungerford Algebra 1974
Royden Real Analysis 1988

Solution J2:
writer name book title year

Hungerford Algebra n1

Royden Real Analysis n2
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The notion of solution: Second example

Example

◮ S: employee(name)

◮ T: dept(name, number)

◮ ΣST: employee(x)→ ∃y dept(x , y)

Solutions for I = {employee(Peter)}:
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Example

◮ S: employee(name)

◮ T: dept(name, number)

◮ ΣST: employee(x)→ ∃y dept(x , y)

Solutions for I = {employee(Peter)}:

J1: dept(Peter,1)
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Example

◮ S: employee(name)

◮ T: dept(name, number)

◮ ΣST: employee(x)→ ∃y dept(x , y)

Solutions for I = {employee(Peter)}:

J1: dept(Peter,1)

J2: dept(Peter,1), dept(Peter,2)
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The notion of solution: Second example

Example

◮ S: employee(name)

◮ T: dept(name, number)

◮ ΣST: employee(x)→ ∃y dept(x , y)

Solutions for I = {employee(Peter)}:

J1: dept(Peter,1)

J2: dept(Peter,1), dept(Peter,2)

J3: dept(Peter,1), dept(John,1)
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The notion of solution: Second example

Example

◮ S: employee(name)

◮ T: dept(name, number)

◮ ΣST: employee(x)→ ∃y dept(x , y)

Solutions for I = {employee(Peter)}:

J1: dept(Peter,1)

J2: dept(Peter,1), dept(Peter,2)

J3: dept(Peter,1), dept(John,1)

J4: dept(Peter,n1)
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The notion of solution: Second example

Example

◮ S: employee(name)

◮ T: dept(name, number)

◮ ΣST: employee(x)→ ∃y dept(x , y)

Solutions for I = {employee(Peter)}:

J1: dept(Peter,1)

J2: dept(Peter,1), dept(Peter,2)

J3: dept(Peter,1), dept(John,1)

J4: dept(Peter,n1)

J5: dept(Peter, n1), dept(Peter,n2)
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Canonical universal solution

Question

What is a good instance to materialize?
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Canonical universal solution

Question

What is a good instance to materialize?

Algorithm

Input : (S,T,ΣST) and an instance I of S

Output : Canonical universal solution J⋆ for I underM

let J⋆ := empty instance of T

for every ϕ(x̄ , ȳ)→ ∃z̄ ψ(x̄ , z̄) in ΣST do

for every ā, b̄ such that I satisfies ϕ(ā, b̄) do

create a fresh tuple n̄ of pairwise distinct null values
insert ψ(ā, n̄) into J⋆
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Canonical universal solution: Example

Example

Consider mappingM specified by dependency:

employee(x) → ∃y dept(x , y)

Canonical universal solution for I = {employee(Peter), employee(John)}:

◮ For a = Peter do

◮ Create a fresh null value n1

◮ Insert dept(Peter , n1) into J⋆

◮ For a = John do

◮ Create a fresh null value n2

◮ Insert dept(John, n2) into J⋆

Result: J⋆ = {dept(Peter , n1), dept(John, n2)}
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Query answering in data exchange

Given: MappingM, source instance I and query Q over the target
schema

◮ What does it mean to answer Q?
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Query answering in data exchange

Given: MappingM, source instance I and query Q over the target
schema

◮ What does it mean to answer Q?

Definition (Certain answers)

certainM(Q, I ) =
⋂

J is a solution for I under M

Q(J)
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Certain answers: Example

Example

Consider mappingM specified by:

employee(x) → ∃y dept(x , y)

Given instance I = {employee(Peter )}:

certainM(∃y dept(x , y), I ) = {Peter}
certainM(dept(x , y), I ) = ∅
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Query rewriting: An approach for answering queries

How can we compute certain answers?

◮ Näıve algorithm does not work: infinitely many solutions
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Query rewriting: An approach for answering queries

How can we compute certain answers?

◮ Näıve algorithm does not work: infinitely many solutions

Approach proposed in [FKMP03]: Query Rewriting

Given a mappingM and a target query Q, compute a query
Q⋆ such that for every source instance I with canonical
universal solution J⋆:

certainM(Q, I ) = Q⋆(J⋆)
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Query rewriting over the canonical universal solution

Theorem (FKMP03)

Given a mappingM specified by st-tgds and a union of
conjunctive queries Q, there exists a query Q⋆ such that for every
source instance I with canonical universal solution J⋆:

certainM(Q, I ) = Q⋆(J⋆)
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Query rewriting over the canonical universal solution

Theorem (FKMP03)

Given a mappingM specified by st-tgds and a union of
conjunctive queries Q, there exists a query Q⋆ such that for every
source instance I with canonical universal solution J⋆:

certainM(Q, I ) = Q⋆(J⋆)

Proof idea: Assume that C(a) holds whenever a is a constant.

Then:

Q⋆(x1, . . . , xm) = C(x1) ∧ · · · ∧ C(xm) ∧Q(x1, . . . , xm)
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Query rewriting over the canonical solution: Example

Example

Let M be specified by:

employee(x) → ∃y dept(x , y)

Let Q1(x) = ∃y dept(x , y) and Q2(x , y) = dept(x , y):

Q⋆

1 (x) = C(x) ∧ ∃y dept(x , y)

Q⋆

2 (x , y) = C(x) ∧ C(y) ∧ dept(x , y)

Let I = {employee(Peter), employee(John)}:

J⋆ = {dept(Peter , n1), dept(John, n2)}

Then:

certainM(Q1, I ) = {Peter , John} Q⋆

1 (J⋆) = {Peter , John}
certainM(Q2, I ) = ∅ Q⋆

2 (J⋆) = ∅
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Computing certain answers: Complexity

Data complexity: Data exchange setting and query are considered
to be fixed.

◮ Is this a reasonable assumption?

Corollary (FKMP03)

For mappings given by st-tgds, certain answers for UCQ can be
computed in polynomial time (data complexity)
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Relational data exchange: Some lessons learned

Key steps in the development of the area:

◮ Definition of schema mappings: Precise syntax and semantics
◮ Definition of the notion of solution

◮ Identification of good solutions

◮ Polynomial time algorithms for materializing good solutions

◮ Definition of target queries: Precise semantics

◮ Polynomial time algorithms for computing certain answers for
UCQ
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Outline of the talk

◮ Relational data exchange

◮ Translating relational data into RDF

◮ Metadata management

◮ Composition, inverse

◮ Concluding remarks
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RDF in a nutshell

RDF is the W3C proposed framework for representing information
in the Web:

◮ URI vocabulary
◮ A URI is an atomic piece of data, and it identifies an abstract

resource

◮ Syntax based on directed labeled graphs
◮ URIs are used as node labels and edge labels

◮ Schema definition language (RDFS): Define new vocabulary
◮ Typing, inheritance of classes and properties, . . .

◮ Formal semantics
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An example of an RDF graph: DBLP

inPods:FaginLN01 :Moni Naor

:Amnon Lotem

:Ronald Fagin

inPods:2001

"Optimal Aggregation ..."

dc:creator
dc:creator

dc:
cre

ato
r

dct:isPartOf

dc:title
sw:series

conf:pods

<http://purl.org/dc/elements/1.1/>

: <http://dblp.l3s.de/d2r/resource/authors/>

conf: <http://dblp.l3s.de/d2r/resource/conferences/>

inPods: <http://dblp.l3s.de/d2r/resource/publications/conf/pods/>

sw: <http://swrc.ontoware.org/ontology#>

dc:

dct: <http://purl.org/dc/terms/>
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A second example of an RDF graph: DBpedia

DBpedia

DBLP

inPods:FaginLN01

:Ronald Fagin

dbpedia:Ronald Fagin dbpedia:Oklahoma

yago:ResearchWorker

dc:creator

owl
:sa

meA
s

dbo:birthPlace

rdf:type

rdfs:subClassOf
yago:DatabaseResearchers

<http://dbpedia.org/ontology/>

<http://www.w3.org/2000/01/rdf-schema#>

owl:

rdfs:

<http://www.w3.org/1999/02/22-rdf-syntax-ns#>rdf:

<http://dbpedia.org/resource/>dbpedia:

yago: <http://dbpedia.org/class/yago>

: <http://dblp.l3s.de/d2r/resource/authors/>

dbo:

<http://www.w3.org/2002/07/owl#>
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RDF formal model

Subject Object
Predicate

LB

U

U UB

U : set of URIs

B : set of blank nodes

L : set of literals
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RDF formal model

Subject Object
Predicate

LB

U

U UB

U : set of URIs

B : set of blank nodes

L : set of literals

(s, p, o) ∈ (U ∪ B)×U× (U ∪ B ∪ L) is called an RDF triple
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RDF formal model

Subject Object
Predicate

LB

U

U UB

U : set of URIs

B : set of blank nodes

L : set of literals

(s, p, o) ∈ (U ∪ B)×U× (U ∪ B ∪ L) is called an RDF triple

A set of RDF triples is called an RDF graph
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Data exchange in the RDF world

We have witnessed a constant growth in the amount of RDF data
available on the Web

◮ Also in the number of applications for this data

This has generated an increasing interest in publishing relational
data as RDF

◮ Resulted in the creation of the W3C RDB2RDF Working
Group
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Data exchange in the RDF world

The problem of translating relational data into RDF can be seen as
a data exchange problem

◮ Schema mappings can be used to describe how the relational
data is to be mapped into RDF

We will explore this connection.

◮ We start by formalizing one of the proposals of the W3C

M. Arenas – Data Exchange in the Relational and RDF Worlds 28 / 74



Data exchange in the RDF world

Some interesting consequences of our study:

◮ It gives us a mapping language that can be easily extended to
deal with RDF-to-RDF data exchange tasks

◮ It help us in recognizing new problems that should be studied
in the area of data exchange
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The direct mapping

This mapping is defined in:

A Direct Mapping of Relational Data to RDF. W3C Working
Draft. Editors: M. Arenas, E. Prud’hommeaux and J. Sequeda

The direct mapping defines a default way to translate relational
databases into RDF.

◮ We provide a formalization of this mapping
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The direct mapping

Input: A relational schema and a database instance of this schema

Output: An RDF graph
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The direct mapping

Input: A relational schema and a database instance of this schema

Output: An RDF graph

We start by describing how the input is specified
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Translating relational data into RDF: Running example

Consider the following relational schema:

◮ person(ssn, name): ssn is the primary key

◮ student(number, degree, ssn): number is the primary key, ssn
is a foreign key to ssn in person

Consider the following instance:

person ssn name
123 Peter Smith
456 John Brown
789 George Taylor

student number degree ssn
1 CS 123
2 Math 456
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Input: Relational schema

These predicates are used to store a relational schema:

◮ Rel(r): r is a relation name
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Input: Relational schema

These predicates are used to store a relational schema:

◮ Rel(r): r is a relation name

Example: Rel(person), Rel(student)
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Input: Relational schema

These predicates are used to store a relational schema:

◮ Rel(r): r is a relation name

Example: Rel(person), Rel(student)

◮ Attr(a, r): a is an attribute of relation r
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Input: Relational schema

These predicates are used to store a relational schema:

◮ Rel(r): r is a relation name

Example: Rel(person), Rel(student)

◮ Attr(a, r): a is an attribute of relation r

Example: Attr(ssn, person), Attr(name, person)
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Input: Relational schema

◮ PKn(a1, . . . , an, r): (a1, . . . , an) (n ≥ 1) is a primary key in r
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Input: Relational schema
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Input: Relational schema

◮ PKn(a1, . . . , an, r): (a1, . . . , an) (n ≥ 1) is a primary key in r

Example: PK1(ssn, person)

◮ FKn(a1, . . . , an, r , b1, . . . , bn, s): (a1, . . . , an) (n ≥ 1) is a
foreign key in relation r that references to (b1, . . . , bn) in
relation s
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Input: Relational schema

◮ PKn(a1, . . . , an, r): (a1, . . . , an) (n ≥ 1) is a primary key in r

Example: PK1(ssn, person)

◮ FKn(a1, . . . , an, r , b1, . . . , bn, s): (a1, . . . , an) (n ≥ 1) is a
foreign key in relation r that references to (b1, . . . , bn) in
relation s

Example: FK1(ssn, student, ssn, person)
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Input: A database instance

This predicate is used to store the tuples in a database instance:

◮ Value(v , a, t, r): v is the value of attribute a in a tuple with
identifier t in relation r
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Input: A database instance

This predicate is used to store the tuples in a database instance:

◮ Value(v , a, t, r): v is the value of attribute a in a tuple with
identifier t in relation r

For example, the following relation:

student number degree ssn
1 CS 123
2 Math 456

is stored by using the following facts:

Value(1, number, t1, student)
Value(CS, degree, t1, student)
Value(123, ssn, t1, student)
Value(2, number, t2, student)
Value(Math, degree, t2, student)
Value(456, ssn, t2, student)

M. Arenas – Data Exchange in the Relational and RDF Worlds 35 / 74



Generating IRIs

IRIs are an essential component of RDF graphs.

A way to generate IRIs for the produced RDF triples has to be
provided.

◮ IRIs should be generated for relations, attributes and tuples
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Generating IRIs

IRIs are an essential component of RDF graphs.

A way to generate IRIs for the produced RDF triples has to be
provided.

◮ IRIs should be generated for relations, attributes and tuples

Assume given a base IRI (http://exa.org/), and the following
family of built-in predicates (n ≥ 2):

◮ Concatn(s1, . . . , sn, s) holds if s is the concatenation of the
strings s1, . . ., sn
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Generating IRIs

IRIs are an essential component of RDF graphs.

A way to generate IRIs for the produced RDF triples has to be
provided.

◮ IRIs should be generated for relations, attributes and tuples

Assume given a base IRI (http://exa.org/), and the following
family of built-in predicates (n ≥ 2):

◮ Concatn(s1, . . . , sn, s) holds if s is the concatenation of the
strings s1, . . ., sn

◮ It can be defined by using the usual Concat(·, ·, ·)
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Generating IRIs for relations

This rule generates IRIs for relations:

RelationIRI(X ,Y ) ← Rel(X ),Concat2(http://exa.org/,X ,Y )
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Generating IRIs for relations

This rule generates IRIs for relations:

RelationIRI(X ,Y ) ← Rel(X ),Concat2(http://exa.org/,X ,Y )

Example

http://exa.org/person and http://exa.org/student
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Generating IRIs for attributes

The following family of rules generates IRIs for attributes (n ≥ 1):

AttrIRIn(X1, . . . ,Xn,Y ,Z )←

Rel(Y ),Attr(X1,Y ), . . . ,Attr(Xn,Y ),

Concat2+2n(http://exa.org/,Y , "#",X1, ",",

X2, ",", . . . , ",",Xn,Z )

M. Arenas – Data Exchange in the Relational and RDF Worlds 38 / 74



Generating IRIs for attributes

The following family of rules generates IRIs for attributes (n ≥ 1):

AttrIRIn(X1, . . . ,Xn,Y ,Z )←

Rel(Y ),Attr(X1,Y ), . . . ,Attr(Xn,Y ),

Concat2+2n(http://exa.org/,Y , "#",X1, ",",

X2, ",", . . . , ",",Xn,Z )

Example

◮ http://example.org/student#number is generated for
attribute number in relation student

◮ http://example.org/student#number,degree,ssn is
generated for attributes number, degree, ssn in relation
student
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Generating IRIs for tuples

The following family of rules generates IRIs for tuples (n ≥ 1):

TupleID(X ,Y ,Z ) ←

Rel(Y ),PKn(X1, . . . ,Xn,Y ),

Value(V1,X1,X ,Y ), . . . ,Value(Vn,Xn,X ,Y ),

Concat2+4n(http://exa.org/,Y , "#",X1, "=",V1, ",",

X2, "=",V2, . . . , ",",Xn, "=",Vn,Z )
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TupleID(X ,Y ,Z ) ←

Rel(Y ),PKn(X1, . . . ,Xn,Y ),

Value(V1,X1,X ,Y ), . . . ,Value(Vn,Xn,X ,Y ),

Concat2+4n(http://exa.org/,Y , "#",X1, "=",V1, ",",

X2, "=",V2, . . . , ",",Xn, "=",Vn,Z )

Example

◮ http://exa.org/student#number=1 is generated for tuple
t1 in relation student

◮ Recall that PK1(number, student) and
Value(1, number, t1, student) hold in our running example
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Generating IRIs for tuples

One extra case need to be considered: Some relations may not
have a primary key.

HasPK(X ) ← PKn(X1, . . . ,Xn,X ) (n ≥ 1)

TupleID(X ,Y ,Z ) ← Rel(Y ),Value(V ,A,X ,Y ),¬HasPK(X ),

Concat3( :,Y , ,X ,Z )
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Generating IRIs for tuples

One extra case need to be considered: Some relations may not
have a primary key.

HasPK(X ) ← PKn(X1, . . . ,Xn,X ) (n ≥ 1)

TupleID(X ,Y ,Z ) ← Rel(Y ),Value(V ,A,X ,Y ),¬HasPK(X ),

Concat3( :,Y , ,X ,Z )

Example

If student does not have a primary key, then the following blank
node would be the identifier of tuple t1:

:student t1
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Defining the mapping

We have the necessary ingredients to introduce the rules that
define the direct mapping

The mapping generates three types of triples.

◮ Table triples: For each relation, store the tuples that belong
to it

◮ Literal triples: For each tuple, store the values in each of its
attributes

◮ Reference triples: Store the references generated by foreign
keys
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Generating table triples

This rule generates table triples:

Triple(S , rdf:type,O) ←

Rel(X ),Value(V ,A,Y ,X ),

TupleID(Y ,X , S),RelationIRI(X ,O)
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Generating table triples

This rule generates table triples:

Triple(S , rdf:type,O) ←

Rel(X ),Value(V ,A,Y ,X ),

TupleID(Y ,X , S),RelationIRI(X ,O)

Example

The following triples are generated for relation student:

Triple(http://exa.org/student#number=1, rdf:type,

http://exa.org/student)

Triple(http://exa.org/student#number=2, rdf:type,

http://exa.org/student)
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Generating literal triples

The following rule generates literal triples:

Triple(S ,P ,O) ←

Rel(X ),Value(O,A,Y ,X ),

TupleID(Y ,X , S),AttrIRI(A,X ,P)
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Generating literal triples

The following rule generates literal triples:

Triple(S ,P ,O) ←

Rel(X ),Value(O,A,Y ,X ),

TupleID(Y ,X , S),AttrIRI(A,X ,P)

Example

The following triples are generated from facts
Value(1, number, t1, student) and Value(CS, degree, t1, student):

Triple(http://exa.org/student#number=1,

http://exa.org/student#number, 1)

Triple(http://exa.org/student#number=1,

http://exa.org/student#degree, CS)
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Generating literal triples: A modification

Relational databases with null values have to be consider.

Recall that C(a) holds if a is a constant

◮ C(a) holds if a is not the null value
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Generating literal triples: A modification

Relational databases with null values have to be consider.

Recall that C(a) holds if a is a constant

◮ C(a) holds if a is not the null value

The following is the actual rule used to generate literal triples:

Triple(S ,P ,O) ←

Rel(X ),Value(O,A,Y ,X ),C(O),

TupleID(Y ,X , S),AttrIRI(A,X ,P)
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Generating reference triples

This family of rules is used to generate reference triples (n ≥ 1):

Triple(S ,P ,O) ←

FKn(X1, . . . ,Xn,X ,Y1, . . . ,Yn,Y ),

Value(V1,X1,U,X ), . . . ,Value(Vn,Xn,U,X ),

C(V1), . . . ,C(Vn),

Value(V1,Y1,W ,Y ), . . . ,Value(Vn,Yn,W ,Y ),

TupleID(U,X , S),

AttrIRI(X1, . . . ,Xn,X ,P),

TupleID(W ,Y ,O)
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Generating reference triples

Example

Recall that attribute ssn is a foreign key in relation student that
references the attribute ssn in relation person.

Then from the facts Value(123, ssn, t1, student) and
Value(123, ssn, t3, person), the following triple is generated:

Triple(http://exa.org/student#number=1,

http://exa.org/student#ssn,

http://exa.org/person#ssn=123)
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What we have learned?

We have a mapping language that:

◮ can be used to encode the direct mapping proposed by the
W3C

◮ can be used by a user to express her/his own rules for
translating relational data into RDF

◮ can be easily extended to deal with RDF-to-RDF data
exchange tasks
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The direct mapping from a relational data exchange point

of view

Semantics of the translation process can be defined as in the
relational case.

◮ This is appropriate for the open-world semantics of RDF

◮ We are just interested in materializing the canonical universal
solution
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The direct mapping from a relational data exchange point

of view

Semantics of the translation process can be defined as in the
relational case.

◮ This is appropriate for the open-world semantics of RDF

◮ We are just interested in materializing the canonical universal
solution

But some new problems need to be addressed.
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Relational data exchange: Some issues to consider

Raised issues that we know how to address:

◮ Mapping rules may contain constants

◮ Mapping rules may need to use negation in the left-hand side

◮ Mapping rules may need to generate fresh identifiers (IRIs)
◮ Second-order tuple-generating dependencies
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Relational data exchange: Some issues to consider

Raised issues that are more complex:

◮ Mapping rules may need to use built-in predicates

◮ Source instances may contain null values
◮ What is the semantics of null values in a relational database?

There is a value but it is not known, or there is no value

◮ How null values should be treated in a data exchange system?
See [APR11] for the relational case

◮ Keys and foreign keys have to be translated
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An important question about the direct mapping

Is the direct mapping information preserving?

More generally: Is a mapping defined in the language just
presented information preserving?

◮ How much of the initial information is preserved?

◮ How much of the initial instance can be reconstructed?

This fundamental issue has been studied in the context of
relational data exchange.

◮ We will give a brief introduction to the theory that can help
to answer this type of questions: Metadata management
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Outline of the talk

◮ Relational data exchange

◮ Translating relational data into RDF

◮ Metadata management

◮ Composition, inverse

◮ Concluding remarks
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Relational data exchange: Some practical lesson learned

Creating schema mappings is a time consuming and expensive
process

◮ Manual or semi-automatic process in general
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Relational data exchange: Some practical lesson learned

Creating schema mappings is a time consuming and expensive
process

◮ Manual or semi-automatic process in general

Key question: Can we reuse existing schema mapping?
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Can we reuse schema mappings?

ΣSU

ΣST

S T U

ΣTU
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Can we reuse schema mappings?

ΣSU?

ΣST

S T U

ΣTU

We need some operators for schema mappings
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Can we reuse schema mappings?

ΣSU = ΣST ◦ ΣTU

ΣST

S T U

ΣTU

We need some operators for schema mappings

◮ Composition in the above case
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Metadata management

Contributions mentioned in the previous slides are just a first step
towards the development of a general framework for data exchange.

In fact, as pointed in [B03],

many information system problems involve not only the design
and integration of complex application artifacts, but also their
subsequent manipulation.
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Metadata management

This has motivated the need for the development of a general
infrastructure for managing schema mappings.

The problem of managing schema mappings is called metadata

management.

High-level algebraic operators, such as compose, are used to
manipulate mappings.

◮ What other operators are needed?
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More operators are needed

ΣVS?

ΣST

S T U

ΣTU

V

ΣSVΣVS = Σ−1
SV

(Σ−1
VS ◦ ΣST) ◦ ΣTUΣ−1

VS ◦ ΣST
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The inverse operator: How much of the initial instance can

be reconstructed?

Schema TSchema S

ΣST
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Defining the inverse operator: The composition operator

Notation

We can view a mappingM as a set of pairs:

(I , J) ∈M iff J ∈ SolM(I )
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Defining the inverse operator: The composition operator

Notation

We can view a mappingM as a set of pairs:

(I , J) ∈M iff J ∈ SolM(I )

Definition (FKPT04)

Let M12 be a mapping from S1 to S2, andM23 a mapping from
S2 to S3:

M12 ◦M23 = {(I1, I3) |

∃I2 : (I1, I2) ∈M12 and (I2, I3) ∈M23}
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The inverse operator

Question

What is the semantics of the inverse operator?

This turns out to be a very difficult question.

We consider three notions of inverse here:

◮ Fagin-inverse

◮ Quasi-inverse

◮ Maximum recovery
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The notion of Fagin-inverse

Intuition: A mapping composed with its inverse should be equal to
the identity mapping
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The notion of Fagin-inverse

Intuition: A mapping composed with its inverse should be equal to
the identity mapping

What is the identity mapping?

◮ IdS = {(I , I ) | I is an instance of S}?
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The notion of Fagin-inverse

Intuition: A mapping composed with its inverse should be equal to
the identity mapping

What is the identity mapping?

◮ IdS = {(I , I ) | I is an instance of S}?

For mapping specified by st-tgds, IdS is not the right notion.

◮ IdS = {(I1, I2) | I1, I2 are instances of S and I1 ⊆ I2}
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The notion of Fagin-inverse: Formal definition

Definition (F06)

Let M be a mapping from S1 to S2, andM⋆ a mapping from S2

to S1. Then M⋆ is a Fagin-inverse ofM if:

M◦M⋆ = IdS1
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The notion of Fagin-inverse: Formal definition

Definition (F06)

Let M be a mapping from S1 to S2, andM⋆ a mapping from S2

to S1. Then M⋆ is a Fagin-inverse ofM if:

M◦M⋆ = IdS1

Example

Consider mappingM specified by:

A(x) → R(x) ∧ ∃y S(x , y)

Then the following are Fagin-inverses ofM:

M⋆

1 : R(x)→ A(x)
M⋆

2 : S(x , y)→ A(x)
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Is Fagin-inverse the right notion of inverse for mappings?

On the positive side: It is a natural notion

◮ With good computational properties

On the negative side: A mapping specified by st-tgds is not
guaranteed to admit a Fagin-inverse

◮ For example: Mapping specified by A(x , y)→ R(x) does not
admit a Fagin-inverse

In fact: This notion turns out to be rather restrictive, as it is rare
that a schema mapping possesses a Fagin-inverse.
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Is Fagin-inverse the right notion of inverse for mappings?

The notion of quasi-inverse was introduced in [FKPT07] to
overcome this limitation.

◮ The idea is to relax the notion of Fagin-inverse by not
differentiating between source instances that are equivalent
for data exchange purposes

Numerous non-Fagin-invertible mappings possess natural and
useful quasi-inverses.

◮ But there are still simple mappings specified by st-tgds that
have no quasi-inverse

The notion of maximum recovery overcome this limitation.
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Recovery: specifies how to recover sound information

Data may be lost in the exchange through a mappingM
◮ We would like to find a mappingM⋆ that at least recovers

sound data w.r.t. M
◮ M⋆ is called a recovery ofM
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Data may be lost in the exchange through a mappingM
◮ We would like to find a mappingM⋆ that at least recovers

sound data w.r.t. M
◮ M⋆ is called a recovery ofM

Example

Consider a mappingM specified by:

emp(x , y , z) ∧ y 6= z → shuttle(x , z)

What mappings are recoveries ofM?
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◮ M⋆ is called a recovery ofM

Example

Consider a mappingM specified by:

emp(x , y , z) ∧ y 6= z → shuttle(x , z)

What mappings are recoveries ofM?

M⋆

1 : shuttle(x , z) → ∃u∃v emp(x , u, v)
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1 : shuttle(x , z) → ∃u∃v emp(x , u, v) X
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Maximum recovery: The most informative recovery

Example

Consider again mappingM specified by:

emp(x , y , z) ∧ y 6= z → shuttle(x , z)

These mappings are recoveries ofM:

M⋆

1 : shuttle(x , z) → ∃u∃v emp(x , u, v)
M⋆

2 : shuttle(x , z) → ∃u emp(x , u, z)
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Maximum recovery: The most informative recovery

Example

Consider again mappingM specified by:

emp(x , y , z) ∧ y 6= z → shuttle(x , z)

These mappings are recoveries ofM:

M⋆

1 : shuttle(x , z) → ∃u∃v emp(x , u, v)
M⋆

2 : shuttle(x , z) → ∃u emp(x , u, z)

Intuitively: M⋆

2 is better thanM⋆

1
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Maximum recovery: The most informative recovery

Example

Consider again mappingM specified by:

emp(x , y , z) ∧ y 6= z → shuttle(x , z)

These mappings are recoveries ofM:

M⋆

1 : shuttle(x , z) → ∃u∃v emp(x , u, v)
M⋆

2 : shuttle(x , z) → ∃u emp(x , u, z)
M⋆

4 : shuttle(x , z) → ∃u emp(x , u, z) ∧ u 6= z

Intuitively: M⋆

2 is better thanM⋆

1

M⋆

4 is better thanM⋆

2 andM⋆

1

We would like to find a recovery ofM that is better than any
other recovery: Maximum recovery
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The notion of recovery: Formalization

Definition (APR08)

Let M be a mapping from S1 to S2 andM⋆ a mapping from S2

to S1. Then M⋆ is a recovery ofM if:

for every instance I of S1: (I , I ) ∈M ◦M⋆

M. Arenas – Data Exchange in the Relational and RDF Worlds 67 / 74



The notion of recovery: Formalization

Definition (APR08)

Let M be a mapping from S1 to S2 andM⋆ a mapping from S2

to S1. Then M⋆ is a recovery ofM if:

for every instance I of S1: (I , I ) ∈M ◦M⋆

Example

Consider again mappingM specified by:

emp(x , y , z) ∧ y 6= z → shuttle(x , z)

This mapping is not a recovery ofM:

M⋆

3: shuttle(x , z) → ∃u emp(x , z , u)
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The notion of recovery: Formalization

Example (Cont’d)

On the other hand, these mappings are recoveries ofM:

M⋆

1: shuttle(x , z) → ∃u∃v emp(x , u, v)
M⋆

2: shuttle(x , z) → ∃u emp(x , u, z)
M⋆

4: shuttle(x , z) → ∃u emp(x , u, z) ∧ u 6= z
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The notion of maximum recovery

M

I
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The notion of maximum recovery

M⋆

2

M

M⋆

1

I
M⋆

3

Definition (APR08)

M⋆ is a maximum recovery of M if:

◮ M⋆ is a recovery ofM

◮ for every recovery M′ ofM: M◦M⋆ ⊆M◦M′
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On the existence of maximum recoveries

Maximum recoveries overcome one of the limitations of
Fagin-inverses and quasi-inverses.
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On the existence of maximum recoveries

Maximum recoveries overcome one of the limitations of
Fagin-inverses and quasi-inverses.

Theorem (APR08)

Every mapping specified by st-tgds has a maximum recovery.

Example

Consider a mappingM specified by:

P(x , y) ∧ P(y , z) → R(x , z) ∧ T (y)

M has neither an inverse nor a quasi-inverse [FKPT07]. A maximum
recovery of M is specified by:

R(x , z) → ∃y P(x , y) ∧ P(y , z)

T (y) → ∃x∃z P(x , y) ∧ P(y , z)
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Outline of the talk

◮ Relational data exchange

◮ Translating relational data into RDF

◮ Metadata management

◮ Composition, inverse

◮ Concluding remarks
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Concluding remarks

◮ The problem of exchanging relational data has been
extensively studied

◮ There is an increasing interest in publishing relational data as
RDF

◮ The problem of translating relational data into RDF can be
seen as a data exchange problem
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Concluding remarks

◮ We present a mapping language that can be used to formalize
the direct mapping proposed by the W3C

◮ Can be used by a user to express her/his own rules for
translating relational data into RDF

◮ Can also be used in RDF-to-RDF data exchange tasks

◮ This study help us in recognizing some new problems that
should be addressed in the area of relational data exchange

◮ Some results in the area of metadata management can be
useful in the study of some fundamental properties of the
mapping languages for RDF
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