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The data exchange scenario

Can Q be evaluated efficiently?

Source Schema S
Σ

Target Schema T

Query Q

What is the semantics of Q?
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Data exchange settings

Data exchange setting: M = (S,T,Σ)

◮ S: source schema

◮ T: target schema

◮ Σ: set of source-to-target dependencies

Source-to-target dependency:

∀x̄∀ȳ

(

ϕ(x̄ , ȳ)→ ∃z̄ ψ(x̄ , z̄)

)

ϕ(x̄ , ȳ ): conjunction of relational atomic formulas over S

ψ(x̄ , z̄): conjunction of relational atomic formulas over T



Example: Data exchange setting

S: Book(Title, AuthorName, Affiliation)

T: Writer(Name, BookTitle, Year)

Σ:

Book(x1, x2, y1) → ∃z1 Writer(x2, x1, z1)



Data exchange problem

Given a source instance I , find a target instance J such that (I , J)
satisfies Σ.

◮ (I , J) satisfies ϕ(x̄ , ȳ )→ ∃z̄ ψ(x̄ , z̄) if for every (ā, b̄) such
that I satisfies ϕ(ā, b̄), there is a tuple c̄ such that J satisfies
ψ(ā, c̄).



Data exchange problem

Given a source instance I , find a target instance J such that (I , J)
satisfies Σ.

◮ (I , J) satisfies ϕ(x̄ , ȳ )→ ∃z̄ ψ(x̄ , z̄) if for every (ā, b̄) such
that I satisfies ϕ(ā, b̄), there is a tuple c̄ such that J satisfies
ψ(ā, c̄).

J is a solution for I
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Book Title AuthorName Affiliation
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Example: Data exchange problem

Previous example: Book(x1, x2, y1)→ ∃z1 Writer(x2, x1, z1)

I :
Book Title AuthorName Affiliation

Algebra Hungerford U. Washington
Real Analysis Royden Stanford

Possible solutions:

J1 :
Writer Name BookTitle Year

Hungerford Algebra 1974
Royden Real Analysis 1988

J2 :
Writer Name BookTitle Year

Hungerford Algebra ⊥1

Royden Real Analysis ⊥2
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Query answering in data exchange

Given: Data exchange settingM = (S,T,Σ), a query Q over T

and an instance I of S.

◮ What does it mean to answer Q?

CertainM(Q, I ) =
⋂

J is a solution for I

Q(J)



Example: Query answering in data exchange

Previous example: Book(x1, x2, y1)→ ∃z1 Writer(x2, x1, z1)

I :
Book Title AuthorName Affiliation

Algebra Hungerford U. Washington
Real Analysis Royden Stanford

CertainM(∃y∃zWriter(x , y , z), I ) = {Hungerford, Royden}



Computing certain answers

◮ A data exchange settingM = (S,T,Σ) and a query Q are
assumed to be fixed.

◮ Problem to solve:
Input : Instance I of S and a tuple t̄ from I
Question : Is t̄ ∈ CertainM(Q, I )?



Computing certain answers

◮ A data exchange settingM = (S,T,Σ) and a query Q are
assumed to be fixed.

◮ Problem to solve:
Input : Instance I of S and a tuple t̄ from I
Question : Is t̄ ∈ CertainM(Q, I )?

We are considering the data complexity of the problem.



Computing certain answers (cont’d)

How can CertainM(Q, I ) be computed?

◮ Näıve algorithm does not work: infinitely many solutions
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◮ Näıve algorithm does not work: infinitely many solutions
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1. Materialize a solution J for I such that:

CertainM(Q, I ) = Q(J)

2. Compute Q(J)



Computing certain answers (cont’d)

How can CertainM(Q, I ) be computed?

◮ Näıve algorithm does not work: infinitely many solutions

Approach proposed in [FKMP03]:

1. Materialize a solution J for I such that:

CertainM(Q, I ) = Q(J)

2. Compute Q(J)

This works well for positive queries!



A solution to materialize: Canonical universal solution

Input: M = (S,T,Σ) and an instance I of S

Output: Canonical universal solution Can(I ) for I

Algorithm:

for every ϕ(x̄ , ȳ )→ ∃z̄ ψ(x̄ , z̄) ∈ Σ do
for every (ā, b̄) such that I satisfies ϕ(ā, b̄) do

create a fresh tuple of null values n̄
insert ψ(ā, n̄) into Can(I )



Example: Canonical universal solution

Previous example: Book(x1, x2, y1)→ ∃z1 Writer(x2, x1, z1)

I :
Book Title AuthorName Affiliation

Algebra Hungerford U. Washington
Real Analysis Royden Stanford



Example: Canonical universal solution

Previous example: Book(x1, x2, y1)→ ∃z1 Writer(x2, x1, z1)

I :
Book Title AuthorName Affiliation

Algebra Hungerford U. Washington
Real Analysis Royden Stanford

We have that:

Can(I ) :
Writer Name BookTitle Year

Hungerford Algebra ⊥1

Royden Real Analysis ⊥2
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◮ Data complexity: Data exchange setting is fixed.
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Canonical universal solution: Computing certain answers

Canonical universal solution can be computed in polynomial time.

◮ Data complexity: Data exchange setting is fixed.

Notation: C(a) holds if and only if a is a constant.

Theorem (FKMP03)

Let M = (S,T,Σ), Q(x1, . . . , xk) a union of conjunctive queries
over T and

Q⋆(x1, . . . xk) = C(x1) ∧ · · · ∧ C(xk) ∧ Q(x1, . . . , xk).

Then for every instance I of S: CertainM(Q, I ) = Q⋆(Can(I )).



Why does the previous approach work?

Simple explanation: Closure under homomorphisms



Why does the previous approach work?

Simple explanation: Closure under homomorphisms

h : dom(J1)→ dom(J2) is a homomorphism from J1 to J2 if:

◮ h preserves the relations: If R(a1, . . . , ak) is in J1, then
R(h(a1), . . . , h(ak)) is in J2.

◮ h is the identity on constants.

A solution J for I underM is universal if:

◮ For every solution J ′ for I underM, there exists a
homomorphism from J to J ′.

Can(I ) is a universal solution for I



Why does the previous approach work? (cont’d)

Theorem (FKMP03)

Let M = (S,T,Σ), Q(x1, . . . , xk) a union of conjunctive queries
over T and

Q⋆(x1, . . . xk) = C(x1) ∧ · · · ∧ C(xk) ∧ Q(x1, . . . , xk).

Then for every instance I of S and universal solution J for I under
M: CertainM(Q, I ) = Q⋆(J).



Why does the previous approach work? (cont’d)

Theorem (FKMP03)

Let M = (S,T,Σ), Q(x1, . . . , xk) a union of conjunctive queries
over T and

Q⋆(x1, . . . xk) = C(x1) ∧ · · · ∧ C(xk) ∧ Q(x1, . . . , xk).

Then for every instance I of S and universal solution J for I under
M: CertainM(Q, I ) = Q⋆(J).

Proof: From the fact that Q⋆ is closed under homomorphisms



Datalog as a query language for data exchange systems

The previous approach works for any language closed under
homomorphisms.

◮ Datalog queries can also be computed in polynomial time.



Datalog as a query language for data exchange systems

The previous approach works for any language closed under
homomorphisms.

◮ Datalog queries can also be computed in polynomial time.

Unfortunately, both Datalog and union of conjunctive queries
keep us on the realm of positive.
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Are queries with negation interesting in data exchange?

G (x , y) → E (x , y)
M : S(x) → P(x)

T (x) → R(x)

Q : ∃x∃y∃z(E (x , z) ∧ E (z , y) ∧ ¬E (x , y))
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Are queries with negation interesting in data exchange?

G (x , y) → E (x , y)
M : S(x) → P(x)

T (x) → R(x)

Q : ∃x∃y∃z(E (x , z) ∧ E (z , y) ∧ ¬E (x , y))

I : G (a, b), G (b, c)
J1 : E (a, b), E (b, c)
J2 : E (a, b), E (b, c), E (a, c)

◮ Q is always false in a solution where E represents the
transitive closure of G



But if positive queries are also considered . . .

M :
G (x , y) → E (x , y)

S(x) → P(x)
T (x) → R(x)

Q : ∃x∃y(P(x) ∧ R(y) ∧ E (x , y))∨
∃x∃y∃z(E (x , z) ∧ E (z , y) ∧ ¬E (x , y))



But if positive queries are also considered . . .

M :
G (x , y) → E (x , y)

S(x) → P(x)
T (x) → R(x)

Q : ∃x∃y(P(x) ∧ R(y) ∧ E (x , y))∨
∃x∃y∃z(E (x , z) ∧ E (z , y) ∧ ¬E (x , y))

CertainM(Q, I ) = true iff there exist a, b such that:

◮ P(a) and R(b) hold in I

◮ (a, b) is in the transitive closure of G in I



Is there a reasonable query language with negation in data

exchange?

We cannot directly add inequalities or negated relational atoms to
Datalog.

◮ Preservation under homomorphisms is lost

◮ Language becomes intractable, even for conjunctive queries
with inequalities (AD98)



Is there a reasonable query language with negation in data

exchange?

We cannot directly add inequalities or negated relational atoms to
Datalog.

◮ Preservation under homomorphisms is lost

◮ Language becomes intractable, even for conjunctive queries
with inequalities (AD98)

Homomorphisms in data exchange are the identity on constants

◮ Inequalities witnessed by constants are preserved under
homomorphisms



Our contributions

Query language that extends Datalog with a form of negation

◮ As good as Datalog for data exchange

◮ Can be used to find new tractable classes of queries
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DatalogC(6=) programs

Definition

A constant-inequality Datalog rule is a rule of the form:

S(x̄) ← S1(x̄1), . . . ,Sℓ(x̄ℓ),C(y1), . . . ,C(ym), u1 6= v1, . . . , un 6= vn

where

◮ S , S1, . . ., Sℓ are predicate symbols,

◮ every variable in x̄ is mentioned in some tuple x̄i ,

◮ every variable yj is mentioned in some tuple x̄i , and

◮ every variable uj , and every variable vj , is equal to some
variable yi .



DatalogC(6=) programs (cont’d)

A constant-inequality Datalog program (DatalogC(6=) program) is
a finite set of constant-inequality Datalog rules.
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Example:
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A constant-inequality Datalog program (DatalogC(6=) program) is
a finite set of constant-inequality Datalog rules.

Example:
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DatalogC(6=) programs (cont’d)

A constant-inequality Datalog program (DatalogC(6=) program) is
a finite set of constant-inequality Datalog rules.

Example:

S(x , y) ← E (x , y)

S(x , y) ← S(x , u),S(u, v),S(v , y),C(x),C(u),C(v), u 6= v
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Proposition

Certain answers of DatalogC(6=) programs can be computed by
evaluating the programs over the canonical universal solution.



DatalogC(6=) programs can be evaluated efficiently

DatalogC(6=) programs are preserved under homomorphisms

Proposition

Certain answers of DatalogC(6=) programs can be computed by
evaluating the programs over the canonical universal solution.

Theorem

Computing the certain answers of a DatalogC(6=) program takes
polynomial time (data complexity)
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DatalogC(6=) programs can express queries with negation

Theorem (ABR09)

For every union of conjunctive queries Q with at most one

◮ negated relational atom or

◮ inequality

per disjunct, there exists a DatalogC(6=) program Π such that

Q and Π are equivalent in the data exchange scenario.
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instance I of S: CertainM(Q, I ) = CertainM(Π, I ).



DatalogC(6=) programs can express queries with negation

Theorem (ABR09)

For every union of conjunctive queries Q with at most one

◮ negated relational atom or

◮ inequality

per disjunct, there exists a DatalogC(6=) program Π such that

for every data exchange setting M = (S,T,Σ) and
instance I of S: CertainM(Q, I ) = CertainM(Π, I ).

◮ Certain answers for this class of queries can be computed in
polynomial time.

◮ Π can be computed from Q in polynomial time.

◮ Result for inequalities was proved in [FKMP03].



Example: Expressing negation in DatalogC(6=)

Q : ∃x∃y (E (x , y) ∧ x 6= y) ∨

∃x∃y∃z (E (x , y) ∧ E (y , z) ∧ ¬E (x , z))



Example: Expressing negation in DatalogC(6=)

Q : ∃x∃y (E (x , y) ∧ x 6= y) ∨

∃x∃y∃z (E (x , y) ∧ E (y , z) ∧ ¬E (x , z))

dom(x) ← E (x , z) Collect the domain
dom(x) ← E (z , x)



Example: Expressing negation in DatalogC(6=)

Q : ∃x∃y (E (x , y) ∧ x 6= y) ∨

∃x∃y∃z (E (x , y) ∧ E (y , z) ∧ ¬E (x , z))

dom(x) ← E (x , z) Formalize equality
dom(x) ← E (z , x)

EQ(x , x) ← dom(x)
EQ(x , y) ← EQ(y , x)
EQ(x , y) ← EQ(x , z),EQ(z , y)



Example: Expressing negation in DatalogC(6=)

Q : ∃x∃y (E (x , y) ∧ x 6= y) ∨

∃x∃y∃z (E (x , y) ∧ E (y , z) ∧ ¬E (x , z))

dom(x) ← E (x , z) Copy E into U
dom(x) ← E (z , x)

EQ(x , x) ← dom(x)
EQ(x , y) ← EQ(y , x)
EQ(x , y) ← EQ(x , z),EQ(z , y)
U(x , y) ← E (x , y)



Example: Expressing negation in DatalogC(6=)

Q : ∃x∃y (E (x , y) ∧ x 6= y) ∨

∃x∃y∃z (E (x , y) ∧ E (y , z) ∧ ¬E (x , z))

dom(x) ← E (x , z) Replace equals in U
dom(x) ← E (z , x)

EQ(x , x) ← dom(x)
EQ(x , y) ← EQ(y , x)
EQ(x , y) ← EQ(x , z),EQ(z , y)
U(x , y) ← E (x , y)
U(x , y) ← U(u, v),EQ(u, x),EQ(v , y)



Example: Expressing negation in DatalogC(6=)

Q : ∃x∃y (E (x , y) ∧ x 6= y) ∨

∃x∃y∃z (E (x , y) ∧ E (y , z) ∧ ¬E (x , z))

dom(x) ← E (x , z) Simulate 2nd disjunct of Q
dom(x) ← E (z , x)

EQ(x , x) ← dom(x)
EQ(x , y) ← EQ(y , x)
EQ(x , y) ← EQ(x , z),EQ(z , y)
U(x , y) ← E (x , y)
U(x , y) ← U(u, v),EQ(u, x),EQ(v , y)
U(x , y) ← U(x , z),U(z , y)



Example: Expressing negation in DatalogC(6=)

Q : ∃x∃y (E (x , y) ∧ x 6= y) ∨

∃x∃y∃z (E (x , y) ∧ E (y , z) ∧ ¬E (x , z))

dom(x) ← E (x , z) Simulate 1st disjunct of Q
dom(x) ← E (z , x)

EQ(x , x) ← dom(x)
EQ(x , y) ← EQ(y , x)
EQ(x , y) ← EQ(x , z),EQ(z , y)
U(x , y) ← E (x , y)
U(x , y) ← U(u, v),EQ(u, x),EQ(v , y)
U(x , y) ← U(x , z),U(z , y)

EQ(x , y) ← U(x , y)



Example: Expressing negation in DatalogC(6=)

Q : ∃x∃y (E (x , y) ∧ x 6= y) ∨

∃x∃y∃z (E (x , y) ∧ E (y , z) ∧ ¬E (x , z))

dom(x) ← E (x , z) Answer Q
dom(x) ← E (z , x)

EQ(x , x) ← dom(x)
EQ(x , y) ← EQ(y , x)
EQ(x , y) ← EQ(x , z),EQ(z , y)
U(x , y) ← E (x , y)
U(x , y) ← U(u, v),EQ(u, x),EQ(v , y)
U(x , y) ← U(x , z),U(z , y)

EQ(x , y) ← U(x , y)
TRUE ← EQ(x , y),C(x),C(y), x 6= y
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Certain answers for conjunctive queries with two

inequalities

Theorem (M05)

The certain answers problem is coNP-complete for the class of
conjunctive queries with two inequalities (data complexity).



Certain answers for conjunctive queries with two

inequalities

Theorem (M05)

The certain answers problem is coNP-complete for the class of
conjunctive queries with two inequalities (data complexity).

An interesting tractable fragment of 2-CQ 6= was identified by
considering DatalogC(6=) programs.



Two restrictions on queries are needed

Just the intuition:



Two restrictions on queries are needed

Just the intuition:

◮ Constant Joins: Null values do not witness a join



Two restrictions on queries are needed

Just the intuition:

◮ Constant Joins: Null values do not witness a join

◮ Almost constant inequalities: Every inequality is not witnessed
just by null values



A tractable fragment of 2-UCQ6=

Theorem (ABR09)

For every 2-UCQ 6= Q with:

◮ constant joins and

◮ almost constant inequalities,

there exists a DatalogC(6=) program Π such that:

Q and Π are equivalent in the data exchange scenario.



A tractable fragment of 2-UCQ6=

Theorem (ABR09)

For every 2-UCQ 6= Q with:

◮ constant joins and

◮ almost constant inequalities,

there exists a DatalogC(6=) program Π such that:

for every data exchange setting M = (S,T,Σ) and
instance I of S: CertainM(Q, I ) = CertainM(Π, I ).



A tractable fragment of 2-UCQ6=

Theorem (ABR09)

For every 2-UCQ 6= Q with:

◮ constant joins and

◮ almost constant inequalities,

there exists a DatalogC(6=) program Π such that:

for every data exchange setting M = (S,T,Σ) and
instance I of S: CertainM(Q, I ) = CertainM(Π, I ).

Certain answers to this class of queries can be computed in
polynomial time

◮ Π can be computed from Q in polynomial time.



A tractable fragment of 2-UCQ6= (cont’d)

Theorem (ABR09)

Removing any one of the conditions in the previous theorem yields
to coNP-completeness.



A tractable fragment of 2-UCQ6= (cont’d)

Theorem (ABR09)

Removing any one of the conditions in the previous theorem yields
to coNP-completeness.

This result is stronger than the result in [M05].

◮ Reduction in [M05] does not impose these restrictions.
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We propose DatalogC(6=) as a query language for data

exchange systems

◮ Certain answers to a DatalogC(6=) program can be
computed in polynomial time (data complexity).

◮ DatalogC(6=) is equipped with a form of negation.
◮ Union of conjunctive queries with one negated atom per

disjunct are expressible in DatalogC(6=).

◮ DatalogC(6=) can be used to find new tractable classes of
queries with negation.

◮ In this talk: A fragment of 2-UCQ6=



Thank you!



Two restrictions on queries are needed



Two restrictions on queries are needed

Constant Joins

Null values do not witness a join

M :
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