A note on computing certain answers to queries over incomplete databases

Marcelo Arenas¹ Elena Botoeva² Egor V. Kostylev³ Vladislav Ryzhikov²

¹Pontificia Universidad Católica de Chile ²Free University of Bozen-Bolzan ³University of Oxford

A complete database:

Employee	name	salary
	Elena	110K
	John	70K
	Ringo	80K

A complete database:

Employee	name	salary
	Elena	110K
	John	70K
	Ringo	80K

Incomplete databases:

Employee	name	salary	Employee	name	salary
	Elena	110K		Elena	110K
	John	\perp_1		John	\perp_1
	⊥_2	80K		Ringo	\perp_1

Fix a set ${\bf Const}$ of constants and a set ${\bf Null}$ of nulls

In an incomplete database I each k-ary relation is a finite subset of $(Const \cup Null)^k$

- adom(1) is the set of constants and nulls occurring in 1
- If $adom(I) \subseteq Const$, then I is said to be a complete database

Fix a set ${\bf Const}$ of constants and a set ${\bf Null}$ of nulls

In an incomplete database I each k-ary relation is a finite subset of $(Const \cup Null)^k$

- adom(1) is the set of constants and nulls occurring in 1
- If $adom(I) \subseteq Const$, then I is said to be a complete database

We use I, I_1 , I', ... to denote an incomplete database, and D, D_1 , D', ... to denote a complete database

The semantics of an incomplete database

The semantics of an incomplete database I is defined in terms of its representations

► A representation is a complete database that is considered as possible interpretation of *I*

The semantics of an incomplete database

The semantics of an incomplete database I is defined in terms of its representations

A representation is a complete database that is considered as possible interpretation of I

To construct a representation of ${\it I}$ we need to assign constants to the nulls occurring in ${\it I}$

The semantics of an incomplete database

The semantics of an incomplete database I is defined in terms of its representations

A representation is a complete database that is considered as possible interpretation of I

To construct a representation of ${\it I}$ we need to assign constants to the nulls occurring in ${\it I}$

A valuation of *I* is a function *v* : adom(*I*) → Const that is the identity on Const(*I*)

The representations of an incomplete database under the open-world assumption

Definition

The set of representations of I is defined as:

 $\llbracket I \rrbracket = \{D \mid D \text{ is a complete database and }$

 $v(I) \subseteq D$ for some valuation v of I}

- **∢** 🗗 🕨 - 🗄

name	salary
Elena	110K
John	\perp_1
\perp_2	80K

name	salary		
Elena	110K		$v(\perp_1) = 120 K$
John	\perp_1	\Rightarrow	$v(\perp_2) = Paul$
⊥ ₂	80K		

name	salary				name	salary
Elena	110K		$v(\perp_1) = 120 K$	、 、	Elena	110K
John	\perp_1	\Rightarrow	$v(\perp_2) = Paul$	\Rightarrow	John	120K
\perp_2	80K				Paul	80K

name	salary				name	salary
Elena	110K		$v(\perp_1) = 120 K$		Elena	110K
John	\perp_1	\rightarrow	$v(\perp_2) = Paul$	\rightarrow	John	120K
\perp_2	80K				Paul	80K

$$\implies \begin{array}{c} \mathsf{v}(\bot_1) = 120\mathsf{K} \\ \mathsf{v}(\bot_2) = \mathsf{Paul} \end{array}$$

name	salary				name	salary
Elena	110K		$v(\perp_1) = 120 K$		Elena	110K
John	\perp_1	\rightarrow	$v(\perp_2) = Paul$	\rightarrow	John	120K
⊥_2	80K				Paul	80K
					name	salary
			v(+) = 120k		name Elena	salary 110K
		\Rightarrow	$v(\perp_1) = 120K$	\implies	name Elena John	salary 110K 120K
		\Rightarrow	$egin{aligned} & v(ot_1) = 120K \ & v(ot_2) = Paul \end{aligned}$	\Rightarrow	name Elena John Paul	salary 110K <mark>120K</mark> 80K

</2>

name	salary
Elena	110K
John	\perp_1
Ringo	\perp_1

7

name	salary				name	salary
Elena	110K		v(+) = 120 k	\rightarrow	Elena	110K
John	\perp_1	\rightarrow	$V(\perp_1) = 120$ K	\rightarrow	John	120K
Ringo	\perp_1				Ringo	120K

$$\implies v(\perp_1) = 140 \text{K}$$

name	salary				name	salary
Elena	110K		u(+) = 120 k		Elena	110K
John	\perp_1		$v(\pm_1) = 1200$		John	120K
Ringo	\perp_1				Ringo	120K
					name	salary
			\Rightarrow $v(\perp_1) = 140$ K	\implies	Elena	110K
					John	140K
		\Rightarrow			Ringo	140K
					Paul	110K
					George	80K

Query answering over incomplete databases

A query Q is a function that assigns to each complete database D a complete database Q(D)

Query answering over incomplete databases

A query Q is a function that assigns to each complete database D a complete database Q(D)

To define the semantics of a query over an incomplete database we need to introduce some fundamental notions

Comparing the amount of information of incomplete databases

- I_2 is at least as informative as I_1 if $\llbracket I_2 \rrbracket \subseteq \llbracket I_1 \rrbracket$
 - I is more informative if it has less representations [L16]

We use notation $I_1 \preceq I_2$ to indicate that I_2 is at least as informative as I_1

An order on incomplete databases

We have that:

		1		
name	salary		name	salary
Elena	110K		Elena	110K
John	\perp_1	<u> </u>	John	⊥3
Ringo	⊥_2		Ringo	⊥ <u>3</u>

<₽> E

An order on incomplete databases

We have that:

name	salary		name	salary
Elena	110K		Elena	110K
John	\perp_1	<u> </u>	John	⊥3
Ringo	⊥_2		Ringo	⊥₃

Since:

<*₽*> ∃

Definition

Let ${\mathcal I}$ be a set of incomplete databases

Definition

Let ${\mathcal I}$ be a set of incomplete databases

▶ *I* is a lower bound for \mathcal{I} if $I \leq I'$ for every $I' \in \mathcal{I}$

Definition

Let ${\mathcal I}$ be a set of incomplete databases

- ▶ *I* is a lower bound for \mathcal{I} if $I \leq I'$ for every $I' \in \mathcal{I}$
- I is a greatest lower bound for I if I is a lower bound for I and for every lower bound I' for I, it holds that I' ≤ I

Definition

Let ${\mathcal I}$ be a set of incomplete databases

- ▶ *I* is a lower bound for \mathcal{I} if $I \leq I'$ for every $I' \in \mathcal{I}$
- I is a greatest lower bound for I if I is a lower bound for I and for every lower bound I' for I, it holds that I' ≤ I

The set of all greatest lower bounds of \mathcal{I} is denoted by **glb**(\mathcal{I})

The notion of certain answer as object

Definition (Certain answer as object [L16])

 I^{\star} is a certain answer as object to Q over I if

The notion of certain answer as object

Definition (Certain answer as object [L16])

 I^{\star} is a certain answer as object to Q over I if

 $I^{\star} \in \mathsf{glb}(\{Q(D) \mid D \in \llbracket I \rrbracket\})$

The notion of certain answer as object

Definition (Certain answer as object [L16])

 I^{\star} is a certain answer as object to Q over I if

 $I^{\star} \in \mathbf{glb}(\{Q(D) \mid D \in \llbracket I \rrbracket\})$

Two greatest lower bounds I_1 , I_2 of $\{Q(D) \mid D \in \llbracket I \rrbracket\}$ are equivalent in terms of the information ordering: $I_1 \leq I_2$ and $I_2 \leq I_1$

We choose any greatest lower bound of {Q(D) | D ∈ [[I]]}, and we talk about the certain answer to Q over I, which is denoted by cert(Q, I)

Consider the query $Q(x, y) = R(x, y) \land x \neq y$ over the following incomplete database *I*:

Consider the query $Q(x, y) = R(x, y) \land x \neq y$ over the following incomplete database *I*:

Consider the query $Q(x, y) = R(x, y) \land x \neq y$ over the following incomplete database *I*:

Consider the query $Q(x, y) = R(x, y) \land x \neq y$ over the following incomplete database *I*:

Consider the query $Q(x, y) = R(x, y) \land x \neq y$ over the following incomplete database *I*:

Consider the query $Q(x, y) = R(x, y) \land x \neq y$ over the following incomplete database *I*:

We obtain the following answers over the representations of *I*:

Thus, we have that cert(Q, I) is the empty instance

Consider the same query $Q(x, y) = R(x, y) \land x \neq y$ but now over the following incomplete database *I*:

Consider the same query $Q(x, y) = R(x, y) \land x \neq y$ but now over the following incomplete database *I*:

Consider the same query $Q(x, y) = R(x, y) \land x \neq y$ but now over the following incomplete database *I*:

We obtain the following answers over the representations of *I*:

</2> > ∃

Consider the same query $Q(x, y) = R(x, y) \land x \neq y$ but now over the following incomplete database *I*:

We obtain the following answers over the representations of *I*:

- **(**∂) ► 3

Consider the same query $Q(x, y) = R(x, y) \land x \neq y$ but now over the following incomplete database *I*:

We obtain the following answers over the representations of *I*:

- **(**∰) ► - 3

Consider the same query $Q(x, y) = R(x, y) \land x \neq y$ but now over the following incomplete database *I*:

What is a greatest lower bound of the following set?

$$\left\{ \begin{array}{c|c} b & a \end{array}, \begin{array}{c} a & b \\ b & c \end{array}, \begin{array}{c} a & c \\ b & c \end{array}, \end{array} \right\}$$

What is a greatest lower bound of the following set?

$$\left\{ \begin{array}{c|c} b & a \end{array}, \begin{array}{c} a & b \end{array}, \begin{array}{c} a & c \\ b & c \end{array}, \end{array}, \right\}$$

In this case we have that cert(Q, I) is the following incomplete database:

What is a greatest lower bound of the following set?

$$\left\{ \begin{array}{c|c} b & a \\ \end{array}, \begin{array}{c} a & b \\ \end{array}, \begin{array}{c} a & c \\ b & c \\ \end{array}, \end{array}, \right\}$$

In this case we have that cert(Q, I) is the following incomplete database:

Thus, for every $D \in \llbracket I \rrbracket$ we know that Q(D) contains at least one tuple

We do not have more information that can be stored in the form of an incomplete database

What is a greatest lower bound of the following set?

$$\left(\begin{array}{c|c} b & a \end{array}, \begin{array}{c} a & b \\ b & c \end{array}, \begin{array}{c} a & c \\ b & c \end{array}, \end{array}\right)$$

In this case we have that cert(Q, I) is the following incomplete database:

Thus, for every $D \in \llbracket I \rrbracket$ we know that Q(D) contains at least one tuple

- We do not have more information that can be stored in the form of an incomplete database
- ▶ The situation will be different if we use conditional tables as we can add the condition $\bot_1 \neq \bot_2$

Can cert(Q, I) be computed?

If Q is a union of conjunctive queries, then cert(Q, I) can be computed by using naïve evaluation

 \triangleright Q is evaluated by treating the nulls in I as constants

Can cert(Q, I) be computed?

If Q is a union of conjunctive queries, then cert(Q, I) can be computed by using naïve evaluation

Q is evaluated by treating the nulls in I as constants

Our research question

How can cert(Q, I) be computed if Q is a union of conjunctive queries with inequalities?

Can cert(Q, I) be computed?

If Q is a union of conjunctive queries, then cert(Q, I) can be computed by using naïve evaluation

Q is evaluated by treating the nulls in I as constants

Our research question

How can cert(Q, I) be computed if Q is a union of conjunctive queries with inequalities?

Can this be done efficiently?

Proposition

Given a union of conjunctive queries with inequalities Q, there exists a double-exponential algorithm that, given an incomplete database I, computes cert(Q, I)

Proposition

Given a union of conjunctive queries with inequalities Q, there exists a double-exponential algorithm that, given an incomplete database I, computes cert(Q, I)

Theorem

There exists a conjunctive query with inequalities Q and a family of incomplete databases $\{I_n\}_{n\geq 0}$

Proposition

Given a union of conjunctive queries with inequalities Q, there exists a double-exponential algorithm that, given an incomplete database I, computes cert(Q, I)

Theorem

There exists a conjunctive query with inequalities Q and a family of incomplete databases $\{I_n\}_{n\geq 0}$ such that the size of the smallest element in $\mathbf{glb}(\{Q(D) \mid D \in \llbracket I_n \rrbracket\})$ grows exponentially in the size of I_n

</i></i></i>

Proposition

Given a union of conjunctive queries with inequalities Q, there exists a double-exponential algorithm that, given an incomplete database I, computes cert(Q, I)

Theorem

There exists a conjunctive query with inequalities Q and a family of incomplete databases $\{I_n\}_{n\geq 0}$ such that the size of the smallest element in $\mathbf{glb}(\{Q(D) \mid D \in \llbracket I_n \rrbracket\})$ grows exponentially in the size of I_n

Therefore, no matter how cert(Q, I_n) is chosen, its size grows exponentially in the size of I_n

Thank you!

Computing cert(Q, I) for queries with inequalities

Let Q be a union of conjunctive queries with inequalities

Computing cert(Q, I) for queries with inequalities

Let Q be a union of conjunctive queries with inequalities

Proposition

For every incomplete database I, there exists $\mathcal{D}_I \subseteq \{Q(D) \mid D \in [I]\}$ such that \mathcal{D}_I is finite and cert(Q, I) is a greatest lower bound of \mathcal{D}_I

Computing cert(Q, I) for queries with inequalities

Let Q be a union of conjunctive queries with inequalities

Proposition

For every incomplete database I, there exists $\mathcal{D}_I \subseteq \{Q(D) \mid D \in [I]\}$ such that \mathcal{D}_I is finite and cert(Q, I) is a greatest lower bound of \mathcal{D}_I

Proof idea: For every null n fix a constant c_n

We only need to consider representations of I where the nulls n occurring in I are replaced by c_n (plus two extra fixed constants)

No new tuples are added

Computing the greatest lower bound of \mathcal{D}_{I}

 $glb(\mathcal{D}_{I})$ can be computed by using a product of instances [HN04,L11,tCD15]

Based on a well-known product of graphs

Computing the greatest lower bound of \mathcal{D}_I

 $\mathbf{glb}(\mathcal{D}_{I})$ can be computed by using a product of instances [HN04,L11,tCD15]

Based on a well-known product of graphs

The product $l_1 \times l_2$ is an incomplete database *I* such that for each relation *R*:

$${{\mathcal R}}^l \hspace{0.1 in} = \hspace{0.1 in} \{({{\mathfrak a}}_1 \times {{\mathfrak b}}_1, \ldots, {{\mathfrak a}}_k \times {{\mathfrak b}}_k) \mid ({{\mathfrak a}}_1, \ldots, {{\mathfrak a}}_k) \in {{\mathcal R}}^{l_1} \hspace{0.1 in} \text{and} \hspace{0.1 in} ({{\mathfrak b}}_1, \ldots, {{\mathfrak b}}_k) \in {{\mathcal R}}^{l_2} \},$$

Computing the greatest lower bound of \mathcal{D}_I

 $\mathbf{glb}(\mathcal{D}_{1})$ can be computed by using a product of instances [HN04,L11,tCD15]

Based on a well-known product of graphs

The product $I_1 \times I_2$ is an incomplete database I such that for each relation R:

$${{\mathcal R}}^l \hspace{0.1 in} = \hspace{0.1 in} \{({{\mathfrak a}}_1 \times {{\mathfrak b}}_1, \ldots, {{\mathfrak a}}_k \times {{\mathfrak b}}_k) \mid ({{\mathfrak a}}_1, \ldots, {{\mathfrak a}}_k) \in {{\mathcal R}}^{l_1} \hspace{0.1 in} \text{and} \hspace{0.1 in} ({{\mathfrak b}}_1, \ldots, {{\mathfrak b}}_k) \in {{\mathcal R}}^{l_2} \},$$

where for every $a, b \in (Const \cup Null)$:

$$a \times b = \begin{cases} a & \text{if } a = b \\ n_{a,b} & \text{if } a \neq b, \text{ where } n_{a,b} \text{ is a null} \end{cases}$$

<**₽** > 3

Two examples of the product

For one of the examples presented before we have that:

$$b$$
 a \times a b $=$ $n_{b,a}$ $n_{a,b}$

Two examples of the product

For one of the examples presented before we have that:

Two examples of the product

For one of the examples presented before we have that:

A more involved example:

Computing cert(Q, I) for queries with inequalities (cont'd)

Let Q be a union of conjunctive queries with inequalities

Proposition

For every incomplete database I, it holds that cert(Q,I) can be computed as $\prod \mathcal{D}_I$

How good is the solution?

 \mathcal{D}_I can contain an exponential number of complete databases

This number is exponential in the size of I (the query Q is assumed to be fixed)

How good is the solution?

 \mathcal{D}_I can contain an exponential number of complete databases

This number is exponential in the size of I (the query Q is assumed to be fixed)

Hence, $\prod D_I$ can be of double-exponential size in the size of I

Bibliography

- [HN04] Pavol Hell and Jaroslav Nesetril. *Graphs and Homomorphisms*. Oxford University Press, 2004.
- [L11] Leonid Libkin. Incomplete information and certain answers in general data models. In PODS 2011.
- [L16] Leonid Libkin. Certain answers as objects and knowledge. Artificial Intelligence 232:1?19, 2016.
- [tCD15] Balder ten Cate and V Dalmau. *The product homomorphism problem and applications*. In ICDT 2015.