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Data exchange settings

Data Exchange Setting: (S,T,Σst)

S: Source schema.

T: Target schema.

Σst: Set of source-to-target dependencies.

- Source-to-target dependency: FO sentence of the form

∀x̄ (ϕS(x̄) → ∃ȳ ψT(x̄, ȳ)).

- ϕS(x̄): FO formula over S.

- ψT(x̄, ȳ): conjunction of FO atomic formulas over T.
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Data exchange settings: Example

S = 〈Employee(·)〉

T = 〈Dept(·, ·)〉

Σst = {∀x (Employee(x) → ∃yDept(x, y))}.
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Data exchange problem

Given a source instance I , find a target instance J such that (I, J)

satisfies Σst.

- J is called a solution for I .

Example: Possible solutions for I = {Employee(peter)}:

- J1 = {Dept(peter , 1)}.

- J2 = {Dept(peter , 1),Dept(peter , 2)}.

- J3 = {Dept(peter , 1),Dept(john, 1)}.

- J4 = {Dept(peter , X)}.

- J5 = {Dept(peter , X),Dept(peter , Y )}.
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Query answering

Q: Query over the target schema.

- What does it mean to answer Q?

certain(Q, I) =
⋂

J is a solution for I

Q(J)

Example:

- certain(∃yDept(x, y), I) = {peter}.

- certain(Dept(x, y), I) = ∅.
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Query rewriting

How can we compute certain(Q, I)?

- Naı̈ve algorithm does not work: infinitely many solutions.

Approach proposed in [FKMP03]: Query Rewriting

Look for some specific F : inst(S) → inst(T), and find condi-

tions under which certain(Q, I) = Q′(F(I)) for every source

instance I .

What is a good alternative for F?

5



Outline

• Query rewriting over the canonical solution.

• Locality in data exchange.

- Proving inexpressibility results.

• Query rewriting over the core.

- Canonical solution versus core.

• Extensions.

- Other semantics.

• Conclusions.

6



Outline

• Query rewriting over the canonical solution.

• Locality in data exchange.

- Proving inexpressibility results.

• Query rewriting over the core.

- Canonical solution versus core.

• Extensions.

- Other semantics.

• Conclusions.

6



Canonical solution

Input: (S,T,Σst) and a source instance I

Output: Canonical solution J for I

Algorithm:

for every ∀x̄ (ϕS(x̄) → ∃y ψT(x̄, ȳ)) ∈ Σst do

for every ā such that I satisfies ϕS(ā) do

create a fresh tuple of null values X

insert ψT(ā,X) into J
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Canonical solution: Example

Σst = {∀x (Employee(x) → ∃yDept(x, y))} and
I = {Employee(peter), Employee(john)}.

- For a = peter do

Create a fresh null value X

Insert Dept(peter , X) into J

- For a = john do

Create a fresh null value Y

Insert Dept(john, Y ) into J

Canonical solution:

{Dept(peter , X), Dept(john, Y )}
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Query rewriting over the canonical solution

Fcan(I): canonical solution for I .

- Can be computed in polynomial time (data complexity).

Theorem [FKMP03]: For every data exchange setting and union

of conjunctive queries Q, there exists Q′ such that for every source

instance I , certain(Q, I) = Q′(Fcan(I)).

- C(x): holds whenever x is a constant.

- Q′(x1, . . . , xm) = C(x1) ∧ · · · ∧ C(xm) ∧Q(x1, . . . , xm).
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Query rewriting over the canonical solution

Can the theorem be extended to other classes of queries?

Theorem [FKMP03]: There exists a data exchange setting and a

conjunctive query Q with one inequality such that Q is not FO-rewritable

over Fcan.

- For every FO query Q′, there exists an instance I such that

certain(Q, I) 6= Q′(Fcan(I)).

We would like to study the query rewriting problem.

- We need some tools: How can we prove that a query is not FO-rewritable?
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Query rewriting: Some facts

The problem of deciding whether an FO formula is FO-rewritable

over Fcan is undecidable.

There exists other classes of queries that are FO-rewritable over the

canonical solution.

- Every boolean query Q whose asymptotic probability is 0 is

FO-rewritable: certain(Q, I) = false .
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Locality in data exchange: Notation

I: source instance.

Gaifman graph G(I) of I:

- adom(I) is the set of nodes of G(I).

- There exists an edge between a and b iff a and b belong to the same tuple of

a relation in I .

Example: I(R) = {(1, 2, 3)} and I(T ) = {(1, 4), (4, 5)}.

2

3

4

5

1

G(I):
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Locality in data exchange: Notation

dI(a, b): distance between a and b in G(I).

dI(ā, b): minimum value of dI(a, b), where a is in ā.

N I

d
(ā): restriction of I to the elements at distance at most d from ā.

- Example: adom(N I
2 (5)) = {1, 4, 5}, N I

2 (5)(R) = ∅ and

N I
2 (5)(T ) = {(1, 4), (4, 5)}.

N I

d
(ā) ∼= N I

d
(b̄): members of ā and b̄ are treated as distinguished

elements.

- ā = (a1, . . . , am) and b̄ = (b1, . . . , bm).

- There is an isomorphism f : N I

d (ā) → N I

d (b̄) such that f(ai) = bi

(1 ≤ i ≤ m).
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Locality in data exchange: Definition

Given: (S,T,Σst) and m-ary query Q over T.

Definition: Q is locally source-dependent if there is d ≥ 0 such that for

every instance I of S and m-tuples ā, b̄ in I ,

ā ∈ certain(Q, I)

N I

d
(ā) ∼= N I

d
(b̄) =⇒ iff

b̄ ∈ certain(Q, I)
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Locality in data exchange: Main theorem

Theorem: If Q is FO-rewritable over the canonical solution, then

Q is locally source-dependent.

This theorem can be used to prove inexpressibility results.

- If a query is not locally source-dependent, then it is not FO-rewritable.
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Example: Proving inexpressibility

Data exchange setting:

S = 〈G(·, ·), R(·), S(·)〉

T = 〈G′(·, ·), R′(·), S′(·)〉

Σst = ∀x∀y (G(x, y) → G′(x, y)),

∀x (R(x) → R′(x)),

∀x (S(x) → S′(x)).

Query:

Q(x) = R′(x) ∨ S′(x) ∧ ∃y∃z(R′(y) ∧G′(y, z) ∧ ¬R′(z))
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Example: Proving inexpressibility

Assume that Q is FO-rewritable over the canonical solution.

Then there exists d ≥ 0 such that

N I

d (a) ∼= N I

d (b) =⇒ a ∈ certain(Q, I) iff b ∈ certain(Q, I).

Contradiction: find a source instance I such that

N I

d (a) ∼= N I

d (b), a ∈ certain(Q, I) and b 6∈ certain(Q, I).
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Example: Defining instance I

. .
 .

. .
 .

. .
 .

. .
 .

b2d

bd+1

S(b) b1a1

adad+1

a2d

bd
R(c)

I:

S(a)
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Example: a ∈ certain(Q, I)

If J does not satisfy S ′(a) ∧ ∃y∃z(R′(y) ∧G′(y, z) ∧ ¬R′(z)):

. .
 .

. .
 . .   .   .   .

R′(a1)

R′(ad)
R′(c)

R′(a)R′(a2d)

R′(ad+1)

J :

Then: J satisfies R′(a).
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Example: b 6∈ certain(Q, I)

. .
 .

. .
 .

. .
 .

. .
 .

b2d

bd+1

S′(b) b1

R′(ad)R′(ad+1) bd
R′(c)

J :

R′(a), S′(a)
R′(a2d) R′(a1)

J does not satisfy R′(b) ∨ S′(b) ∧ ∃y∃z(R′(y) ∧G′(y, z) ∧ ¬R′(z)).
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Example: Getting a contradiction

. .
 .

. .
 .

. .
 .

. .
 .

bd+1

S(b) b1

bd

b2d

N I

d
(b):

S(a)a2d a1

adad+1

N I

d
(a):

Conclusion: Q is not FO-rewritable over the canonical solution.
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How do we prove the theorem?

d

∼= ∼=

a

b

a

b

source

d

r

r

canonical solution

23



How do we prove the theorem?

d

∼= ∼=

a

b

a

b

source

d

r

r

canonical solution

23



How do we prove the theorem?

d

∼= ∼=

a

b

a

b

source

d

r

r

canonical solution

23



How do we prove the theorem?

d

∼= ∼=

a

b

a

b

source

d

r

r

canonical solution

23



How do we prove the theorem?

d

∼= ∼=

a

b

a

b

source

d

r

r

canonical solution

23



How do we prove the theorem?

≡k
∼=

a

b

a

b

source

d

r

r

canonical solution

d

23



How do we prove the theorem?

≡k

a

b

a

b

source

d

r

r

canonical solution

d

≡`

23



Outline

• Query rewriting over the canonical solution.

• Locality in data exchange.

- Proving inexpressibility results.

• Query rewriting over the core.

- Canonical solution versus core.

• Extensions.

- Other semantics.

• Conclusions.

24



What about other transformations?

Core of canonical solution J : Substructure J? of J such that there is a

homomorphism from J to J? and there is no homomorphism from J to a

proper substructure of J?.

- Homomorphism h : J → J ′: mapping from adom(J) to adom(J ′) such that

h(c) = c for all constant c, and t̄ ∈ J(R) implies h(t̄) ∈ J ′(R).

Core is the smallest solution that is homomorphically equivalent to the

canonical solution.

- It can be computed in polynomial time [FKP03].
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Query rewriting over the core

Fcore(I): core of the canonical solution for I .

Theorem [FKMP03]: For every data exchange setting and union

conjunctive queries Q, there exists Q′ such that for every source

instance I , certain(Q, I) = Q′(Fcore(I)).

- Certain answers can be computed more efficiently by using the core.

Rewritability over the core: Can we use locality?
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Canonical solution versus core: First attempt

Proposition: There exists a data exchange setting A = (S,T,Σst) such

that for every data exchange setting B = (S,T,Γst), there exists instance

I of S such that:

FA
core(I) 6∼= FB

can(I).

We need a different approach ...

27



Expressiveness: Canonical solution versus core

Theorem: If Q is FO-rewritable over the core, then Q is also

FO-rewritable over the canonical solution.

- There is a PTIME algorithm that, given a rewriting of Q over the core, finds

a rewriting of Q over the canonical solution.

Corollary: If Q is FO-rewritable over the core, then Q is locally

source-dependent.
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Proof sketch

Assume ϕ(x̄) = ∃u∀v ψ(x̄, u, v) is a rewriting of Q over the core, where

ψ(x̄, u, v) is quantifier-free.

- For every source instance I and tuple of constants ā: ā ∈ certain(Q, I) iff

Fcore(I) |= ϕ(ā).

Assume that:

α1(x) : holds if there is a core of Fcan(I) containing null x.

α2(x, y) : holds if there is a core of Fcan(I) containing nulls x and y.
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Proof sketch

If α1(x) and α2(x, y) are FO-definable, then Q is FO-rewritable over the

canonical solution:

ā ∈ certain(Q, I) iff Fcore(I) |= ∃u∀v ϕ(ā, u, v)

iff Fcan(I) |= ∃u (α1(u) ∧ ∀v (α2(u, v) → ϕ(ā, u, v))).

How can we define α1(x) and α2(x, y) in FO?

- We show how to define α1(x).

30



Proof sketch

Notation:

nulls(X, J) : {Y | Y is a null of J and X , Y are in the same con-

nected component of the graph induced from G(J) by

the nulls of J}

block(X, J) : {t | t is a tuple in J containing a null in nulls(X, J)}

If J is a canonical solution: |nulls(X, J)| and |block(X, J)| are bounded.
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Defining α1(x)

Lemma: Let J be the canonical solution for I and X a null value of J . There

exists a core of J containing X iff for every pair of target structures J ′, J ′′

satisfying the following conditions:

- J ′ ⊆ J and |J ′| ≤ |block(X, J)|,

- there exists a homomorphism h : block(X, J) → J ′ such that X is not a

null of h(block(X, J)),

- and J
′ ⊆ J

′′ ⊆

„

J
′ ∪

[

{X|X is a null of J′}

block(X, J)

«

,

it is the case that there exists a homomorphism h′ : J ′′ → J such that X is a null

of h′(J ′′).
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Is this definable in FO?
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Expressiveness: Canonical solution versus core

Theorem: There exists an FO query that is FO-rewritable over the

canonical solution but not over the core.

Expressiveness point of view: Canonical solution is better than the

core.

- Canonical solution contains more information than the core.
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What about other semantics?

Usual certain answers semantics sometimes exhibit counterintuitive

behavior.

Good solutions: Universal solutions.

- Homomorphically equivalent to the canonical solution.

May be more meaningful to consider semantics based on universal

solutions:

u-certain(Q, I) =
⋂

J is a universal solution for I

Q(J).
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Query rewriting under the universal solutions semantics

Given query Q, we want to find Q′ such that

u-certain(Q, I) = Q′(F(I)) for every source instance I .

Theorem [FKP03]: For every data exchange setting and existential

query Q, there exists Q′ such that for every source instance I ,

u-certain(Q, I) = Q′(Fcore(I)).
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Query rewriting under the universal solutions semantics

Definition: Q is locally source-dependent under the universal solution

semantics if there is d ≥ 0 such that:

ā ∈ u-certain(Q, I)

N I

d
(ā) ∼= N I

d
(b̄) =⇒ iff

b̄ ∈ u-certain(Q, I)

Theorem: All the previous results hold for the universal solution

semantics.

- If Q is FO-rewritable over the canonical solution (core) under the universal

solutions semantics, then Q is locally source-dependent under the universal

solutions semantics.
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What about target constraints?

Locality is no longer valid.

tgd: Even with a single full tgd.

∀x∀y∀z (R(x, y) ∧R(y, z) → R(x, z)).

egd: Even for key dependencies.

Except for GAV settings: ∀x̄ (ϕS(x̄) → T (x̄)).
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Conclusions

• Common data exchange transformations map similar neighborhoods

into similar neighborhoods.

• This propertity can be used to formulate a locality notion for the

canonical solution and the core.

• Locality can be used to prove that a query is not FO-rewritable.

- Holds for other semantics.

• Expressiveness point of view: Canonical solution is better than the

core.
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