A note on computing certain answers to queries over incomplete databases

Marcelo Arenas ${ }^{1} \quad$ Elena Botoeva ${ }^{2}$
Egor V. Kostylev ${ }^{3}$ Vladislav Ryzhikov ${ }^{2}$
${ }^{1}$ Pontificia Universidad Católica de Chile
${ }^{2}$ Free University of Bozen-Bolzan
${ }^{3}$ University of Oxford

Complete and incomplete databases

A complete database:

Employee	name	salary
	Elena	110 K
	John	70 K
	Ringo	80 K

Complete and incomplete databases

A complete database:

Employee	name	salary
	Elena	110 K
	John	70 K
	Ringo	80 K

Incomplete databases:

Employee	name	salary
	Elena	110 K
	John	\perp_{1}
	80 K	

Employee	name	salary
	Elena	110 K
	John	\perp_{1}
	Ringo	\perp_{1}

Complete and incomplete databases

Fix a set Const of constants and a set Null of nulls

In an incomplete database / each k-ary relation is a finite subset of $(\text { Const } \cup \text { Null) })^{k}$

- adom (I) is the set of constants and nulls occurring in I
- If adom $(I) \subseteq$ Const, then I is said to be a complete database

Complete and incomplete databases

Fix a set Const of constants and a set Null of nulls

In an incomplete database / each k-ary relation is a finite subset of $(\text { Const } \cup \text { Null) })^{k}$

- adom (I) is the set of constants and nulls occurring in I
- If adom $(I) \subseteq$ Const, then I is said to be a complete database

We use $I, I_{1}, I^{\prime}, \ldots$ to denote an incomplete database, and D, D_{1}, D^{\prime},
... to denote a complete database

The semantics of an incomplete database

The semantics of an incomplete database I is defined in terms of its representations

- A representation is a complete database that is considered as possible interpretation of I

The semantics of an incomplete database

The semantics of an incomplete database I is defined in terms of its representations

- A representation is a complete database that is considered as possible interpretation of I

To construct a representation of I we need to assign constants to the nulls occurring in /

The semantics of an incomplete database

The semantics of an incomplete database I is defined in terms of its representations

- A representation is a complete database that is considered as possible interpretation of I

To construct a representation of I we need to assign constants to the nulls occurring in I

- A valuation of I is a function $v: \operatorname{adom}(I) \rightarrow$ Const that is the identity on Const(I)

The representations of an incomplete database under the open-world assumption

Definition

The set of representations of I is defined as:

$$
\llbracket 1 \rrbracket=\{D \mid D \text { is a complete database and }
$$

$v(I) \subseteq D$ for some valuation v of $I\}$

Some examples of representations

name	salary
Elena	110 K
John	\perp_{1}
\perp_{2}	80 K

Some examples of representations

name	salary		
Elena	110 K		
John	\perp_{1}		
\perp_{2}	80 K	$\quad \Longrightarrow \quad$	$v\left(\perp_{1}\right)=120 \mathrm{~K}$
:---			
$v\left(\perp_{2}\right)=$ Paul			

Some examples of representations

name	salary		
Elena	110 K		
John	\perp_{1}		
\perp_{2}	80 K	$\mathrm{l} \Longrightarrow$	$v\left(\perp_{1}\right)=120 \mathrm{~K}$
:---			
$v\left(\perp_{2}\right)=$ Paul	\Longrightarrow	name	salary
:---	:---		
Elena	110 K		
John	120 K		
Paul	80 K		

Some examples of representations

name	salary		
Elena	110 K		
John	\perp_{1}		
\perp_{2}	80 K	$\mathrm{l} \Longrightarrow$	$v\left(\perp_{1}\right)=120 \mathrm{~K}$
:---			
$v\left(\perp_{2}\right)=$ Paul	\Longrightarrow	name	salary
:---	:---		
Elena	110 K		
John	120 K		
Paul	80 K		

$$
\Longrightarrow \quad \begin{aligned}
\quad v\left(\perp_{1}\right) & =120 \mathrm{~K} \\
v\left(\perp_{2}\right) & =\text { Paul }
\end{aligned}
$$

Some examples of representations

Some examples of representations

name	salary
Elena	110 K
John	\perp_{1}
Ringo	\perp_{1}

Some examples of representations

name	salary
Elena	110 K
John	\perp_{1}
Ringo	\perp_{1}

Some examples of representations

name	salary			
Elena	110 K			
John	\perp_{1}			
Ringo	\perp_{1}	$\quad \Longrightarrow \quad v\left(\perp_{1}\right)=120 \mathrm{~K} \quad \Longrightarrow$	name	salary
:---	:---			
Elena	110 K			
John	120 K			
Ringo	120 K			

Some examples of representations

name	salary			
Elena John Ringo	110 K \perp_{1} \perp_{1}	$\Longrightarrow \quad v\left(\perp_{1}\right)=120 \mathrm{~K} \quad \Longrightarrow$	name	salary
:---:	:---:			
Elena John Ringo	110 K 120 K 120 K			
	$\Longrightarrow \quad v\left(\perp_{1}\right)=140 \mathrm{~K}$			

Some examples of representations

name	salary			
Elena	110 K			
John	\perp_{1}			
Ringo	\perp_{1}	$\quad \Longrightarrow \quad v\left(\perp_{1}\right)=120 \mathrm{~K} \quad \Longrightarrow \quad$	name	salary
:---	:---			
Elena	110 K			
John	120 K			
Ringo	120 K			

$$
\begin{array}{|l|l|}
\hline \text { name } & \text { salary } \\
\hline \text { Elena } & 110 \mathrm{~K} \\
\text { John } & 140 \mathrm{~K} \\
\text { Ringo } & 140 \mathrm{~K} \\
\text { Paul } & 110 \mathrm{~K} \\
\text { George } & 80 \mathrm{~K} \\
\hline
\end{array}
$$

Query answering over incomplete databases

A query Q is a function that assigns to each complete database D a complete database $Q(D)$

Query answering over incomplete databases

A query Q is a function that assigns to each complete database D a complete database $Q(D)$

To define the semantics of a query over an incomplete database we need to introduce some fundamental notions

Comparing the amount of information of incomplete databases

I_{2} is at least as informative as I_{1} if $\llbracket I_{2} \rrbracket \subseteq \llbracket I_{1} \rrbracket$

- I is more informative if it has less representations [L16]

We use notation $I_{1} \preceq I_{2}$ to indicate that I_{2} is at least as informative as I_{1}

An order on incomplete databases

We have that:

name	salary
Elena	110 K
John	\perp_{1}
Ringo	\perp_{2}

$\preceq \quad$| name | salary |
| :--- | :--- |
| Elena | 110 K |
| John | \perp_{3} |
| Ringo | \perp_{3} |

An order on incomplete databases

We have that:

name	salary
Elena	110 K
John	\perp_{1}
Ringo	\perp_{2}

$\preceq \quad$| name | salary |
| :--- | :--- |
| Elena | 110 K |
| John | \perp_{3} |
| Ringo | \perp_{3} |

Since:

The notion of greatest lower bound

Definition

Let \mathcal{I} be a set of incomplete databases

The notion of greatest lower bound

Definition

Let \mathcal{I} be a set of incomplete databases

- I is a lower bound for \mathcal{I} if $I \preceq I^{\prime}$ for every $I^{\prime} \in \mathcal{I}$

The notion of greatest lower bound

Definition

Let \mathcal{I} be a set of incomplete databases

- I is a lower bound for \mathcal{I} if $I \preceq I^{\prime}$ for every $I^{\prime} \in \mathcal{I}$
- I is a greatest lower bound for \mathcal{I} if I is a lower bound for \mathcal{I} and for every lower bound I^{\prime} for \mathcal{I}, it holds that $I^{\prime} \preceq I$

The notion of greatest lower bound

Definition

Let \mathcal{I} be a set of incomplete databases

- I is a lower bound for \mathcal{I} if $I \preceq I^{\prime}$ for every $I^{\prime} \in \mathcal{I}$
- I is a greatest lower bound for \mathcal{I} if I is a lower bound for \mathcal{I} and for every lower bound I^{\prime} for \mathcal{I}, it holds that $I^{\prime} \preceq I$

The set of all greatest lower bounds of \mathcal{I} is denoted by $\operatorname{glb}(\mathcal{I})$

The notion of certain answer as object

Definition (Certain answer as object [L16])
I^{\star} is a certain answer as object to Q over I if

The notion of certain answer as object

Definition (Certain answer as object [L16])
I^{\star} is a certain answer as object to Q over I if

$$
I^{\star} \in \operatorname{glb}(\{Q(D) \mid D \in \llbracket I \rrbracket\})
$$

The notion of certain answer as object

Definition (Certain answer as object [L16])

I^{\star} is a certain answer as object to Q over I if

$$
I^{\star} \in \operatorname{glb}(\{Q(D) \mid D \in \llbracket I \rrbracket\})
$$

Two greatest lower bounds I_{1}, I_{2} of $\{Q(D) \mid D \in \llbracket I \rrbracket\}$ are equivalent in terms of the information ordering: $I_{1} \preceq I_{2}$ and $I_{2} \preceq I_{1}$

- We choose any greatest lower bound of $\{Q(D) \mid D \in \llbracket I \rrbracket\}$, and we talk about the certain answer to Q over I, which is denoted by $\operatorname{cert}(Q, I)$

Certain answers: a first example

Consider the query $Q(x, y)=R(x, y) \wedge x \neq y$ over the following incomplete database I:

R		
	a	\perp_{1}

Certain answers: a first example

Consider the query $Q(x, y)=R(x, y) \wedge x \neq y$ over the following incomplete database I:

R		
	a	\perp_{1}

We obtain the following answers over the representations of I:

Certain answers: a first example

Consider the query $Q(x, y)=R(x, y) \wedge x \neq y$ over the following incomplete database I:

R		
	a	\perp_{1}

We obtain the following answers over the representations of I :

Certain answers: a first example

Consider the query $Q(x, y)=R(x, y) \wedge x \neq y$ over the following incomplete database I:

R		
	a	\perp_{1}

We obtain the following answers over the representations of I :

Certain answers: a first example

Consider the query $Q(x, y)=R(x, y) \wedge x \neq y$ over the following incomplete database I:

R		
	a	\perp_{1}

We obtain the following answers over the representations of I :

Certain answers: a first example

Consider the query $Q(x, y)=R(x, y) \wedge x \neq y$ over the following incomplete database I:

R		
	a	\perp_{1}

We obtain the following answers over the representations of I :

Thus, we have that $\operatorname{cert}(Q, I)$ is the empty instance

Certain answers: a second example

Consider the same query $Q(x, y)=R(x, y) \wedge x \neq y$ but now over the following incomplete database I:

R		
	a	\perp_{1}
	b	\perp_{1}

Certain answers: a second example

Consider the same query $Q(x, y)=R(x, y) \wedge x \neq y$ but now over the following incomplete database I:

R		
	a	\perp_{1}
	b	\perp_{1}

We obtain the following answers over the representations of I :

Certain answers: a second example

Consider the same query $Q(x, y)=R(x, y) \wedge x \neq y$ but now over the following incomplete database I:

R		
	a	\perp_{1}
	b	\perp_{1}

We obtain the following answers over the representations of I:

R		
	a	a
	b	a

R		
	a	b
	b	b

R		
	a	c
	b	c

Certain answers: a second example

Consider the same query $Q(x, y)=R(x, y) \wedge x \neq y$ but now over the following incomplete database I :

R		
	a	\perp_{1}
	b	\perp_{1}

We obtain the following answers over the representations of I:

R					
	a	a			
b	a		$\quad \Longrightarrow \quad$	b	a
:---	:---				

R		
	a	b
	b	b

R		
	a	c
	b	c

Certain answers: a second example

Consider the same query $Q(x, y)=R(x, y) \wedge x \neq y$ but now over the following incomplete database I :

R		
	a	\perp_{1}
	b	\perp_{1}

We obtain the following answers over the representations of I:

R		
	a	a
	b	a

R		
	a	b
	b	b

R		
	a	c
	b	c

Certain answers: a second example

Consider the same query $Q(x, y)=R(x, y) \wedge x \neq y$ but now over the following incomplete database I :

R		
	a	\perp_{1}
	b	\perp_{1}

We obtain the following answers over the representations of I:

R		
	a	a
	b	a

R		
	a	b
	b	b

R		
	a	c
	b	c

\Longrightarrow

Certain answers: a second example

What is a greatest lower bound of the following set?

$$
\left\{\begin{array}{|l|l|}
\hline b & a \\
\hline & \begin{array}{|l|l|l|}
\hline a & b \\
\hline
\end{array}, \begin{array}{|l|l}
\hline a & c \\
b & c \\
\hline
\end{array}, \\
\hline
\end{array}\right\}
$$

Certain answers: a second example

What is a greatest lower bound of the following set?

$$
\left\{\begin{array}{|l|l|l|}
\hline b & a \\
\hline & \begin{array}{|l|l|l|}
\hline a & b \\
\hline
\end{array} & \begin{array}{|ll}
a & c \\
b & c
\end{array} \\
\hline
\end{array}\right\}
$$

In this case we have that $\operatorname{cert}(Q, I)$ is the following incomplete database:

$$
\begin{array}{|l|l|}
\hline \perp_{1} & \perp_{2} \\
\hline
\end{array}
$$

Certain answers: a second example

What is a greatest lower bound of the following set?

$$
\left\{\begin{array}{|l|l|l|l|}
\hline b & a \\
\hline
\end{array}, \begin{array}{|l|l|l|}
\hline a & b \\
b & c \\
\hline
\end{array}, \quad \cdots\right\}
$$

In this case we have that $\operatorname{cert}(Q, I)$ is the following incomplete database:

$$
\begin{array}{|c|c|}
\hline \perp_{1} & \perp_{2} \\
\hline
\end{array}
$$

Thus, for every $D \in \llbracket I \rrbracket$ we know that $Q(D)$ contains at least one tuple

- We do not have more information that can be stored in the form of an incomplete database

Certain answers: a second example

What is a greatest lower bound of the following set?

$$
\left\{\begin{array}{|l|l|}
\hline b & a \\
\hline
\end{array} \quad \begin{array}{|l|l|}
\hline a & b \\
\hline
\end{array}, \begin{array}{|l|l|}
\hline a & c \\
b & c \\
\hline
\end{array}, \quad \cdots\right\}
$$

In this case we have that $\operatorname{cert}(Q, I)$ is the following incomplete database:

$$
\begin{array}{|c|c|}
\hline \perp_{1} & \perp_{2} \\
\hline
\end{array}
$$

Thus, for every $D \in \llbracket I \rrbracket$ we know that $Q(D)$ contains at least one tuple

- We do not have more information that can be stored in the form of an incomplete database
- The situation will be different if we use conditional tables as we can add the condition $\perp_{1} \neq \perp_{2}$

Can $\operatorname{cert}(Q, I)$ be computed?

If Q is a union of conjunctive queries, then $\operatorname{cert}(Q, I)$ can be computed by using naïve evaluation

- Q is evaluated by treating the nulls in $/$ as constants

Can $\operatorname{cert}(Q, I)$ be computed?

If Q is a union of conjunctive queries, then $\operatorname{cert}(Q, I)$ can be computed by using naïve evaluation

- Q is evaluated by treating the nulls in I as constants

Our research question

How can $\operatorname{cert}(Q, I)$ be computed if Q is a union of conjunctive queries with inequalities?

Can $\operatorname{cert}(Q, I)$ be computed?

If Q is a union of conjunctive queries, then $\operatorname{cert}(Q, I)$ can be computed by using naïve evaluation

- Q is evaluated by treating the nulls in I as constants

Our research question

How can $\operatorname{cert}(Q, I)$ be computed if Q is a union of conjunctive queries with inequalities?

- Can this be done efficiently?

Take-home message: there is no efficient algorithm

Take-home message: there is no efficient algorithm

Proposition

Given a union of conjunctive queries with inequalities Q, there exists a double-exponential algorithm that, given an incomplete database I, computes $\operatorname{cert}(Q, I)$

Take-home message: there is no efficient algorithm

Proposition

Given a union of conjunctive queries with inequalities Q, there exists a double-exponential algorithm that, given an incomplete database I, computes $\operatorname{cert}(Q, I)$

Theorem

There exists a conjunctive query with inequalities Q and a family of incomplete databases $\left\{I_{n}\right\}_{n \geq 0}$

Take-home message: there is no efficient algorithm

Proposition

Given a union of conjunctive queries with inequalities Q, there exists a double-exponential algorithm that, given an incomplete database I, computes $\operatorname{cert}(Q, I)$

Theorem

There exists a conjunctive query with inequalities Q and a family of incomplete databases $\left\{I_{n}\right\}_{n \geq 0}$ such that the size of the smallest element in $\mathbf{g l b}\left(\left\{Q(D) \mid D \in \llbracket I_{n} \rrbracket\right\}\right)$ grows exponentially in the size of I_{n}

Take-home message: there is no efficient algorithm

Proposition

Given a union of conjunctive queries with inequalities Q, there exists a double-exponential algorithm that, given an incomplete database I, computes $\operatorname{cert}(Q, I)$

Theorem

There exists a conjunctive query with inequalities Q and a family of incomplete databases $\left\{I_{n}\right\}_{n \geq 0}$ such that the size of the smallest element in $\boldsymbol{g l b}\left(\left\{Q(D) \mid D \in \llbracket I_{n} \rrbracket\right\}\right)$ grows exponentially in the size of I_{n}

- Therefore, no matter how $\operatorname{cert}\left(Q, I_{n}\right)$ is chosen, its size grows exponentially in the size of I_{n}

Thank you!

Computing $\operatorname{cert}(Q, I)$ for queries with inequalities

Let Q be a union of conjunctive queries with inequalities

Computing $\operatorname{cert}(Q, I)$ for queries with inequalities

Let Q be a union of conjunctive queries with inequalities

Proposition

For every incomplete database I, there exists $\mathcal{D}_{I} \subseteq\{Q(D) \mid D \in \llbracket I \rrbracket\}$ such that $\mathcal{D}_{\text {I }}$ is finite and $\operatorname{cert}(Q, I)$ is a greatest lower bound of $\mathcal{D}_{\text {I }}$

Computing $\operatorname{cert}(Q, I)$ for queries with inequalities

Let Q be a union of conjunctive queries with inequalities

Proposition

For every incomplete database I, there exists $\mathcal{D}_{I} \subseteq\{Q(D) \mid D \in \llbracket I \rrbracket\}$ such that $\mathcal{D}_{\text {I }}$ is finite and $\operatorname{cert}(Q, I)$ is a greatest lower bound of \mathcal{D}_{I}

Proof idea: For every null n fix a constant c_{n}
We only need to consider representations of I where the nulls n occurring in I are replaced by c_{n} (plus two extra fixed constants)

- No new tuples are added

Computing the greatest lower bound of $\mathcal{D}_{\text {I }}$

$\mathbf{g l b}\left(\mathcal{D}_{1}\right)$ can be computed by using a product of instances [HN04,L11,tCD15]

- Based on a well-known product of graphs

Computing the greatest lower bound of \mathcal{D}_{l}

$\mathbf{g l b}\left(\mathcal{D}_{1}\right)$ can be computed by using a product of instances [HN04,L11,tCD15]

- Based on a well-known product of graphs

The product $I_{1} \times I_{2}$ is an incomplete database I such that for each relation R :

$$
R^{\prime}=\left\{\left(a_{1} \times b_{1}, \ldots, a_{k} \times b_{k}\right) \mid\left(a_{1}, \ldots, a_{k}\right) \in R^{1_{1}} \text { and }\left(b_{1}, \ldots, b_{k}\right) \in R^{1_{2}}\right\}
$$

Computing the greatest lower bound of \mathcal{D}_{l}

$\mathbf{g l b}\left(\mathcal{D}_{1}\right)$ can be computed by using a product of instances [HN04,L11,tCD15]

- Based on a well-known product of graphs

The product $I_{1} \times I_{2}$ is an incomplete database I such that for each relation R :

$$
R^{\prime}=\left\{\left(a_{1} \times b_{1}, \ldots, a_{k} \times b_{k}\right) \mid\left(a_{1}, \ldots, a_{k}\right) \in R^{1_{1}} \text { and }\left(b_{1}, \ldots, b_{k}\right) \in R^{1_{2}}\right\}
$$

where for every $a, b \in($ Const \cup Null $)$:

$$
a \times b= \begin{cases}a & \text { if } a=b \\ n_{a, b} & \text { if } a \neq b, \text { where } n_{a, b} \text { is a null }\end{cases}
$$

Two examples of the product

For one of the examples presented before we have that:

$$
\begin{array}{|l|l|}
\hline b & a \\
\hline
\end{array} \times \begin{array}{|l|l|}
\hline a & b \\
\hline
\end{array}
$$

Two examples of the product

For one of the examples presented before we have that:

$$
\begin{array}{|l|l|}
\hline b & a \\
\hline
\end{array} \times \begin{array}{|l|l|}
\hline a & b \\
\hline
\end{array}=\begin{array}{|l|l|}
\hline n_{b, a} & n_{a, b} \\
\hline
\end{array}=\begin{array}{|l|l|}
\hline & \perp_{2} \\
\hline
\end{array}
$$

Two examples of the product

For one of the examples presented before we have that:

| b | a |
| :--- | :--- |\times| a | b |
| :--- | :--- |$=$| $n_{b, a}$ | $n_{a, b}$ |
| :--- | :--- | :--- |

A more involved example:

Computing $\operatorname{cert}(Q, I)$ for queries with inequalities (cont'd)

Let Q be a union of conjunctive queries with inequalities

Proposition

For every incomplete database I, it holds that $\mathbf{\operatorname { c e r t }}(Q, I)$ can be computed as $\prod \mathcal{D}_{1}$

How good is the solution?

\mathcal{D}_{1} can contain an exponential number of complete databases

- This number is exponential in the size of I (the query Q is assumed to be fixed)

How good is the solution?

\mathcal{D}_{I} can contain an exponential number of complete databases

- This number is exponential in the size of I (the query Q is assumed to be fixed)

Hence, $\prod \mathcal{D}$ I can be of double-exponential size in the size of $/$

Bibliography

[HN04] Pavol Hell and Jaroslav Nesetril. Graphs and Homomorphisms. Oxford University Press, 2004.
[L11] Leonid Libkin. Incomplete information and certain answers in general data models. In PODS 2011.
[L16] Leonid Libkin. Certain answers as objects and knowledge. Artificial Intelligence 232:1?19, 2016.
[tCD15] Balder ten Cate and V Dalmau. The product homomorphism problem and applications. In ICDT 2015.

