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The data exchange scenario

Source Schema S » Target Schema T

Query Q

What is the semantics of Q?

Can Q be evaluated efficiently?
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» S: source schema
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Data exchange settings

Data exchange setting: M = (S, T, %)
» S: source schema
» T: target schema
» > : set of source-to-target dependencies

Source-to-target dependency:

VRVy <<p()_<, y) — 3z (X, ?))



Example: Data exchange setting

S: Book( Title, AuthorName, Affiliation)
T: Writer(Name, BookTitle, Year)

>

Book(x1,x2,y1) — 3z Writer(xz, x1, 21)



Data exchange problem

Given a source instance /, find a target instance J such that (/, J)
satisfies X.

> (1, J) satisfies (X, y) — J21(X, 2) if for every (3, b) such
that / satisfies (3, b), there is a tuple € such that J satisfies

¥(3,¢).
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J is a solution for /
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I Algebra Hungerford U. Washington
Real Analysis Royden Stanford
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Previous example: Book(x1,x2, y1) — Jz1 Writer(x, x1, 21)

Book | Title AuthorName  Affiliation
I Algebra Hungerford U. Washington
Real Analysis Royden Stanford

Possible solutions:

Writer | Name BookTitle Year
S Hungerford  Algebra 1974
Royden Real Analysis 1988




Example: Data exchange problem

Previous example: Book(x1,x2, y1) — Jz1 Writer(x, x1, 21)

Book | Title AuthorName  Affiliation
I Algebra Hungerford U. Washington
Real Analysis Royden Stanford

Possible solutions:

Writer | Name BookTitle Year
Jo Hungerford  Algebra 1974
Royden Real Analysis 1988
Writer | Name BookTitle Year
b Hungerford  Algebra 14
Royden Real Analysis Lp
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and an instance / of S.

» What does it mean to answer Q7?



Query answering in data exchange

Given: Data exchange setting M = (S, T,X), a query Q over T
and an instance / of S.

» What does it mean to answer Q7?

CERTAIN ((Q, 1) = ﬂ Q(J)

J is a solution for /



Example: Query answering in data exchange

Previous example: Book(x1, x2, y1) — 323 Writer(x2, x1, 1)

Book | Title AuthorName  Affiliation
I Algebra Hungerford U. Washington
Real Analysis  Royden Stanford

CERTAIN y(Jy3zWriter(x,y,z), 1) = {Hungerford, Royden}



Computing certain answers

» A data exchange setting M = (S, T,X) and a query Q are
assumed to be fixed.

» Problem to solve:
Input . Instance | of S and a tuple t from /
Question : Is t € CERTAIN \«(Q,/)?



Computing certain answers

» A data exchange setting M = (S, T,X) and a query Q are
assumed to be fixed.

» Problem to solve:

Input . Instance | of S and a tuple t from /
Question : Is t € CERTAIN \«(Q,/)?

We are considering the data complexity of the problem.
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» Naive algorithm does not work: infinitely many solutions
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Computing certain answers (cont'd)

How can CERTAIN \(Q, /) be computed?

» Naive algorithm does not work: infinitely many solutions

Approach proposed in [FKMPO03]:

1. Materialize a solution J for [ such that:
CrrTAINAL(Q, ) = Q(J)

2. Compute Q(J)

This works well for positive queries!



A solution to materialize: Canonical universal solution

Input: M = (S, T,X) and an instance / of S

Output: Canonical universal solution CAN(/) for /

Algorithm:
for every (%, y) — Jz¢(x,z) € ¥ do )
for every (3, b) such that / satisfies (3, b) do
create a fresh tuple of null values n
insert 1(a, i) into CAN(/)



Example: Canonical universal solution

Previous example: Book(x1, x2, y1) — Jz1 Writer(x2, x1, 1)

Book| Title AuthorName  Affiliation

I Algebra Hungerford U. Washington
Real Analysis Royden Stanford



Example: Canonical universal solution

Previous example: Book(x1, x2, y1) — Jz1 Writer(x2, x1, 1)

Book | Title AuthorName  Affiliation
I Algebra Hungerford U. Washington
Real Analysis Royden Stanford

We have that:

Writer | Name BookTitle Year
CaN(l) Hungerford  Algebra 1
Royden Real Analysis Lp
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Canonical universal solution: Computing certain answers

Canonical universal solution can be computed in polynomial time.

» Data complexity: Data exchange setting is fixed.

Notation: C(a) holds if and only if a is a constant.

Theorem (FKMP03)

Let M =(S,T,X), Q(x1,...,xk) a union of conjunctive queries
over T and

Q*(Xl,...Xk) = C(Xl)/\~~~/\C(Xk)/\Q(Xl,...,Xk).

Then for every instance | of S: CERTAIN \((Q, /) = Q*(CAN(/)).



Why does the previous approach work?

Simple explanation: Closure under homomorphisms



Why does the previous approach work?

Simple explanation: Closure under homomorphisms

h: dom(J;) — dom(J2) is a homomorphism from J; to J if:

> h preserves the relations: If R(a1,...,ak) is in Ji, then
R(h(a1),...,h(ak)) is in L.
> h is the identity on constants.

A solution J for | under M is universal if:

» For every solution J' for | under M, there exists a
homomorphism from J to J'.

CAN(/) is a universal solution for /
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Theorem (FKMP03)

Let M =(S,T,X), Q(x1,...,xk) a union of conjunctive queries
over T and
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Then for every instance | of S and universal solution J for | under
M: CERTAIN\((Q, 1) = Q*(J).



Why does the previous approach work? (cont'd)

Theorem (FKMP03)

Let M =(S,T,X), Q(x1,...,xk) a union of conjunctive queries
over T and

Q*(Xl,...Xk) = C(Xl)/\~~~/\C(Xk)/\Q(Xl,...,Xk).

Then for every instance | of S and universal solution J for | under
M: CERTAIN\((Q, 1) = Q*(J).

Proof: From the fact that Q* is closed under homomorphisms



DATALOG as a query language for data exchange systems

The previous approach works for any language closed under
homomorphisms.

» DATALOG queries can also be computed in polynomial time.



DATALOG as a query language for data exchange systems

The previous approach works for any language closed under
homomorphisms.

» DATALOG queries can also be computed in polynomial time.

Unfortunately, both DATALOG and union of conjunctive queries
keep us on the realm of positive.
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Are queries with negation interesting in data exchange?
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Are queries with negation interesting in data exchange?

G(x,y) — E(xy)
S(x) — P(x)
T(x) — R(x)
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Are queries with negation interesting in data exchange?

G(x,y) — E(xy)

M - S(x) — P(X)
T(x) — R(x)
Q : IxIyIz(E(x,z) NE(z,y) A —E(x,y))

I G(a,b), G(b,c)
J o E(a,
b 1 E(a,

> @ is always false in a solution where E represents the
transitive closure of G



But if positive queries are also considered . ..

G(x,y) — E(xy)

M S(x) — P(x)
T(x) — R
Q  IxFy(P(x) AR(y) A E(xy))V

Ix3y3Iz(E(x,z) A E(z,y) A —=E(x,y))



But if positive queries are also considered . ..

G(x,y) — E(xy)

M S(x) — P(x)
T(x) — R
Q  IxFy(P(x) AR(y) A E(xy))V

Ix3y3Iz(E(x,z) A E(z,y) A —=E(x,y))

CERTAIN \((Q, ) = true iff there exist a, b such that:
» P(a) and R(b) hold in /

» (a, b) is in the transitive closure of G in /



Is there a reasonable query language with negation in data
exchange?

We cannot directly add inequalities or negated relational atoms to
DATALOG.

» Preservation under homomorphisms is lost

» Language becomes intractable, even for conjunctive queries
with inequalities (AD98)



Is there a reasonable query language with negation in data
exchange?

We cannot directly add inequalities or negated relational atoms to
DATALOG.

» Preservation under homomorphisms is lost

» Language becomes intractable, even for conjunctive queries
with inequalities (AD98)

Homomorphisms in data exchange are the identity on constants

» Inequalities witnessed by constants are preserved under
homomorphisms



Our contributions

Query language that extends DATALOG with a form of negation

> As good as DATALOG for data exchange

» Can be used to find new tractable classes of queries
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DATALOGS?) programs

Definition
A constant-inequality Datalog rule is a rule of the form:

S()_() = 51()_(1)7 oo '755()?5)7(:()/1)7’ °o 7C(ym)7 uy 7& Vi,...,Un 7& Vn

where

» S, 51, ..., Sy are predicate symbols,

> every variable in X is mentioned in some tuple X;,

» every variable y; is mentioned in some tuple Xx;, and

» every variable uj, and every variable v;, is equal to some
variable y;.



DATALOGE?) programs (cont'd)

A constant-inequality Datalog program (DATALOGC(# program) is
a finite set of constant-inequality Datalog rules.



DATALOGE?) programs (cont'd)

A constant-inequality Datalog program (DATALOGC(# program) is
a finite set of constant-inequality Datalog rules.

Example:

S(xy) = Elxy)
S(x,y) <« S(x,u),S(u,v),S(v,y),C(x),C(u),C(v),u # v



DATALOGE?) programs (cont'd)

A constant-inequality Datalog program (DATALOGC(# program) is
a finite set of constant-inequality Datalog rules.

Example:

S(x,y) <« E(xy)
S(x,y) « S(x,u),S(u,v),S(v,y), JuF v



DATALOGE?) programs (cont'd)

A constant-inequality Datalog program (DATALOGC(# program) is
a finite set of constant-inequality Datalog rules.

Example:

S(x,y) < E(x,y)
S(x,y) < S(x,u),S(u,v),S(v,y), C(x), C(u), C(v),



DATALOGY) programs can be evaluated efficiently

DATALOGC(#) programs are preserved under homomorphisms
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Certain answers of DATALOGC(#) programs can be computed by
evaluating the programs over the canonical universal solution.



DATALOGS?) programs can be evaluated efficiently

DataLoct®) programs are preserved under homomorphisms

Proposition

Certain answers of DATALOGC(#) programs can be computed by
evaluating the programs over the canonical universal solution.

Theorem

Computing the certain answers of a DATALOGC(#) program takes
polynomial time (data complexity)
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DATALOGY) programs can express queries with negation
prog P g

Theorem (ABR09)
For every union of conjunctive queries Q@ with at most one
> negated relational atom or
> inequality
per disjunct, there exists a DATALOGS(#) program [1 such that

Q and T are equivalent in the data exchange scenario.
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Theorem (ABR09)

For every union of conjunctive queries Q with at most one
» negated relational atom or
> inequality

per disjunct, there exists a DATALOGE(#) program [1 such that

for every data exchange setting M = (S, T,X) and
instance | of S: CERTAIN (@, /) = CERTAIN (1, /).



DATALOGS?) programs can express queries with negation

Theorem (ABR09)

For every union of conjunctive queries Q with at most one
» negated relational atom or
> inequality

per disjunct, there exists a DATALOGE(#) program [1 such that

for every data exchange setting M = (S, T,X) and
instance | of S: CERTAIN (@, /) = CERTAIN (1, /).

» Certain answers for this class of queries can be computed in
polynomial time.

» [1 can be computed from @ in polynomial time.

» Result for inequalities was proved in [FKMPO3].
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Example: Expressing negation in DaraLoct®)

Q : Iy (E(x,y)Ax#y)V
Ix3y3z (E(x,y) AN E(y,z) A —E(x, 2))

dom(x) «— E(x,z) Collect the domain
dom(x) <« E(z,x)



Example: Expressing negation in DaraLoct®)

Q : Iy (E(x,y)Ax#y)V

dom(x)
dom(x)
EQ(x, x)
EQ(x,y)
EQ(x,y)

rT1r1

Ix3y3z (E(x,y) AN E(y,z) A —E(x, 2))

E(x,z) Formalize equality
E(z,x)

dom(x)

EQ(y,x)

EQ(x,2), EQ(z,y)



Example: Expressing negation in DaraLoct®)

Q : Iy (E(x,y)Ax#y)V

dom(x)
dom(x)
EQ(x, x)
EQ(x,y)
EQ(x.y)
U(x,y)

rrr1r1

Ix3y3z (E(x,y) AN E(y,z) A —E(x, 2))

E(x,z) Copy E into U
E(z,x)

dom(x)

EQ(y,x)

EQ(x,2), EQ(z,y)

E(x,y)



Example: Expressing negation in DaraLoct®)

Q : Ixdy (E(x,y)Ax#y)V

dom(x)
dom(x)
EQ(x, x)

rtT1r1r 111

Ix3y3z (E(x,y) AN E(y,z) A —E(x, 2))

E(x,z) Replace equals in U
E(z,x)

dom(x)

EQ(y, x)

EQ(x, 2), EQ(z,y)

E(x,y)

U(u,v), EQ(u,x), EQ(v,y)



Example: Expressing negation in DaraLoct®)

Q : Iy (E(x,y)Ax#y)V

dom(x)
dom(x)
EQ(x, x)

rr1r1r1r1 10

Ix3y3z (E(x,y) AN E(y,z) A —E(x, 2))

E(x,z) Simulate 2nd disjunct of Q
E(z,x)

dom(x)

EQ(y, x)

EQ(x,2), EQ(z,)

E(x,y)

U(u,v), EQ(u,x), EQ(v,y)

U(x,2), U(z,y)



Example: Expressing negation in DaraLoct®)

Q : Iy (E(x,y)Ax#y)V

dom(x)
dom(x)
EQ(x, x)

| N I I O O

Ix3y3z (E(x,y) AN E(y,z) A —E(x, 2))

E(x,z) Simulate 1st disjunct of Q
E(z,x)
dom(x)
EQ(y,x)
EQ(x,2), EQ(z,)
E(x.y)
U(u, v), EQ(u, x), EQ(v,y)
L



Example: Expressing negation in DaraLoct®)

Q : Iy (E(x,y)Ax#y)V

dom(x)
dom(x)
EQ(x, x)

rr1r1r1r1r1r 11

Ix3y3z (E(x,y) AN E(y,z) A —E(x, 2))

E(x,z) Answer Q
E(z,x)

dom(x)

EQ(y, x)

EQ(x,2), EQ(z,)

E(x,y)

U(u,v), EQ(u,x), EQ(v,y)
U(x,2), U(z,y)

U(x,y)
EQ(x,y),C(x),C(y),x #y
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Certain answers for conjunctive queries with two
inequalities

Theorem (MO05)

The certain answers problem is CONP-complete for the class of
conjunctive queries with two inequalities (data complexity).



Certain answers for conjunctive queries with two
inequalities

Theorem (MO05)

The certain answers problem is CONP-complete for the class of
conjunctive queries with two inequalities (data complexity).

An interesting tractable fragment of 2-CQ7 was identified by
considering DATALOGC(#) programs.



Two restrictions on queries are needed

Just the intuition:
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Just the intuition:

» Constant Joins: Null values do not witness a join



Two restrictions on queries are needed

Just the intuition:

» Constant Joins: Null values do not witness a join

» Almost constant inequalities: Every inequality is not witnessed
just by null values



A tractable fragment of 2-UCQ”

Theorem (ABR09)
For every 2—UCQ7§ Q with:

» constant joins and
» almost constant inequalities,

there exists a DATALOG®(#) program [1 such that:

Q and I are equivalent in the data exchange scenario.



A tractable fragment of 2-UCQ”

Theorem (ABR09)
For every 2-UCQ7 Q with:
» constant joins and
» almost constant inequalities,
there exists a DATALOGS(#) program [1 such that:

for every data exchange setting M = (S, T,X) and
instance | of S: CERTAIN (@, /) = CERTAIN (I, /).



A tractable fragment of 2-UCQ”

Theorem (ABR09)
For every 2-UCQ7 Q with:
» constant joins and
» almost constant inequalities,

there exists a DATALOGS(#) program [1 such that:

for every data exchange setting M = (S, T,X) and
instance | of S: CERTAIN (@, /) = CERTAIN (I, /).

Certain answers to this class of queries can be computed in
polynomial time

» [1 can be computed from @ in polynomial time.



A tractable fragment of 2-UCQ” (cont'd)

Theorem (ABR09)

Removing any one of the conditions in the previous theorem yields
to CONP-completeness.



A tractable fragment of 2-UCQ” (cont'd)

Theorem (ABR09)

Removing any one of the conditions in the previous theorem yields
to CONP-completeness.

This result is stronger than the result in [MO05].

» Reduction in [M05] does not impose these restrictions.
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We propose DATALOG) as a query language for data
exchange systems

» Certain answers to a DATALOGC() program can be
computed in polynomial time (data complexity).

» DataLoct® is equipped with a form of negation.

» Union of conjunctive queries with one negated atom per
disjunct are expressible in DATALOGE(F),

» DATALOGS®) can be used to find new tractable classes of
queries with negation.

> In this talk: A fragment of 2-UCQ”



Thank youl!



Two restrictions on queries are needed



Two restrictions on queries are needed

Constant Joins
Null values do not witness a join

P(u,v) — T(u,v)
M Q(u,v) — IwU(u,w)
Q1 : 3Ixdy3Iz(T(x,y) A U(x,z2))

Q : 3Ixdy3z(U(x,z) A U(y,z))



Two restrictions on queries are needed

Constant Joins
Null values do not witness a join

P(u,v) —  T(u,v)
Q(u,v) — IwU(u,w)
Q1 IxIyIz(T(x,y) A U(x,z))

Q : 3Ixdy3z(U(x,z) A U(y,z))



Two restrictions on queries are needed

Constant Joins
Null values do not witness a join

P(u,v) — T(u,v)
Q(u,v) — U(u, w)
Q1 : 3Ixdy3Iz(T(x,y) A U(x,z2))

Q> : 3IxIy3Iz(U(x,2) A U(y,2))

YES



Two restrictions on queries are needed

Almost constant inequalities
Every inequality is not witnessed just by null values

P(u,v) —  T(u,v)

M Q(u,v) — IwU(u,w)

Q1 : 3Ixdy3Iz(U(x,y) A U(x,z) A x # z)

Q@ : DAyIz(U(x.y) A U(x,2) Ay # 2)



Two restrictions on queries are needed

Almost constant inequalities
Every inequality is not witnessed just by null values

P(u,v) —  T(u,v)
Q(u,v) — FwU(u,w)
Q1 IxIyIz(U(x,y) A U(x,z2) A x # z)

Q@ : DAy3Iz(U(x.y) A U(x,2) Ay # 2)



Two restrictions on queries are needed

Almost constant inequalities
Every inequality is not witnessed just by null values

P(u,v) — T(u,v)
Q(u,v) — U(u, w)
Q1 3Ixdy3Iz(U(x,y) N U(x,z) Ax # z) YES

Q : IxIyIz(U(x,y) ANU(x,2) Ny # 2)



