
Locally Consistent Transformations and Query
Answering in Data Exchange

Marcelo Arenas Pablo Barceló Ronald Fagin Leonid Libkin
PUC Chile U. of Toronto IBM Almaden U. of Toronto

Data exchange settings

Data Exchange Setting: (S,T,Σst)

S: Source schema.

T: Target schema.

Σst: Set of source-to-target dependencies.

- Source-to-target dependency: FO sentence of the form

∀x̄ (ϕS(x̄) → ∃ȳ ψT(x̄, ȳ)).

- ϕS(x̄): FO formula over S.

- ψT(x̄, ȳ): conjunction of FO atomic formulas over T.

1

Data exchange settings: Example

S = 〈Employee(·)〉

T = 〈Dept(·, ·)〉

Σst = {∀x (Employee(x) → ∃yDept(x, y))}.

2

Data exchange problem

Given a source instance I , find a target instance J such that (I, J)

satisfies Σst.

- J is called a solution for I .

Example: Possible solutions for I = {Employee(peter)}:

- J1 = {Dept(peter , 1)}.

- J2 = {Dept(peter , 1),Dept(peter , 2)}.

- J3 = {Dept(peter , 1),Dept(john, 1)}.

- J4 = {Dept(peter , X)}.

- J5 = {Dept(peter , X),Dept(peter , Y)}.

3

Query answering

Q: Query over the target schema.

- What does it mean to answer Q?

certain(Q, I) =
⋂

J is a solution for I

Q(J)

Example:

- certain(∃yDept(x, y), I) = {peter}.

- certain(Dept(x, y), I) = ∅.

4

Query rewriting

How can we compute certain(Q, I)?

- Naı̈ve algorithm does not work: infinitely many solutions.

Approach proposed in [FKMP03]: Query Rewriting

Look for some specific F : inst(S) → inst(T), and find condi-

tions under which certain(Q, I) = Q′(F(I)) for every source

instance I .

What is a good alternative for F?

5

Outline

• Query rewriting over the canonical solution.

• Locality in data exchange.

- Proving inexpressibility results.

• Query rewriting over the core.

- Canonical solution versus core.

• Extensions.

- Other semantics.

• Conclusions.

6

Outline

• Query rewriting over the canonical solution.

• Locality in data exchange.

- Proving inexpressibility results.

• Query rewriting over the core.

- Canonical solution versus core.

• Extensions.

- Other semantics.

• Conclusions.

6

Canonical solution

Input: (S,T,Σst) and a source instance I

Output: Canonical solution J for I

Algorithm:

for every ∀x̄ (ϕS(x̄) → ∃y ψT(x̄, ȳ)) ∈ Σst do

for every ā such that I satisfies ϕS(ā) do

create a fresh tuple of null values X

insert ψT(ā,X) into J

7

Canonical solution: Example

Σst = {∀x (Employee(x) → ∃yDept(x, y))} and
I = {Employee(peter), Employee(john)}.

- For a = peter do

Create a fresh null value X

Insert Dept(peter , X) into J

- For a = john do

Create a fresh null value Y

Insert Dept(john, Y) into J

Canonical solution:

{Dept(peter , X), Dept(john, Y)}

8

Query rewriting over the canonical solution

Fcan(I): canonical solution for I .

- Can be computed in polynomial time (data complexity).

Theorem [FKMP03]: For every data exchange setting and union

of conjunctive queries Q, there exists Q′ such that for every source

instance I , certain(Q, I) = Q′(Fcan(I)).

- C(x): holds whenever x is a constant.

- Q′(x1, . . . , xm) = C(x1) ∧ · · · ∧ C(xm) ∧Q(x1, . . . , xm).

9

Query rewriting over the canonical solution

Can the theorem be extended to other classes of queries?

Theorem [FKMP03]: There exists a data exchange setting and a

conjunctive query Q with one inequality such that Q is not FO-rewritable

over Fcan.

- For every FO query Q′, there exists an instance I such that

certain(Q, I) 6= Q′(Fcan(I)).

We would like to study the query rewriting problem.

- We need some tools: How can we prove that a query is not FO-rewritable?

10

Query rewriting: Some facts

The problem of deciding whether an FO formula is FO-rewritable

over Fcan is undecidable.

There exists other classes of queries that are FO-rewritable over the

canonical solution.

- Every boolean query Q whose asymptotic probability is 0 is

FO-rewritable: certain(Q, I) = false .

11

Outline

• Query rewriting over the canonical solution.

• Locality in data exchange.

- Proving inexpressibility results.

• Query rewriting over the core.

- Canonical solution versus core.

• Extensions.

- Other semantics.

• Conclusions.

12

Locality in data exchange: Notation

I: source instance.

Gaifman graph G(I) of I:

- adom(I) is the set of nodes of G(I).

- There exists an edge between a and b iff a and b belong to the same tuple of

a relation in I .

Example: I(R) = {(1, 2, 3)} and I(T) = {(1, 4), (4, 5)}.

2

3

4

5

1

G(I):

13

Locality in data exchange: Notation

dI(a, b): distance between a and b in G(I).

dI(ā, b): minimum value of dI(a, b), where a is in ā.

N I

d
(ā): restriction of I to the elements at distance at most d from ā.

- Example: adom(N I
2 (5)) = {1, 4, 5}, N I

2 (5)(R) = ∅ and

N I
2 (5)(T) = {(1, 4), (4, 5)}.

N I

d
(ā) ∼= N I

d
(b̄): members of ā and b̄ are treated as distinguished

elements.

- ā = (a1, . . . , am) and b̄ = (b1, . . . , bm).

- There is an isomorphism f : N I

d (ā) → N I

d (b̄) such that f(ai) = bi

(1 ≤ i ≤ m).

14

Locality in data exchange: Definition

Given: (S,T,Σst) and m-ary query Q over T.

Definition: Q is locally source-dependent if there is d ≥ 0 such that for

every instance I of S and m-tuples ā, b̄ in I ,

ā ∈ certain(Q, I)

N I

d
(ā) ∼= N I

d
(b̄) =⇒ iff

b̄ ∈ certain(Q, I)

15

Locality in data exchange: Main theorem

Theorem: If Q is FO-rewritable over the canonical solution, then

Q is locally source-dependent.

This theorem can be used to prove inexpressibility results.

- If a query is not locally source-dependent, then it is not FO-rewritable.

16

Example: Proving inexpressibility

Data exchange setting:

S = 〈G(·, ·), R(·), S(·)〉

T = 〈G′(·, ·), R′(·), S′(·)〉

Σst = ∀x∀y (G(x, y) → G′(x, y)),

∀x (R(x) → R′(x)),

∀x (S(x) → S′(x)).

Query:

Q(x) = R′(x) ∨ S′(x) ∧ ∃y∃z(R′(y) ∧G′(y, z) ∧ ¬R′(z))

17

Example: Proving inexpressibility

Assume that Q is FO-rewritable over the canonical solution.

Then there exists d ≥ 0 such that

N I

d (a) ∼= N I

d (b) =⇒ a ∈ certain(Q, I) iff b ∈ certain(Q, I).

Contradiction: find a source instance I such that

N I

d (a) ∼= N I

d (b), a ∈ certain(Q, I) and b 6∈ certain(Q, I).

18

Example: Defining instance I

. .
 .

. .
 .

. .
 .

. .
 .

b2d

bd+1

S(b) b1a1

adad+1

a2d

bd
R(c)

I:

S(a)

19

Example: a ∈ certain(Q, I)

If J does not satisfy S ′(a) ∧ ∃y∃z(R′(y) ∧G′(y, z) ∧ ¬R′(z)):

. .
 .

. .

R′(a1)

R′(ad)
R′(c)

R′(a)R′(a2d)

R′(ad+1)

J :

Then: J satisfies R′(a).

20

Example: b 6∈ certain(Q, I)

. .
 .

. .
 .

. .
 .

. .
 .

b2d

bd+1

S′(b) b1

R′(ad)R′(ad+1) bd
R′(c)

J :

R′(a), S′(a)
R′(a2d) R′(a1)

J does not satisfy R′(b) ∨ S′(b) ∧ ∃y∃z(R′(y) ∧G′(y, z) ∧ ¬R′(z)).

21

Example: Getting a contradiction

. .
 .

. .
 .

. .
 .

. .
 .

bd+1

S(b) b1

bd

b2d

N I

d
(b):

S(a)a2d a1

adad+1

N I

d
(a):

Conclusion: Q is not FO-rewritable over the canonical solution.

22

How do we prove the theorem?

d

∼= ∼=

a

b

a

b

source

d

r

r

canonical solution

23

How do we prove the theorem?

d

∼= ∼=

a

b

a

b

source

d

r

r

canonical solution

23

How do we prove the theorem?

d

∼= ∼=

a

b

a

b

source

d

r

r

canonical solution

23

How do we prove the theorem?

d

∼= ∼=

a

b

a

b

source

d

r

r

canonical solution

23

How do we prove the theorem?

d

∼= ∼=

a

b

a

b

source

d

r

r

canonical solution

23

How do we prove the theorem?

≡k
∼=

a

b

a

b

source

d

r

r

canonical solution

d

23

How do we prove the theorem?

≡k

a

b

a

b

source

d

r

r

canonical solution

d

≡`

23

Outline

• Query rewriting over the canonical solution.

• Locality in data exchange.

- Proving inexpressibility results.

• Query rewriting over the core.

- Canonical solution versus core.

• Extensions.

- Other semantics.

• Conclusions.

24

What about other transformations?

Core of canonical solution J : Substructure J? of J such that there is a

homomorphism from J to J? and there is no homomorphism from J to a

proper substructure of J?.

- Homomorphism h : J → J ′: mapping from adom(J) to adom(J ′) such that

h(c) = c for all constant c, and t̄ ∈ J(R) implies h(t̄) ∈ J ′(R).

Core is the smallest solution that is homomorphically equivalent to the

canonical solution.

- It can be computed in polynomial time [FKP03].

25

Query rewriting over the core

Fcore(I): core of the canonical solution for I .

Theorem [FKMP03]: For every data exchange setting and union

conjunctive queries Q, there exists Q′ such that for every source

instance I , certain(Q, I) = Q′(Fcore(I)).

- Certain answers can be computed more efficiently by using the core.

Rewritability over the core: Can we use locality?

26

Canonical solution versus core: First attempt

Proposition: There exists a data exchange setting A = (S,T,Σst) such

that for every data exchange setting B = (S,T,Γst), there exists instance

I of S such that:

FA
core(I) 6∼= FB

can(I).

We need a different approach ...

27

Expressiveness: Canonical solution versus core

Theorem: If Q is FO-rewritable over the core, then Q is also

FO-rewritable over the canonical solution.

- There is a PTIME algorithm that, given a rewriting of Q over the core, finds

a rewriting of Q over the canonical solution.

Corollary: If Q is FO-rewritable over the core, then Q is locally

source-dependent.

28

Proof sketch

Assume ϕ(x̄) = ∃u∀v ψ(x̄, u, v) is a rewriting of Q over the core, where

ψ(x̄, u, v) is quantifier-free.

- For every source instance I and tuple of constants ā: ā ∈ certain(Q, I) iff

Fcore(I) |= ϕ(ā).

Assume that:

α1(x) : holds if there is a core of Fcan(I) containing null x.

α2(x, y) : holds if there is a core of Fcan(I) containing nulls x and y.

29

Proof sketch

If α1(x) and α2(x, y) are FO-definable, then Q is FO-rewritable over the

canonical solution:

ā ∈ certain(Q, I) iff Fcore(I) |= ∃u∀v ϕ(ā, u, v)

iff Fcan(I) |= ∃u (α1(u) ∧ ∀v (α2(u, v) → ϕ(ā, u, v))).

How can we define α1(x) and α2(x, y) in FO?

- We show how to define α1(x).

30

Proof sketch

Notation:

nulls(X, J) : {Y | Y is a null of J and X , Y are in the same con-

nected component of the graph induced from G(J) by

the nulls of J}

block(X, J) : {t | t is a tuple in J containing a null in nulls(X, J)}

If J is a canonical solution: |nulls(X, J)| and |block(X, J)| are bounded.

31

Defining α1(x)

Lemma: Let J be the canonical solution for I and X a null value of J . There

exists a core of J containing X iff for every pair of target structures J ′, J ′′

satisfying the following conditions:

- J ′ ⊆ J and |J ′| ≤ |block(X, J)|,

- there exists a homomorphism h : block(X, J) → J ′ such that X is not a

null of h(block(X, J)),

- and J
′ ⊆ J

′′ ⊆

„

J
′ ∪

[

{X|X is a null of J′}

block(X, J)

«

,

it is the case that there exists a homomorphism h′ : J ′′ → J such that X is a null

of h′(J ′′).

32

Defining α1(x)

Lemma: Let J be the canonical solution for I and X a null value of J . There

exists a core of J containing X iff for every pair of target structures J ′, J ′′

satisfying the following conditions:

- J ′ ⊆ J and |J ′| ≤ |block(X, J)|,

- there exists a homomorphism h : block(X, J) → J ′ such that X is not a

null of h(block(X, J)),

- and J
′ ⊆ J

′′ ⊆

„

J
′ ∪

[

{X|X is a null of J′}

block(X, J)

«

,

it is the case that there exists a homomorphism h′ : J ′′ → J such that X is a null

of h′(J ′′).

32

Defining α1(x)

Lemma: Let J be the canonical solution for I and X a null value of J . There

exists a core of J containing X iff for every pair of target structures J ′, J ′′

satisfying the following conditions:

- J ′ ⊆ J and |J ′| ≤ |block(X, J)|,

- there exists a homomorphism h : block(X, J) → J ′ such that X is not a

null of h(block(X, J)),

- and J
′ ⊆ J

′′ ⊆

„

J
′ ∪

[

{X|X is a null of J′}

block(X, J)

«

,

it is the case that there exists a homomorphism h′ : J ′′ → J such that X is a null

of h′(J ′′).

32

Defining α1(x)

Lemma: Let J be the canonical solution for I and X a null value of J . There

exists a core of J containing X iff for every pair of target structures J ′, J ′′

satisfying the following conditions:

- J ′ ⊆ J and |J ′| ≤ |block(X, J)|,

- there exists a homomorphism h : block(X, J) → J ′ such that X is not a

null of h(block(X, J)),

- and J
′ ⊆ J

′′ ⊆

„

J
′ ∪

[

{X|X is a null of J′}

block(X, J)

«

,

it is the case that there exists a homomorphism h′ : J ′′ → J such that X is a null

of h′(J ′′).

32

Defining α1(x)

Lemma: Let J be the canonical solution for I and X a null value of J . There

exists a core of J containing X iff for every pair of target structures J ′, J ′′

satisfying the following conditions:

- J ′ ⊆ J and |J ′| ≤ |block(X, J)|,

- there exists a homomorphism h : block(X, J) → J ′ such that X is not a

null of h(block(X, J)),

- and J
′ ⊆ J

′′ ⊆

„

J
′ ∪

[

{X|X is a null of J′}

block(X, J)

«

,

it is the case that there exists a homomorphism h′ : J ′′ → J such that X is a null

of h′(J ′′).

32

Defining α1(x)

Lemma: Let J be the canonical solution for I and X a null value of J . There

exists a core of J containing X iff for every pair of target structures J ′, J ′′

satisfying the following conditions:

- J ′ ⊆ J and |J ′| ≤ |block(X, J)|,

- there exists a homomorphism h : block(X, J) → J ′ such that X is not a

null of h(block(X, J)),

- and J
′ ⊆ J

′′ ⊆

„

J
′ ∪

[

{X|X is a null of J′}

block(X, J)

«

,

it is the case that there exists a homomorphism h′ : J ′′ → J such that X is a null

of h′(J ′′).

Is this definable in FO?

32

Defining α1(x)

Lemma: Let J be the canonical solution for I and X a null value of J . There

exists a core of J containing X iff for every pair of target structures J ′, J ′′

satisfying the following conditions:

- J ′ ⊆ J and |J ′| ≤ |block(X, J)|,

- there exists a homomorphism h : block(X, J) → J ′ such that X is not a

null of h(block(X, J)),

- and J
′ ⊆ J

′′ ⊆

„

J
′ ∪

[

{X|X is a null of J′}

block(X, J)

«

,

it is the case that there exists a homomorphism h′ : J ′′ → J such that X is a null

of h′(J ′′).

32

Defining α1(x)

Lemma: Let J be the canonical solution for I and X a null value of J . There

exists a core of J containing X iff for every pair of target structures J ′, J ′′

satisfying the following conditions:

- J ′ ⊆ J and |J ′| ≤ |block(X, J)|,

- there exists a homomorphism h : block(X, J) → J ′ such that X is not a

null of h(block(X, J)),

- and J
′ ⊆ J

′′ ⊆

„

J
′ ∪

[

{X|X is a null of J′}

block(X, J)

«

,

it is the case that there exists a homomorphism h′ : J ′′ → J such that X is a null

of h′(J ′′).

32

Defining α1(x)

Lemma: Let J be the canonical solution for I and X a null value of J . There

exists a core of J containing X iff for every pair of target structures J ′, J ′′

satisfying the following conditions:

- J ′ ⊆ J and |J ′| ≤ |block(X, J)|,

- there exists a homomorphism h : block(X, J) → J ′ such that X is not a

null of h(block(X, J)),

- and J
′ ⊆ J

′′ ⊆

„

J
′ ∪

[

{X|X is a null of J′}

block(X, J)

«

,

it is the case that there exists a homomorphism h′ : J ′′ → J such that X is a null

of h′(J ′′).

32

Defining α1(x)

Lemma: Let J be the canonical solution for I and X a null value of J . There

exists a core of J containing X iff for every pair of target structures J ′, J ′′

satisfying the following conditions:

- J ′ ⊆ J and |J ′| ≤ |block(X, J)|,

- there exists a homomorphism h : block(X, J) → J ′ such that X is not a

null of h(block(X, J)),

- and J
′ ⊆ J

′′ ⊆

„

J
′ ∪

[

{X|X is a null of J′}

block(X, J)

«

,

it is the case that there exists a homomorphism h′ : J ′′ → J such that X is a null

of h′(J ′′).

32

Defining α1(x)

Lemma: Let J be the canonical solution for I and X a null value of J . There

exists a core of J containing X iff for every pair of target structures J ′, J ′′

satisfying the following conditions:

- J ′ ⊆ J and |J ′| ≤ |block(X, J)|,

- there exists a homomorphism h : block(X, J) → J ′ such that X is not a

null of h(block(X, J)),

- and J
′ ⊆ J

′′ ⊆

„

J
′ ∪

[

{X|X is a null of J′}

block(X, J)

«

,

it is the case that there exists a homomorphism h′ : J ′′ → J such that X is a null

of h′(J ′′).

32

Expressiveness: Canonical solution versus core

Theorem: There exists an FO query that is FO-rewritable over the

canonical solution but not over the core.

Expressiveness point of view: Canonical solution is better than the

core.

- Canonical solution contains more information than the core.

33

Outline

• Query rewriting over the canonical solution.

• Locality in data exchange.

- Proving inexpressibility results.

• Query rewriting over the core.

- Canonical solution versus core.

• Extensions.

- Other semantics.

• Conclusions.

34

What about other semantics?

Usual certain answers semantics sometimes exhibit counterintuitive

behavior.

Good solutions: Universal solutions.

- Homomorphically equivalent to the canonical solution.

May be more meaningful to consider semantics based on universal

solutions:

u-certain(Q, I) =
⋂

J is a universal solution for I

Q(J).

35

Query rewriting under the universal solutions semantics

Given query Q, we want to find Q′ such that

u-certain(Q, I) = Q′(F(I)) for every source instance I .

Theorem [FKP03]: For every data exchange setting and existential

query Q, there exists Q′ such that for every source instance I ,

u-certain(Q, I) = Q′(Fcore(I)).

36

Query rewriting under the universal solutions semantics

Definition: Q is locally source-dependent under the universal solution

semantics if there is d ≥ 0 such that:

ā ∈ u-certain(Q, I)

N I

d
(ā) ∼= N I

d
(b̄) =⇒ iff

b̄ ∈ u-certain(Q, I)

Theorem: All the previous results hold for the universal solution

semantics.

- If Q is FO-rewritable over the canonical solution (core) under the universal

solutions semantics, then Q is locally source-dependent under the universal

solutions semantics.

37

What about target constraints?

Locality is no longer valid.

tgd: Even with a single full tgd.

∀x∀y∀z (R(x, y) ∧R(y, z) → R(x, z)).

egd: Even for key dependencies.

Except for GAV settings: ∀x̄ (ϕS(x̄) → T (x̄)).

38

Conclusions

• Common data exchange transformations map similar neighborhoods

into similar neighborhoods.

• This propertity can be used to formulate a locality notion for the

canonical solution and the core.

• Locality can be used to prove that a query is not FO-rewritable.

- Holds for other semantics.

• Expressiveness point of view: Canonical solution is better than the

core.

39

