Datalog as a Query Language for Data Exchange Systems

Marcelo Arenas

PUC Chile

Joint work with Pablo Barceló and Juan Reutter

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ のへぐ

Outline

- The data exchange scenario
 - Query answering
- Queries with negation in data exchange
- ► DATALOG^{C(≠)} programs
- Beyond union of conjunctive queries
 - ► Expressive power of DATALOG^{C(≠)}

- New tractable classes of queries
- Concluding remarks

Outline

The data exchange scenario

- Query answering
- Queries with negation in data exchange
- ► DATALOG^{C(≠)} programs
- Beyond union of conjunctive queries
 - ► Expressive power of DATALOG^{C(≠)}

- New tractable classes of queries
- Concluding remarks

◆□ → ◆□ → ◆三 → ◆三 → ○○ ◆○ ◆

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

◆ロ> ◆母> ◆ヨ> ◆ヨ> ・ヨー のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

What is the semantics of \mathbf{Q} ?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

What is the semantics of \mathbf{Q} ?

Can **Q** be evaluated efficiently?

▲ロ → ▲周 → ▲目 → ▲目 → □ → の Q (~

Data exchange settings

Data exchange setting: $\mathcal{M} = (\mathbf{S}, \mathbf{T}, \Sigma)$

- S: source schema
- ► T: target schema
- Σ: set of source-to-target dependencies

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへぐ

Data exchange settings

Data exchange setting: $\mathcal{M} = (\mathbf{S}, \mathbf{T}, \Sigma)$

- S: source schema
- ▶ T: target schema
- Σ: set of source-to-target dependencies

Source-to-target dependency:

$$orall ar{x} orall ar{y} \left(arphi(ar{x},ar{y})
ightarrow \exists ar{z} \, \psi(ar{x},ar{z})
ight)$$

 $\varphi(\bar{x}, \bar{y})$: conjunction of relational atomic formulas over **S** $\psi(\bar{x}, \bar{z})$: conjunction of relational atomic formulas over **T**

Example: Data exchange setting

- **S**: Book(Title, AuthorName, Affiliation)
- **T**: Writer(Name, BookTitle, Year)

Σ:

 $Book(x_1, x_2, y_1) \rightarrow \exists z_1 Writer(x_2, x_1, z_1)$

Given a source instance I, find a target instance J such that (I, J) satisfies Σ .

(I, J) satisfies φ(x̄, ȳ) → ∃z̄ψ(x̄, z̄) if for every (ā, b̄) such that I satisfies φ(ā, b̄), there is a tuple c̄ such that J satisfies ψ(ā, c̄).

Given a source instance I, find a target instance J such that (I, J) satisfies Σ .

(I, J) satisfies φ(x̄, ȳ) → ∃z̄ψ(x̄, z̄) if for every (ā, b̄) such that I satisfies φ(ā, b̄), there is a tuple c̄ such that J satisfies ψ(ā, c̄).

J is a solution for I

Example: Data exchange problem

Previous example: $Book(x_1, x_2, y_1) \rightarrow \exists z_1 Writer(x_2, x_1, z_1)$

		Book	Title	AuthorName	Affiliation
1	:		Algebra Real Analysis	Hungerford Royden	U. Washington Stanford

◆□ → ◆□ → ◆三 → ◆三 → ○○ ◆○ ◆

Possible solutions:

Example: Data exchange problem

Previous example: $Book(x_1, x_2, y_1) \rightarrow \exists z_1 Writer(x_2, x_1, z_1)$

		Book	Title	AuthorName	Affiliation
Ι	:		Algebra	Hungerford	U. Washington
			Real Analysis	Royden	Stanford

Possible solutions:

		Writer	Name	BookTitle	Year
J_1	:		Hungerford	Algebra	1974
			Royden	Real Analysis	1988

Example: Data exchange problem

Previous example: $Book(x_1, x_2, y_1) \rightarrow \exists z_1 Writer(x_2, x_1, z_1)$

		Book	Title	AuthorName	Affiliation
1	:		Algebra	Hungerford	U. Washington
			Real Analysis	Royden	Stanford

Possible solutions:

		Writer	Name	BookTitle	Year
J_1	:		Hungerford	Algebra	1974
			Royden	Real Analysis	1988
		Writer	Name	BookTitle	Year
J_2	:		Hungerford	Algebra	\perp_1
			Davidan	Deal Analysia	1

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへぐ

Outline

- The data exchange scenario
 - Query answering
- Queries with negation in data exchange
- ► DATALOG^{C(≠)} programs
- Beyond union of conjunctive queries
 - ► Expressive power of DATALOG^{C(≠)}

- New tractable classes of queries
- Concluding remarks

Query answering in data exchange

Given: Data exchange setting $\mathcal{M} = (\mathbf{S}, \mathbf{T}, \Sigma)$, a query Q over \mathbf{T} and an instance I of \mathbf{S} .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへぐ

• What does it mean to answer Q?

Query answering in data exchange

Given: Data exchange setting $\mathcal{M} = (\mathbf{S}, \mathbf{T}, \Sigma)$, a query Q over \mathbf{T} and an instance I of \mathbf{S} .

▶ What does it mean to answer *Q*?

CERTAIN_{\mathcal{M}}(Q, I) = $\bigcap_{J \text{ is a solution for } I} Q(J)$

Example: Query answering in data exchange

Previous example: $Book(x_1, x_2, y_1) \rightarrow \exists z_1 Writer(x_2, x_1, z_1)$

		Book	Title	AuthorName	Affiliation
Ι	:		Algebra Real Analysis	Hungerford Boyden	U. Washington Stanford
			Real Allalysis	Коуцен	Stamoru

CERTAIN_{\mathcal{M}}($\exists y \exists z Writer(x, y, z), I$) = {Hungerford, Royden}

Computing certain answers

A data exchange setting M = (S, T, Σ) and a query Q are assumed to be fixed.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

► Problem to solve: Input : Instance / of S and a tuple t̄ from / Question : Is t̄ ∈ CERTAIN_M(Q, I)?

Computing certain answers

- A data exchange setting M = (S, T, Σ) and a query Q are assumed to be fixed.
- ► Problem to solve: Input : Instance / of S and a tuple t̄ from / Question : Is t̄ ∈ CERTAIN_M(Q, I)?

We are considering the data complexity of the problem.

Computing certain answers (cont'd)

How can $CERTAIN_{\mathcal{M}}(Q, I)$ be computed?

▶ Naïve algorithm does not work: infinitely many solutions

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ のへぐ

Computing certain answers (cont'd)

How can $CERTAIN_{\mathcal{M}}(Q, I)$ be computed?

Naïve algorithm does not work: infinitely many solutions

Approach proposed in [FKMP03]:

1. Materialize a solution J for I such that:

 $CERTAIN_{\mathcal{M}}(Q, I) = Q(J)$

2. Compute Q(J)

Computing certain answers (cont'd)

How can $CERTAIN_{\mathcal{M}}(Q, I)$ be computed?

Naïve algorithm does not work: infinitely many solutions

Approach proposed in [FKMP03]:

1. Materialize a solution J for I such that:

```
CERTAIN_{\mathcal{M}}(Q, I) = Q(J)
```

2. Compute Q(J)

This works well for positive queries!

A solution to materialize: Canonical universal solution

Input: $\mathcal{M} = (\mathbf{S}, \mathbf{T}, \Sigma)$ and an instance I of \mathbf{S}

Output: Canonical universal solution CAN(I) for I

Algorithm:

for every $\varphi(\bar{x}, \bar{y}) \to \exists \bar{z} \ \psi(\bar{x}, \bar{z}) \in \Sigma$ do for every (\bar{a}, \bar{b}) such that I satisfies $\varphi(\bar{a}, \bar{b})$ do create a fresh tuple of null values \bar{n} insert $\psi(\bar{a}, \bar{n})$ into CAN(I)

Example: Canonical universal solution

Previous example: $Book(x_1, x_2, y_1) \rightarrow \exists z_1 Writer(x_2, x_1, z_1)$

		Book	Title	AuthorName	Affiliation
Ι	:		Algebra	Hungerford	U. Washington
			Real Analysis	Royden	Stanford

(ロ)、<</p>

Example: Canonical universal solution

Previous example: $Book(x_1, x_2, y_1) \rightarrow \exists z_1 Writer(x_2, x_1, z_1)$

		Book	Title	AuthorName	Affiliation
Ι	:		Algebra	Hungerford	U. Washington
			Real Analysis	Royden	Stanford

We have that:

		Writer	Name	BookTitle	Year
CAN(I)	:		Hungerford	Algebra	\perp_1
			Royden	Real Analysis	\perp_2

Canonical universal solution: Computing certain answers

Canonical universal solution can be computed in polynomial time.

イロト イヨト イヨト イヨト ヨー のへぐ

> Data complexity: Data exchange setting is fixed.

Canonical universal solution: Computing certain answers

Canonical universal solution can be computed in polynomial time.

イロト イヨト イヨト イヨト ヨー のへぐ

▶ Data complexity: Data exchange setting is fixed.

Notation: C(a) holds if and only if a is a constant.

Canonical universal solution: Computing certain answers

Canonical universal solution can be computed in polynomial time.

Data complexity: Data exchange setting is fixed.

Notation: C(a) holds if and only if a is a constant.

Theorem (FKMP03) Let $\mathcal{M} = (\mathbf{S}, \mathbf{T}, \Sigma)$, $Q(x_1, \dots, x_k)$ a union of conjunctive queries over \mathbf{T} and

$$Q^{\star}(x_1,\ldots,x_k) = \mathbf{C}(x_1) \wedge \cdots \wedge \mathbf{C}(x_k) \wedge Q(x_1,\ldots,x_k).$$

Then for every instance I of **S**: CERTAIN_{\mathcal{M}} $(Q, I) = Q^*(CAN(I))$.

Why does the previous approach work?

Simple explanation: Closure under homomorphisms

Why does the previous approach work?

Simple explanation: Closure under homomorphisms

 $h: \operatorname{dom}(J_1) \to \operatorname{dom}(J_2)$ is a *homomorphism* from J_1 to J_2 if:

- ▶ h preserves the relations: If R(a₁,..., a_k) is in J₁, then R(h(a₁),..., h(a_k)) is in J₂.
- h is the identity on constants.
- A solution *J* for *I* under \mathcal{M} is *universal* if:
 - ► For every solution J' for I under M, there exists a homomorphism from J to J'.

CAN(I) is a universal solution for I

Why does the previous approach work? (cont'd)

Theorem (FKMP03)

Let $\mathcal{M} = (\mathbf{S}, \mathbf{T}, \Sigma)$, $Q(x_1, \dots, x_k)$ a union of conjunctive queries over \mathbf{T} and

$$Q^{\star}(x_1,\ldots,x_k) = \mathbf{C}(x_1) \wedge \cdots \wedge \mathbf{C}(x_k) \wedge Q(x_1,\ldots,x_k).$$

Then for every instance I of **S** and universal solution J for I under \mathcal{M} : CERTAIN_{\mathcal{M}}(Q, I) = Q^{*}(J).

▲ロ → ▲冊 → ▲ 目 → ▲ 目 → ● ● ● ● ●
Why does the previous approach work? (cont'd)

Theorem (FKMP03)

Let $\mathcal{M} = (\mathbf{S}, \mathbf{T}, \Sigma)$, $Q(x_1, \dots, x_k)$ a union of conjunctive queries over \mathbf{T} and

$$Q^{\star}(x_1,\ldots,x_k) = \mathbf{C}(x_1) \wedge \cdots \wedge \mathbf{C}(x_k) \wedge Q(x_1,\ldots,x_k).$$

Then for every instance I of **S** and universal solution J for I under \mathcal{M} : CERTAIN_{\mathcal{M}}(Q, I) = Q^{*}(J).

Proof: From the fact that Q^* is closed under homomorphisms

$\operatorname{DATALOG}$ as a query language for data exchange systems

The previous approach works for any language closed under homomorphisms.

▶ DATALOG queries can also be computed in polynomial time.

$\operatorname{DATALOG}$ as a query language for data exchange systems

The previous approach works for any language closed under homomorphisms.

▶ DATALOG queries can also be computed in polynomial time.

Unfortunately, both DATALOG and union of conjunctive queries keep us on the realm of positive.

Outline

- The data exchange scenario
 - Query answering
- Queries with negation in data exchange
- ► DATALOG^{C(≠)} programs
- Beyond union of conjunctive queries
 - ► Expressive power of DATALOG^{C(≠)}

- New tractable classes of queries
- Concluding remarks

$$\mathcal{M}$$
 : $\begin{array}{ccc} G(x,y) &
ightarrow & E(x,y) \ \mathcal{M}$: $\begin{array}{ccc} S(x) &
ightarrow & P(x) \ T(x) &
ightarrow & R(x) \end{array}$

$$Q \quad : \quad \exists x \exists y \exists z (E(x,z) \land E(z,y) \land \neg E(x,y))$$

$$\mathcal{M}$$
 : $\begin{array}{ccc} G(x,y) &
ightarrow & E(x,y) \\ \mathcal{M} & : & S(x) &
ightarrow & P(x) \\ T(x) &
ightarrow & R(x) \end{array}$

$$Q \quad : \quad \exists x \exists y \exists z (E(x,z) \land E(z,y) \land \neg E(x,y))$$

$$I \quad : \quad G(a,b), \ G(b,c)$$

$$\mathcal{M}$$
 : $\begin{array}{ccc} G(x,y) &
ightarrow & E(x,y) \ \mathcal{M}$: $\begin{array}{ccc} S(x) &
ightarrow & P(x) \ T(x) &
ightarrow & R(x) \end{array}$

$$Q \quad : \quad \exists x \exists y \exists z (E(x,z) \land E(z,y) \land \neg E(x,y))$$

$$I : G(a, b), G(b, c) J_1 : E(a, b), E(b, c)$$

$$\mathcal{M}$$
 : $\begin{array}{ccc} G(x,y) &
ightarrow & E(x,y) \ \mathcal{M}$: $\begin{array}{ccc} S(x) &
ightarrow & P(x) \ T(x) &
ightarrow & R(x) \end{array}$

$$Q \quad : \quad \exists x \exists y \exists z (E(x,z) \land E(z,y) \land \neg E(x,y))$$

$$\begin{array}{rcl} I & : & G(a,b), \ G(b,c) \\ J_1 & : & E(a,b), \ E(b,c) \\ J_2 & : & E(a,b), \ E(b,c), \ E(a,c) \end{array}$$

$$\mathcal{M}$$
 : $\begin{array}{ccc} G(x,y) &
ightarrow & E(x,y) \\ \mathcal{M} & : & S(x) &
ightarrow & P(x) \\ T(x) &
ightarrow & R(x) \end{array}$

$$Q \quad : \quad \exists x \exists y \exists z (E(x,z) \land E(z,y) \land \neg E(x,y))$$

$$I : G(a, b), G(b, c)$$

$$J_1 : E(a, b), E(b, c)$$

$$J_2 : E(a, b), E(b, c), E(a, c)$$

▶ Q is always false in a solution where E represents the transitive closure of G

▲ロ → ▲周 → ▲目 → ▲目 → □ → の Q (~

But if positive queries are also considered ...

$$\mathcal{M}$$
 : $egin{array}{ccc} G(x,y) &
ightarrow & E(x,y) \ \mathcal{M}$: $S(x) &
ightarrow & P(x) \ T(x) &
ightarrow & R(x) \end{array}$

$$Q : \exists x \exists y (P(x) \land R(y) \land E(x, y)) \lor \\ \exists x \exists y \exists z (E(x, z) \land E(z, y) \land \neg E(x, y))$$

But if positive queries are also considered ...

$$\mathcal{M}$$
 : $egin{array}{ccc} G(x,y) & o & E(x,y) \ \mathcal{M} & : & S(x) & o & P(x) \ T(x) & o & R(x) \end{array}$

$$Q : \exists x \exists y (P(x) \land R(y) \land E(x, y)) \lor \\ \exists x \exists y \exists z (E(x, z) \land E(z, y) \land \neg E(x, y))$$

CERTAIN_M(Q, I) = true iff there exist a, b such that:

◆□ → ◆□ → ◆三 → ◆三 → ○○ ◆○ ◆

- \triangleright P(a) and R(b) hold in I
- (a, b) is in the transitive closure of G in I

Is there a *reasonable* query language with negation in data exchange?

We cannot directly add inequalities or negated relational atoms to DATALOG.

- Preservation under homomorphisms is lost
- Language becomes intractable, even for conjunctive queries with inequalities (AD98)

Is there a *reasonable* query language with negation in data exchange?

We cannot directly add inequalities or negated relational atoms to DATALOG.

- Preservation under homomorphisms is lost
- Language becomes intractable, even for conjunctive queries with inequalities (AD98)

Homomorphisms in data exchange are the identity on constants

Inequalities witnessed by constants are preserved under homomorphisms

Our contributions

Query language that extends $\operatorname{DATALOG}$ with a form of negation

- As good as DATALOG for data exchange
- Can be used to find new tractable classes of queries

Outline

- The data exchange scenario
 - Query answering
- Queries with negation in data exchange
- ► DATALOG^{C(≠)} programs
- Beyond union of conjunctive queries
 - ► Expressive power of DATALOG^{C(≠)}

- New tractable classes of queries
- Concluding remarks

$\mathrm{DATALOG}^{\boldsymbol{\mathsf{C}}(\neq)} \text{ programs}$

Definition

A constant-inequality Datalog rule is a rule of the form:

 $S(\bar{x}) \leftarrow S_1(\bar{x}_1), \ldots, S_\ell(\bar{x}_\ell), \mathbf{C}(y_1), \ldots, \mathbf{C}(y_m), u_1 \neq v_1, \ldots, u_n \neq v_n$

where

- ▶ S, S_1, \ldots, S_ℓ are predicate symbols,
- every variable in \bar{x} is mentioned in some tuple \bar{x}_i ,
- every variable y_j is mentioned in some tuple \bar{x}_i , and
- every variable u_j, and every variable v_j, is equal to some variable y_i.

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ● ● ● ● ●

A constant-inequality Datalog program (DATALOG^{C(\neq)} program) is a finite set of constant-inequality Datalog rules.

A constant-inequality Datalog program (DATALOG^{C(\neq)} program) is a finite set of constant-inequality Datalog rules.

Example:

$$\begin{array}{rcl} S(x,y) &\leftarrow & E(x,y) \\ S(x,y) &\leftarrow & S(x,u), S(u,v), S(v,y), \mathbf{C}(x), \mathbf{C}(u), \mathbf{C}(v), u \neq v \end{array}$$

◆□> ◆□> ◆三> ◆三> ・三 ・ のへで

A constant-inequality Datalog program (DATALOG^{C(\neq)} program) is a finite set of constant-inequality Datalog rules.

Example:

$$\begin{array}{rcl} S(x,y) &\leftarrow & E(x,y) \\ S(x,y) &\leftarrow & S(x,u), S(u,v), S(v,y), \mathsf{C}(x), \mathsf{C}(u), \mathsf{C}(v), u \neq v \end{array}$$

◆□> ◆□> ◆三> ◆三> ・三 ・ のへで

A constant-inequality Datalog program (DATALOG^{C(\neq)} program) is a finite set of constant-inequality Datalog rules.

Example:

$$\begin{array}{rcl} S(x,y) &\leftarrow & E(x,y) \\ S(x,y) &\leftarrow & S(x,u), S(u,v), S(v,y), \mathbf{C}(x), \mathbf{C}(u), \mathbf{C}(v), u \neq v \end{array}$$

◆□> ◆□> ◆三> ◆三> ・三 ・ のへで

DATALOG^{$C(\neq)$} programs can be evaluated efficiently

 $DATALOG^{C(\neq)}$ programs are preserved under homomorphisms

DATALOG^{$C(\neq)$} programs can be evaluated efficiently

 $\mathrm{DATALOG}^{\mathbf{C}(\neq)}$ programs are preserved under homomorphisms

Proposition

Certain answers of $Datalog^{C(\neq)}$ programs can be computed by evaluating the programs over the canonical universal solution.

DATALOG^{$C(\neq)$} programs can be evaluated efficiently

 $\mathrm{DATALOG}^{\mathbf{C}(\neq)}$ programs are preserved under homomorphisms

Proposition

Certain answers of $DATALOG^{C(\neq)}$ programs can be computed by evaluating the programs over the canonical universal solution.

Theorem

Computing the certain answers of a $DATALOG^{C(\neq)}$ program takes polynomial time (data complexity)

Outline

- The data exchange scenario
 - Query answering
- Queries with negation in data exchange
- ► DATALOG^{C(≠)} programs
- Beyond union of conjunctive queries
 - ► Expressive power of DATALOG^{C(≠)}

- New tractable classes of queries
- Concluding remarks

 $DATALOG^{C(\neq)}$ programs can express queries with negation

Theorem (ABR09)

For every union of conjunctive queries Q with at most one

- negated relational atom or
- inequality

per disjunct, there exists a DATALOG^{C(\neq)} program Π such that

Q and Π are equivalent in the data exchange scenario.

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ● ● ● ● ●

 $DATALOG^{C(\neq)}$ programs can express queries with negation

Theorem (ABR09)

For every union of conjunctive queries Q with at most one

- negated relational atom or
- inequality

per disjunct, there exists a DATALOG^{C(\neq)} program Π such that

for every data exchange setting $\mathcal{M} = (\mathbf{S}, \mathbf{T}, \Sigma)$ and instance I of \mathbf{S} : CERTAIN_{\mathcal{M}}(Q, I) =CERTAIN_{\mathcal{M}} (Π, I) .

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ● ● ● ● ●

 $DATALOG^{C(\neq)}$ programs can express queries with negation

Theorem (ABR09)

For every union of conjunctive queries Q with at most one

- negated relational atom or
- inequality

per disjunct, there exists a DATALOG^{C(\neq)} program Π such that

for every data exchange setting $\mathcal{M} = (\mathbf{S}, \mathbf{T}, \Sigma)$ and instance I of \mathbf{S} : CERTAIN_{\mathcal{M}}(Q, I) =CERTAIN_{\mathcal{M}} (Π, I) .

 Certain answers for this class of queries can be computed in polynomial time.

• Π can be computed from Q in polynomial time.

Result for inequalities was proved in [FKMP03].

$$Q : \exists x \exists y \ (E(x,y) \land x \neq y) \lor \\ \exists x \exists y \exists z \ (E(x,y) \land E(y,z) \land \neg E(x,z))$$

$$Q : \exists x \exists y \ (E(x,y) \land x \neq y) \lor \\ \exists x \exists y \exists z \ (E(x,y) \land E(y,z) \land \neg E(x,z))$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ のへぐ

 $dom(x) \leftarrow E(x,z)$ Collect the domain $dom(x) \leftarrow E(z,x)$

$$Q : \exists x \exists y \ (E(x,y) \land x \neq y) \lor \\ \exists x \exists y \exists z \ (E(x,y) \land E(y,z) \land \neg E(x,z))$$

$$\begin{array}{rcl} dom(x) & \leftarrow & E(x,z) & \mbox{Formalize equality} \\ dom(x) & \leftarrow & E(z,x) \\ EQ(x,x) & \leftarrow & dom(x) \\ EQ(x,y) & \leftarrow & EQ(y,x) \\ EQ(x,y) & \leftarrow & EQ(x,z), EQ(z,y) \end{array}$$

$$Q : \exists x \exists y \ (E(x,y) \land x \neq y) \lor \\ \exists x \exists y \exists z \ (E(x,y) \land E(y,z) \land \neg E(x,z))$$

U

$$\begin{array}{rcl} dom(x) & \leftarrow & E(x,z) & \text{Copy } E \text{ into} \\ dom(x) & \leftarrow & E(z,x) \\ EQ(x,x) & \leftarrow & dom(x) \\ EQ(x,y) & \leftarrow & EQ(y,x) \\ EQ(x,y) & \leftarrow & EQ(x,z), EQ(z,y) \\ U(x,y) & \leftarrow & E(x,y) \end{array}$$

$$Q : \exists x \exists y \ (E(x,y) \land x \neq y) \lor \\ \exists x \exists y \exists z \ (E(x,y) \land E(y,z) \land \neg E(x,z))$$

$$\begin{array}{rcl} dom(x) &\leftarrow & E(x,z) & \text{Replace equals in } U\\ dom(x) &\leftarrow & E(z,x) \\ EQ(x,x) &\leftarrow & dom(x) \\ EQ(x,y) &\leftarrow & EQ(y,x) \\ EQ(x,y) &\leftarrow & EQ(x,z), EQ(z,y) \\ U(x,y) &\leftarrow & E(x,y) \\ U(x,y) &\leftarrow & U(u,v), EQ(u,x), EQ(v,y) \end{array}$$

$$Q : \exists x \exists y \ (E(x,y) \land x \neq y) \lor \\ \exists x \exists y \exists z \ (E(x,y) \land E(y,z) \land \neg E(x,z))$$

$$\begin{array}{rcl} dom(x) & \leftarrow & E(x,z) & \text{Simulate 2nd disjunct of } Q \\ dom(x) & \leftarrow & E(z,x) \\ EQ(x,x) & \leftarrow & dom(x) \\ EQ(x,y) & \leftarrow & EQ(y,x) \\ EQ(x,y) & \leftarrow & EQ(x,z), EQ(z,y) \\ U(x,y) & \leftarrow & E(x,y) \\ U(x,y) & \leftarrow & U(u,v), EQ(u,x), EQ(v,y) \\ U(x,y) & \leftarrow & U(x,z), U(z,y) \end{array}$$

$$Q : \exists x \exists y \ (E(x,y) \land x \neq y) \lor \\ \exists x \exists y \exists z \ (E(x,y) \land E(y,z) \land \neg E(x,z))$$

$$\begin{array}{rcl} dom(x) & \leftarrow & E(x,z) & \text{Simulate 1st disjunct of } Q \\ dom(x) & \leftarrow & E(z,x) \\ EQ(x,x) & \leftarrow & dom(x) \\ EQ(x,y) & \leftarrow & EQ(y,x) \\ EQ(x,y) & \leftarrow & EQ(x,z), EQ(z,y) \\ U(x,y) & \leftarrow & E(x,y) \\ U(x,y) & \leftarrow & U(u,v), EQ(u,x), EQ(v,y) \\ U(x,y) & \leftarrow & U(x,z), U(z,y) \\ EQ(x,y) & \leftarrow & U(x,y) \end{array}$$

$$Q : \exists x \exists y \ (E(x,y) \land x \neq y) \lor \\ \exists x \exists y \exists z \ (E(x,y) \land E(y,z) \land \neg E(x,z))$$

$$\begin{array}{rcl} dom(x) &\leftarrow & E(x,z) & \text{Answer } Q \\ dom(x) &\leftarrow & E(z,x) \\ EQ(x,x) &\leftarrow & dom(x) \\ EQ(x,y) &\leftarrow & EQ(y,x) \\ EQ(x,y) &\leftarrow & EQ(x,z), EQ(z,y) \\ U(x,y) &\leftarrow & E(x,y) \\ U(x,y) &\leftarrow & U(u,v), EQ(u,x), EQ(v,y) \\ U(x,y) &\leftarrow & U(x,z), U(z,y) \\ EQ(x,y) &\leftarrow & U(x,y) \\ EQ(x,y) &\leftarrow & U(x,y) \\ TRUE &\leftarrow & EQ(x,y), \mathbf{C}(x), \mathbf{C}(y), x \neq y \end{array}$$

Outline

- The data exchange scenario
 - Query answering
- Queries with negation in data exchange
- ► DATALOG^{C(≠)} programs
- Beyond union of conjunctive queries
 - ► Expressive power of DATALOG^{C(≠)}

- New tractable classes of queries
- Concluding remarks
Certain answers for conjunctive queries with two inequalities

Theorem (M05)

The certain answers problem is CONP-complete for the class of conjunctive queries with two inequalities (data complexity).

・ロト ・日 ・ モー・ モー・ うへぐ

Certain answers for conjunctive queries with two inequalities

Theorem (M05)

The certain answers problem is CONP-complete for the class of conjunctive queries with two inequalities (data complexity).

An interesting tractable fragment of $2-CQ^{\neq}$ was identified by considering $Datalog^{C(\neq)}$ programs.

Just the intuition:

Just the intuition:

Constant Joins: Null values do not witness a join

▲ロト ▲御 ▶ ▲臣 ▶ ▲臣 ▶ ─ 臣 ─ のへぐ

Just the intuition:

Constant Joins: Null values do not witness a join

 Almost constant inequalities: Every inequality is not witnessed just by null values

◆□ → ◆□ → ◆三 → ◆三 → ○○ ◆○ ◆

A tractable fragment of 2-UCQ^{\neq}

Theorem (ABR09)

For every 2-UCQ \neq Q with:

- constant joins and
- almost constant inequalities,

there exists a DATALOG^{C(\neq)} program Π such that:

Q and Π are equivalent in the data exchange scenario.

A tractable fragment of 2-UCQ^{\neq}

Theorem (ABR09)

For every 2-UCQ \neq Q with:

- constant joins and
- almost constant inequalities,

there exists a DATALOG^{C(\neq)} program Π such that:

for every data exchange setting $\mathcal{M} = (\mathbf{S}, \mathbf{T}, \Sigma)$ and instance I of \mathbf{S} : CERTAIN_{\mathcal{M}}(Q, I) =CERTAIN_{\mathcal{M}} (Π, I) .

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ● ● ● ● ●

A tractable fragment of 2-UCQ^{\neq}

Theorem (ABR09)

For every 2-UCQ \neq Q with:

- constant joins and
- almost constant inequalities,

there exists a DATALOG^{C(\neq)} program Π such that:

for every data exchange setting $\mathcal{M} = (\mathbf{S}, \mathbf{T}, \Sigma)$ and instance I of \mathbf{S} : CERTAIN_{\mathcal{M}}(Q, I) =CERTAIN_{\mathcal{M}} (Π, I) .

Certain answers to this class of queries can be computed in polynomial time

 \blacktriangleright Π can be computed from Q in polynomial time.

A tractable fragment of 2-UCQ^{\neq} (cont'd)

Theorem (ABR09)

Removing any one of the conditions in the previous theorem yields to coNP -completeness.

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ● ● ● ● ●

A tractable fragment of 2-UCQ^{\neq} (cont'd)

Theorem (ABR09)

Removing any one of the conditions in the previous theorem yields to coNP -completeness.

This result is stronger than the result in [M05].

▶ Reduction in [M05] does not impose these restrictions.

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ● ● ● ● ●

Outline

- The data exchange scenario
 - Query answering
- Queries with negation in data exchange
- ► DATALOG^{C(≠)} programs
- Beyond union of conjunctive queries
 - ► Expressive power of DATALOG^{C(≠)}

- New tractable classes of queries
- Concluding remarks

We propose $D_{ATALOG}^{C(\neq)}$ as a query language for data exchange systems

- ► Certain answers to a DATALOG^{C(≠)} program can be computed in polynomial time (data complexity).
- DATALOG^{$C(\neq)$} is equipped with a form of negation.
 - ► Union of conjunctive queries with one negated atom per disjunct are expressible in DATALOG^{C(≠)}.

► DATALOG^{C(≠)} can be used to find new tractable classes of queries with negation.

• In this talk: A fragment of $2\text{-}\mathrm{UCQ}^{\neq}$

Thank you!

▲ロト ▲圖 → ▲ 国 ト ▲ 国 ト クタ(で)

Constant Joins

Null values do not witness a join

$$\mathcal{M}$$
 : $\begin{array}{ccc} P(u,v) &
ightarrow & T(u,v) \\ Q(u,v) &
ightarrow & \exists w \ U(u,w) \end{array}$

$$Q_1$$
 : $\exists x \exists y \exists z (T(x, y) \land U(x, z))$

$$Q_2$$
 : $\exists x \exists y \exists z (U(x,z) \land U(y,z))$

◆□ → ◆□ → ◆三 → ◆三 → ○○ ◆○ ◆

Constant Joins

Null values do not witness a join

$$\mathcal{M} : \begin{array}{ccc} P(u,v) & \to & T(u,v) \\ Q(u,v) & \to & \exists w \ U(u,w) \end{array}$$

$$Q_1 : \exists x \exists y \exists z (T(x, y) \land U(x, z))$$
 YES

◆□ → ◆□ → ◆三 → ◆三 → ○○ ◆○ ◆

$$Q_2$$
 : $\exists x \exists y \exists z (U(x,z) \land U(y,z))$

Constant Joins

Null values do not witness a join

$$\mathcal{M} : \begin{array}{ccc} P(u,v) &\to & T(u,v) \\ Q(u,v) &\to & \exists w \ U(u,w) \end{array}$$
$$Q_1 : \exists x \exists y \exists z \ (T(x,y) \land U(x,z)) \qquad \qquad \text{YES}$$
$$Q_2 : \exists x \exists y \exists z \ (U(x,z) \land U(y,z)) \qquad \qquad \text{NO}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ のへぐ

Almost constant inequalities

Every inequality is not witnessed just by null values

$$\mathcal{M}$$
 : $\begin{array}{ccc} P(u,v) &
ightarrow & T(u,v) \\ Q(u,v) &
ightarrow & \exists w \ U(u,w) \end{array}$

$$Q_1$$
 : $\exists x \exists y \exists z (U(x,y) \land U(x,z) \land x \neq z)$

$$Q_2 \quad : \quad \exists x \exists y \exists z \left(U(x,y) \land U(x,z) \land y \neq z \right)$$

ション 人口 マイビン トレン マンクト

Almost constant inequalities

Every inequality is not witnessed just by null values

$$\mathcal{M} : \begin{array}{ccc} P(u,v) & \to & T(u,v) \\ Q(u,v) & \to & \exists w \ U(u,w) \end{array}$$

$$Q_1 \quad : \quad \exists x \exists y \exists z \left(U(x, y) \land U(x, z) \land x \neq z \right)$$
 YES

$$Q_2 \quad : \quad \exists x \exists y \exists z \left(U(x,y) \land U(x,z) \land y \neq z \right)$$

Almost constant inequalities

Every inequality is not witnessed just by null values

$$\mathcal{M} : \begin{array}{ccc} P(u,v) & \to & T(u,v) \\ Q(u,v) & \to & \exists w \ U(u,w) \end{array}$$

$$Q_1$$
 : $\exists x \exists y \exists z (U(x, y) \land U(x, z) \land x \neq z)$ YES

$$Q_2 \quad : \quad \exists x \exists y \exists z \left(U(x, y) \land U(x, z) \land y \neq z \right)$$
 NO