
XML Data Exchange: Consistency and
Query Answering

Marcelo Arenas Leonid Libkin
U. of Toronto U. of Toronto

The Problem of Data Exchange

• Data exchange is the problem of finding an instance of a target

schema, given an instance of a source schema and a

specification of the relationship between the source and the

target.

• Such a target instance should correctly represent information

from the source instance under the constraints imposed by the

target schema.

• It should also allow one to evaluate queries on the target

instance in a way that is semantically consistent with the

source data.

1

Data Exchange

???

Source
Database

Target
Database

Source schema Target schema

2

Data Exchange

???

Source
Database

Target
Database

Source schema Target schema

2

Data Exchange

???

Source
Database

Target
Database

Source schema Target schema

Query over the target schema: Q

How to answer Q so that the answer is consistent with the

data in the source database?

2

Relational Data Exchange Settings

Data Exchange Setting: (S,T,ΣST)

S: Source schema.

T: Target schema.

ΣST: Set of source-to-target dependencies.

- Source-to-target dependency:

ψT(x̄, z̄) :– ϕS(x̄, ȳ).

- ϕS(x̄, ȳ): conjunction of atomic formulas over S.

- ψT(x̄, z̄): conjunction of atomic formulas over T.

3

Example: Relational Data Exchange Setting

• S = Book(Title,AName,Aff)

• T = Writer(Name,BTitle,Year)

• ΣST = Writer(x2, x1, z1) :– Book(x1, x2, y1).

4

Relational Data Exchange Problem

• Given a source instance I, find a target instance J such

that (I, J) satisfies ΣST.

- (I, J) satisfies ψT(x̄, z̄) :– ϕS(x̄, ȳ) if whenever I satisfies

ϕS(ā, b̄), there is a tuple c̄ such that J satisfies ψT(ā, c̄).

- J is called a solution for I.

• Previous example:

I:

Book Title AName Aff

Algebra Hungerford U. Washington

Real Analysis Royden Stanford

5

Relational Data Exchange Problem

Possible solutions:

J1:

Writer Name BTitle Year

Hungerford Algebra 1974

Royden Real Analysis 1988

J2:

Writer Name BTitle Year

Hungerford Algebra ⊥1

Royden Real Analysis ⊥2

6

Query Answering

• Q is a query over target schema.

What does it mean to answer Q?

certain(Q, I) =
⋂

J is a solution for I

Q(J)

• Previous example:

- certain(∃y∃zWriter(x, y, z), I) = {Hungerford, Royden}

7

Outline

• XML data exchange settings.

- XML source-to-target dependencies.

• Consistency of XML data exchange settings.

• Query answering in XML data exchange.

• Future work.

8

XML Documents

db

book book

@title
“Algebra”

@title
“Real Analysis”

author author

@name @aff @name @aff
“Hungerford” “U. Washington” “Royden” “Stanford”

9

XML Documents

db

book book

@title
“Algebra”

@title
“Real Analysis”

author author

@name @aff @name @aff
“Hungerford” “U. Washington” “Royden” “Stanford”

db → book+

DTD : book → author+

author → ε

9

XML Documents

db

book book

@title
“Algebra”

@title
“Real Analysis”

author author

@name @aff @name @aff
“Hungerford” “U. Washington” “Royden” “Stanford”

db → book+

DTD : book → author+ book → @title

author → ε author → @name, @aff

9

XML Data Exchange Settings

• Instead of source and target relational schemas, we have

source and target DTDs.

• But what are the source-to-target dependencies?

To define them, we use tree patterns ...

10

Tree Patterns: Example

db

book

author

@name
“Hungerford”

. . .book

@title
x

author

@name
y

11

Tree Patterns: Example

db

book

@title
“Algebra”

author

@name @aff
“Hungerford” “U. Washington”

. . .book

@title
x

author

@name
y

11

Tree Patterns: Example

db

book

“Real Analysis”
author

@name @aff
“Royden” “Stanford”

@title

. . .book

@title
x

author

@name
y

11

Tree Patterns: Example

db

book

“Real Analysis”
author

@name @aff
“Royden” “Stanford”

@title

. . .book

@title
x

author

@name
y

Collect tuples (x, y): (Algebra,Hungerford), (Real Analysis, Royden)

11

Tree Patterns

• Example: book(@title = x)[author(@name = y)].

• Language also includes wildcard (matching more than

one symbol) and descendant operator //.

12

XML Source-to-target Dependencies

• Source-to-target dependency (STD):

ψT(x̄, z̄) :– ϕS(x̄, ȳ),

where ϕS(x̄, ȳ) and ψT(x̄, z̄) are tree-pattern formulas

over the source and target DTDs, resp.

• Example:

:–

writer

@name
y

work

@title
x z

@year

book

@title
x

author

@name
y

13

XML Data Exchange Settings

XML Data Exchange Setting: (DS, DT,ΣST)

DS: Source DTD.

DT: Target DTD.

ΣST: Set of XML source-to-target dependencies.

Each constraint in ΣST is of the form ψT(x̄, z̄) :– ϕS(x̄, ȳ).

- ϕS(x̄, ȳ): tree-pattern formula over DS.

- ψT(x̄, z̄): tree-pattern formula over DT.

14

Example: XML Data Exchange Setting

• Source DTD:

db → book+

book → author+ book → @title

author → ε author → @name, @aff

• Target DTD:

bib → writer+

writer → work+ writer → @name

work → ε work → @title, @year

• ΣST:

writer(@name = y)[work(@title = x,@year = z)] :–

book(@title = x)[author(@name = y)].

15

XML Data Exchange Problem

• Given a source tree T , find a target tree T ′ such that

(T, T ′) satisfies ΣST.

- (T, T ′) satisfies ψT(x̄, z̄) :– ϕS(x̄, ȳ) if whenever T satisfies

ϕS(ā, b̄), there is a tuple c̄ such that T ′ satisfies ψT(ā, c̄).

- T ′ is called a solution for T .

16

XML Data Exchange Problem

Let T be our original tree:

db

book book

@title
“Algebra”

@title
“Real Analysis”

author author

@name @aff @name @aff
“Hungerford” “U. Washington” “Royden” “Stanford”

17

XML Data Exchange Problem

A solution for T :

bib

@year
“1988”

writer writer

@name

@title

work work

@title

@name

@year

“Hungerford”

“Algebra”

“Royden”

“Real Analysis”“1974”

18

XML Data Exchange Problem

Another solution for T :

bib

@year
“⊥2”

writer writer

@name

@title

work work

@title

@name

@year

“Hungerford”

“Algebra”

“Royden”

“Real Analysis”“⊥1”

19

Consistency of XML Data Exchange Settings

• What if we have target DTD

bib → writer+

writer → novelist∗, poet∗ writer → @name

novelist → work+

poet → work+

work → ε work → @title, @year

in our previous example?

• The setting becomes inconsistent!

- There are no T conforming to DS and T ′ conforming to DT

such that (T, T ′) satisfies ΣST.

20

Consistency of XML Data Exchange Settings

• An XML data exchange setting is inconsistent if it does

not admit solutions for any given source tree. Otherwise

it is consistent.

• A relational data exchange setting is always consistent.

• An XML data exchange setting is not always consistent.

- What is the complexity of checking whether a setting is

consistent?

21

Bad News: General Case

Theorem Checking if an XML data exchange setting is

consistent is EXPTIME-complete.

Known results on containment of XPath expressions as well as

universality of tree automata imply that EXPTIME-hardness is

unavoidable.

22

Good News: Consistency for Commonly used DTDs

A large number of DTDs that occur in practice have rules of

the following form:

` → ˆ̀
1, . . . , ˆ̀m,

where all the `i’s are distinct, and ˆ̀ is one of the following:

`, or `∗, or `+, or `?

Theorem For non-recursive DTDs that only have these

rules, checking if an XML data exchange setting is consistent

is solvable in time O
(

(‖DS‖+ ‖DT‖) · ‖ΣST‖
2
)

.

23

Query Answering in XML Data Exchange

• Decision to make: what is our query language?

• XML query languages such as XQuery take XML trees

and produce XML trees.

- This makes it hard to talk about certain answers.

• We use a query language that produces tuples of values.

24

Conjunctive Tree Queries

• Query language CTQ// is defined by

Q := ϕ | Q ∧Q | ∃xQ,

where ϕ ranges over tree-pattern formulas.

• By disallowing descendant // we obtain restriction CTQ.

• Results extend to unions of conjunctive queries.

25

Example: Conjunctive Tree Query

List all pairs of authors that have written articles with the same

title.

Q(x, y) :=

∧@name
x

work

@title
z

writer

@name
y

work

@title
z

writer

∃z ()

26

Computing Certain Answers

• Semantics: as in the relational case.

certain(Q,T) =
⋂

T ′ is a solution for T

Q(T ′).

• Given data exchange setting (DS, DT,ΣST) and query Q:

PROBLEM: CertAnsw(Q).

INPUT: Tree T conforming to DS and tuple ā.

QUESTION: Is ā ∈ certain(Q,T)?

27

Computing Certain Answers: General Picture

Theorem For every XML data exchange setting and

CTQ//-query Q, CertAnsw(Q) is in coNP.

Remark: in terms of the size of the document (data complexity).

Theorem There exist an XML data exchange setting and a

CTQ//-query Q such that CertAnsw(Q) is coNP-hard.

We want to find tractable cases ...

28

Computing Certain Answers: Finding Tractable Cases

Theorem Suppose one of the following is allowed in tree patterns

over the target in STDs:

• descendant operator //, or

• wildcard , or

• patterns that do not start at the root.

Then one can find source and target DTDs and a CTQ-query Q

such that CertAnsw(Q) is coNP-complete.

Remark: Even if all the rules in the DTDs are of the form:

` → (`1 | · · · | `n)
∗

where all the `i’s are distinct.

29

Computing Certain Answers: Finding Tractable Cases

• To find tractable cases, we have to concentrate on

fully-specified STDs:

We impose restrictions on tree patterns over target DTDs:

- no descendant relation //; and

- no wildcard ; and

- all patterns start at the root.

No restrictions imposed on tree patterns over source DTDs.

• Subsume non-relational data exchange handled by Clio.

From now on, all STDs are fully-specified.

30

Computing Certain Answers: Towards a Classification

Given a class C of regular expressions and a class Q of queries:

C is tractable for Q if for every data exchange setting in which

target DTDs only use regular expressions from C and every

Q-query Q, CertAnsw(Q) is in PTIME.

C is coNP-complete for Q if there is a data exchange setting in

which target DTDs only use regular expressions from C and a

Q-query Q such that CertAnsw(Q) is coNP-complete.

Remark (Ladner): if PTIME 6= NP, there are problems in coNP

which are neither tractable nor coNP-complete.

31

Computing Certain Answers: Towards a Classification

• Our classification is based on classes of regular

expressions used in DTDs.

• We only impose one restriction to these classes:

- They must contain the simplest type of regular expressions.

• Such classes will be called admissible.

32

Computing Certain Answers: Dichotomy

Theorem

1) Every admissible class C of regular expressions is either

tractable or coNP-complete for CTQ//.

Remark: also holds for unions of conjunctive queries.

2) Moreover, given an XML data exchange setting, it is

decidable whether the regular expressions used in the

source and the target DTD belong to a tractable class.

33

A Tractable Case

• Idea: given a source tree T , compute a solution T ? for T

such that

certain(Q,T) = remove null tuples(Q(T ?)).

• T ? is a canonical solution for T .

• We compute T ? in two steps:

- We use STDs to compute a canonical pre-solution cps(T) from

T .

- Then we use target DTD to compute T ? from cps(T).

34

Example: XML Data Exchange Setting

• Source DTD:

r → A∗, B∗

A → ε A → @`

B → ε B → @`

• Target DTD:

r → (C,D)∗

C → ε C → @m

D → E

E → ε E → @n

• ΣST:

r[C(@m = x)] :– A(@` = x),

r[C(@m = x)] :– B(@` = x).

35

Example: Computing Canonical Pre-solution

r

A B

@` @`
“1” “2”

r

A B

@` @`
“1” “2”

:–

@m @`

C

@m

r

“2”

C

r

x

B

x

:–

@m @`

C

@m

r

“1”

C

r

A

x x

36

Example: Computing Canonical Pre-solution

r

A B

@` @`
“1” “2”

r

A B

@` @`
“1” “2”

:–

@m @`

C

@m

r

“2”

C

r

x

B

x

:–

@`

C

@m

r

“1”

C

r

A

x x
@m

36

Example: Computing Canonical Pre-solution

r

A B

@` @`
“1” “2”

r

A B

@` @`
“1” “2”

:–

@m @`

C

@m

r

“2”

C

r

x

B

x

:–

@`

C

@m

r

“1”

C

r

A

x x
@m

36

Example: Computing Canonical Pre-solution

r

A B

@` @`
“1” “2”

r

A B

@` @`
“1” “2”

:–

@m @`

C

@m

r

“2”

C

r

x

B

x

:–

@`

C

@m

r

“1”

C

r

A

x x
@m

36

Example: Computing Canonical Pre-solution

r

A B

@` @`
“1” “2”

r

A B

@` @`
“1” “2”

:–

@m @`

C

@m

r

“2”

C

r

x

B

x

:–

@`

C

@m

r

“1”

C A

x x
@m

r

36

Example: Computing Canonical Pre-solution

r

A B

@` @`
“1” “2”

r

A B

@` @`
“1” “2”

:–

@m @`

C

@m

r

“2”

C

r

x

B

x

:–

@`

C

@m

r

“1”

C A

x x
@m

r

36

Example: Computing Canonical Pre-solution

r

A B

@` @`
“1” “2”

r

A B

@` @`
“1” “2”

:–

@m @`

C

@m

r

“2”

C

r

x

B

x

:–

@`

C

@m

r

“1”

C A

x x
@m

r

36

Example: Computing Canonical Pre-solution

r

A B

@` @`
“1” “2”

r

A B

@` @`
“1” “2”

:–

@m @`

C

@m

r

“2”

C

r

x

B

x

:–

@`

C

@m

r

“1”

C A

x x
@m

r

36

Example: Computing Canonical Pre-solution

r

A B

@` @`
“1” “2”

r

A B

@` @`
“1” “2”

:–

@m @`

C

@m

r

“2”

C

r

x

B

x

:–

@`

C

@m

r

“1”

C A

x x
@m

r

36

Example: Computing Canonical Pre-solution

r

A B

@` @`
“1” “2”

r

A B

@` @`
“1” “2”

:–

@m @`

C

@m

r

“2”

C

r

x

B

x

:–

@`

C

@m

r

“1”

C A

x x
@m

r

36

Example: Computing Canonical Pre-solution

Canonical pre-solution:

C

@m
“1”

C

@m
“2”

r

Not yet a solution: it does not conform to the target DTD.

37

Example: Computing Canonical Solution

C

@m
“1”

DC

r

D

EE

@n@n
“⊥1” “⊥2”

@m
“2”

r → (C,D)∗

38

Example: Computing Canonical Solution

C

@m
“1”

DC

r

D

EE

@n@n
“⊥1” “⊥2”

@m
“2”

r → (C,D)∗

38

Example: Computing Canonical Solution

C

@m
“1”

DC

r

D

EE

@n@n
“⊥1” “⊥2”

@m
“2”

r → (C,D)∗

38

Example: Computing Canonical Solution

C

@m
“1”

DC

r

D

EE

@n@n
“⊥1” “⊥2”

@m
“2”

D → E

38

Example: Computing Canonical Solution

C

@m
“1”

DC

r

D

EE

@n@n
“⊥1” “⊥2”

@m
“2”

D → E

38

Example: Computing Canonical Solution

C

@m
“1”

DC

r

D

EE

@n@n
“⊥1” “⊥2”

@m
“2”

E → @n

38

Example: Computing Canonical Solution

C

@m
“1”

DC

r

D

EE

@n@n
“⊥1” “⊥2”

@m
“2”

E → @n

38

Example: Computing Canonical Solution

C

@m
“1”

DC

r

D

EE

@n@n
“⊥1” “⊥2”

@m
“2”

D → E

38

Example: Computing Canonical Solution

C

@m
“1”

DC

r

D

EE

@n@n
“⊥1” “⊥2”

@m
“2”

D → E

38

Example: Computing Canonical Solution

C

@m
“1”

DC

r

D

EE

@n@n
“⊥1” “⊥2”

@m
“2”

E → @n

38

Example: Computing Canonical Solution

C

@m
“1”

DC

r

D

EE

@n@n
“⊥1” “⊥2”

@m
“2”

E → @n

38

Example: Computing Canonical Solution

C

@m
“1”

DC

r

D

EE

@n@n
“⊥1” “⊥2”

@m
“2”

E → @n

38

A Tractable Case: Univocal Regular Expressions

• CU : class of univocal regular expressions.

- Examples: (A|B)∗, A,B+, C∗, D?, (A∗|B∗), (C,D)∗.

- Non-univocal: A, (B|C).

• For target DTDs only using univocal regular expressions:

- There exists a solution for a tree T iff there exists a canonical

solution T ? for T .

- Previous algorithm computes canonical solution T ? for T in

polynomial time.

- certain(Q,T) = remove null tuples(Q(T ?)), for every

CTQ//-query.

• Theorem CU is tractable for CTQ//.

39

Computing Certain Answers: Non-tractable Cases

Is there any other tractable class of regular expressions?

Theorem CU is the maximal tractable class: If C is an admissible

class of regular expressions such that C 6⊆ CU , then C is

coNP-complete for CTQ-queries.

Dichotomy follows from this theorem and tractability of CU .

Theorem It is decidable whether a regular expression is univocal.

40

Future Work

• What about XML languages like XQuery that return

XML documents? How do we define certain answers?

• The notion of reasonable solutions needs to be

investigated further.

We would like to consider different certain-answers

semantics.

41

