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Complete and incomplete databases

A complete database:

Employee name salary
Elena 110K
John 70K
Ringo 80K

Incomplete databases:

Employee name salary
Elena 110K
John ⊥1

⊥2 80K

Employee name salary
Elena 110K
John ⊥1

Ringo ⊥1
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Complete and incomplete databases

Fix a set Const of constants and a set Null of nulls

In an incomplete database I each k-ary relation is a finite subset
of (Const ∪Null)k

I adom(I ) is the set of constants and nulls occurring in I

I If adom(I ) ⊆ Const, then I is said to be a complete database

We use I , I1, I ′, . . . to denote an incomplete database, and D, D1, D ′,
. . . to denote a complete database
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The semantics of an incomplete database

The semantics of an incomplete database I is defined in terms of
its representations

I A representation is a complete database that is considered as
possible interpretation of I

To construct a representation of I we need to assign constants to the
nulls occurring in I

I A valuation of I is a function v : adom(I )→ Const that is the
identity on Const(I )
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The representations of an incomplete database under the
open-world assumption

Definition
The set of representations of I is defined as:

JI K = {D | D is a complete database and

v(I ) ⊆ D for some valuation v of I}
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Some examples of representations

name salary
Elena 110K
John ⊥1

⊥2 80K

=⇒ v(⊥1) = 120K
v(⊥2) = Paul

=⇒

name salary
Elena 110K
John 120K
Paul 80K

=⇒ v(⊥1) = 120K
v(⊥2) = Paul

=⇒

name salary
Elena 110K
John 120K
Paul 80K
Ringo 110K
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Some examples of representations

name salary
Elena 110K
John ⊥1

Ringo ⊥1

=⇒ v(⊥1) = 120K =⇒

name salary
Elena 110K
John 120K
Ringo 120K

=⇒ v(⊥1) = 140K =⇒

name salary
Elena 110K
John 140K
Ringo 140K
Paul 110K
George 80K
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Query answering over incomplete databases

A query Q is a function that assigns to each complete database D a
complete database Q(D)

To define the semantics of a query over an incomplete database we need
to introduce some fundamental notions
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Comparing the amount of information of
incomplete databases

I2 is at least as informative as I1 if JI2K ⊆ JI1K

I I is more informative if it has less representations [L16]

We use notation I1 � I2 to indicate that I2 is at least as informative as I1
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An order on incomplete databases

We have that:

name salary
Elena 110K
John ⊥1

Ringo ⊥2

�
name salary
Elena 110K
John ⊥3

Ringo ⊥3

Since:

name salary

J Elena 110K KJohn ⊥3

Ringo ⊥3

⊆
name salary

J Elena 110K KJohn ⊥1

Ringo ⊥2
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The notion of greatest lower bound

Definition
Let I be a set of incomplete databases

I I is a lower bound for I if I � I ′ for every I ′ ∈ I

I I is a greatest lower bound for I if I is a lower bound for I and for
every lower bound I ′ for I, it holds that I ′ � I

The set of all greatest lower bounds of I is denoted by glb(I)
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The notion of certain answer as object

Definition (Certain answer as object [L16])

I ? is a certain answer as object to Q over I if

I ? ∈ glb({Q(D) | D ∈ JI K})

Two greatest lower bounds I1, I2 of {Q(D) | D ∈ JI K} are equivalent in terms
of the information ordering: I1 � I2 and I2 � I1

I We choose any greatest lower bound of {Q(D) | D ∈ JI K}, and we talk
about the certain answer to Q over I , which is denoted by cert(Q, I )
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Certain answers: a first example

Consider the query Q(x , y) = R(x , y) ∧ x 6= y over the following incomplete
database I :

R

a ⊥1

We obtain the following answers over the representations of I :

R

a a
=⇒ ∅

R

a b
=⇒ a b

Thus, we have that cert(Q, I ) is the empty instance
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Certain answers: a second example

Consider the same query Q(x , y) = R(x , y) ∧ x 6= y but now over the following
incomplete database I :

R

a ⊥1

b ⊥1

We obtain the following answers over the representations of I :

R
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R

a b
b b
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a c
b c
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b c
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Certain answers: a second example

What is a greatest lower bound of the following set?{
b a , a b , a c

b c
, . . .

}

In this case we have that cert(Q, I ) is the following incomplete database:

⊥1 ⊥2

Thus, for every D ∈ JI K we know that Q(D) contains at least one tuple

I We do not have more information that can be stored in the form of an
incomplete database

I The situation will be different if we use conditional tables as we can add
the condition ⊥1 6= ⊥2
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Can cert(Q, I ) be computed?

If Q is a union of conjunctive queries, then cert(Q, I ) can be computed
by using näıve evaluation

I Q is evaluated by treating the nulls in I as constants

Our research question

How can cert(Q, I ) be computed if Q is a union of conjunctive queries
with inequalities?

I Can this be done efficiently?
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Take-home message: there is no efficient algorithm

Proposition
Given a union of conjunctive queries with inequalities Q, there exists a
double-exponential algorithm that, given an incomplete database I ,
computes cert(Q, I )

Theorem
There exists a conjunctive query with inequalities Q and a family of incomplete
databases {In}n≥0

such that the size of the smallest element in
glb({Q(D) | D ∈ JInK}) grows exponentially in the size of In

I Therefore, no matter how cert(Q, In) is chosen, its size grows
exponentially in the size of In
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Thank you!
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Computing cert(Q, I ) for queries with inequalities

Let Q be a union of conjunctive queries with inequalities

Proposition

For every incomplete database I , there exists DI ⊆ {Q(D) | D ∈ JI K}
such that DI is finite and cert(Q, I ) is a greatest lower bound of DI

Proof idea: For every null n fix a constant cn

We only need to consider representations of I where the nulls n occurring
in I are replaced by cn (plus two extra fixed constants)

I No new tuples are added

19
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Computing the greatest lower bound of DI

glb(DI ) can be computed by using a product of instances [HN04,L11,tCD15]

I Based on a well-known product of graphs

The product I1 × I2 is an incomplete database I such that for each relation R:

R I = {(a1 × b1, . . . , ak × bk
)
| (a1, . . . , ak) ∈ R I1 and (b1, . . . , bk) ∈ R I2},

where for every a, b ∈ (Const ∪Null):

a× b =

{
a if a = b

na,b if a 6= b, where na,b is a null

20
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Two examples of the product

For one of the examples presented before we have that:

b a × a b = nb,a na,b

= ⊥1 ⊥2

A more involved example:

a b

c
×

a

b

= a b

na,bnb,a

nc,b nc,a

21



Two examples of the product

For one of the examples presented before we have that:

b a × a b = nb,a na,b = ⊥1 ⊥2

A more involved example:

a b

c
×

a

b

= a b

na,bnb,a

nc,b nc,a

21



Two examples of the product

For one of the examples presented before we have that:

b a × a b = nb,a na,b = ⊥1 ⊥2

A more involved example:

a b

c
×

a

b

= a b

na,bnb,a

nc,b nc,a

21



Computing cert(Q, I ) for queries with inequalities (cont’d)

Let Q be a union of conjunctive queries with inequalities

Proposition

For every incomplete database I , it holds that cert(Q, I ) can be
computed as

∏
DI
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How good is the solution?

DI can contain an exponential number of complete databases

I This number is exponential in the size of I (the query Q is assumed
to be fixed)

Hence,
∏
DI can be of double-exponential size in the size of I
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