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Semantic Web

“The Semantic Web is an extension of the current web in which
information is given well-defined meaning, better enabling
computers and people to work in cooperation.”

[Tim Berners-Lee et al. 2001.]

Specific Goals:

◮ Build a description language with standard semantics

◮ Make semantics machine-processable and understandable

◮ Incorporate logical infrastructure to reason about resources

◮ W3C Proposal: Resource Description Framework (RDF)
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RDF in a nutshell

◮ RDF is the W3C proposal framework for representing
information in the Web

◮ Abstract syntax based on directed labeled graph

◮ Schema definition language (RDFS): Define new vocabulary
(typing, inheritance of classes and properties)

◮ Extensible URI-based vocabulary

◮ Formal semantics

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 3 / 108



RDF formal model

Subject Object
Predicate

LB

U

U UB

U = set of Uris

B = set of Blank nodes

L = set of Literals
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Subject Object
Predicate

LB

U

U UB

U = set of Uris

B = set of Blank nodes

L = set of Literals

(s, p, o) ∈ (U ∪ B)× U × (U ∪ B ∪ L) is called an RDF triple

A set of RDF triples is called an RDF graph
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RDF formal model

Proviso

In this talk, we do distinguish between URIs and literals.
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RDF formal model

Proviso

In this talk, we do distinguish between URIs and literals.

◮ (s, p, o) ∈ (U ∪ B)× U × (U ∪ B) is called an RDF triple.

◮ The inclusion of L does not change any of the results
presented in this talk.
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RDF: An example

country

works in

rdf:sp

person

sportman

soccer player

rdf:sc

rdf:sc

rdf:dom

rdf:dom rdf:range

rdf:range

Barcelona

plays in

plays in

soccer team

company

rdf:typerdf:type

rdf:sc

Messi

SpainB

address
lives in
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Why is RDF interesting from a database point of view?

Some new challenges:

◮ Existential variables as datavalues (null values)

◮ Built-in vocabulary with fixed semantics (RDFS)

◮ Graph model where nodes may also be edge labels

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 7 / 108



Why is RDF interesting from a database point of view?

Some new challenges:

◮ Existential variables as datavalues (null values)

◮ Built-in vocabulary with fixed semantics (RDFS)

◮ Graph model where nodes may also be edge labels

Why are database technologies interesting from an RDF point of
view?
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Some new challenges:

◮ Existential variables as datavalues (null values)

◮ Built-in vocabulary with fixed semantics (RDFS)

◮ Graph model where nodes may also be edge labels

Why are database technologies interesting from an RDF point of
view?

◮ RDF data processing can take advantage of database
techniques: Query processing, storing, indexing, . . .
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Previous example: A better representation
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M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 8 / 108



Previous example: A better representation

Messi

works in

rdf:sp

person

sportman

soccer player

rdf:sc

rdf:sc

rdf:dom

rdf:dom rdf:range

rdf:range

Barcelona

plays in soccer team

company

rdf:typerdf:type

rdf:sc

SpainB

lives in

country

address
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First part: Ground RDF without RDFS vocabulary

SPARQL: A query language for RDF

◮ Syntax and formal semantics

◮ Complexity of the evaluation problem

◮ Optimization methods

◮ Expressiveness
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Querying RDF: SPARQL

◮ SPARQL is the W3C recommendation query language for
RDF (January 2008).

◮ SPARQL is a recursive acronym that stands for SPARQL
Protocol and RDF Query Language.

◮ SPARQL is a graph-matching query language.

◮ A SPARQL query consists of three parts:

◮ Pattern matching: optional, union, nesting, filtering.
◮ Solution modifiers: projection, distinct, order, limit, offset.
◮ Output part: construction of new triples, . . ..

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 11 / 108



SPARQL in a nutshell

SELECT ?Name ?Email

WHERE

{

?X :name ?Name

?X :email ?Email

}
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SPARQL in a nutshell

SELECT ?Name ?Email

WHERE

{

?X :name ?Name

?X :email ?Email

}

In general, in a query we have:

H ←

◮ Head: processing of some variables.
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SPARQL in a nutshell

SELECT ?Name ?Email

WHERE

{

?X :name ?Name

?X :email ?Email

}

In general, in a query we have:

H ← P

◮ Head: processing of some variables.

◮ Body: pattern matching expression.

We focus on P .
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But things can become more complex ...

Interesting features of pattern
matching on graphs

◮ Grouping

◮ Optional parts

◮ Nesting

◮ Union of patterns

◮ Filtering

{ P1

P2 }
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{ { P1

P2

OPTIONAL { P5 } }

{ P3
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}
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{ P9

FILTER ( R ) }
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A formal study of SPARQL

Why is this needed?

◮ Clarifying corner cases

◮ Eliminating ambiguities

◮ Helping in the implementation process
◮ Understanding the resources (time/space) needed to

implement SPARQL

◮ Understanding what can/cannot be expressed
◮ Discovering what needs to be added (aggregation, navigational

capabilities, recursion, . . .)
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A standard algebraic syntax

◮ Triple patterns: just triples + variables, without blanks

?X :name "john" (?X , name, john)

◮ Graph patterns: full parenthesized algebra

{ P1 P2 } (P1 AND P2 )

{ P1 OPTIONAL { P2 }} (P1 OPT P2 )

{ P1 } UNION { P2 } (P1 UNION P2 )

{ P1 FILTER ( R ) } (P1 FILTER R )

original SPARQL syntax algebraic syntax
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A standard algebraic syntax

◮ Explicit precedence/association

Example

{ t1

t2

OPTIONAL { t3 }

OPTIONAL { t4 }

t5

}

( ( ( ( t1 AND t2 ) OPT t3 ) OPT t4 ) AND t5 )
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Mappings: building block for the semantics

Definition

A mapping is a partial function from variables to RDF terms.

µ : Variables −→ U

The evaluation of a pattern results in a set of mappings.
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The semantics of triple patterns

Given an RDF graph G and a triple pattern t.

Definition

The evaluation of t over G is the set of mappings µ that:
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Compatible mappings

Definition

Mappings µ1 and µ2 are compatible if they agree in their common
variables:

If ?X ∈ dom(µ1) ∩ dom(µ2), then µ1(?X ) = µ2(?X ).

Example

?X ?Y ?Z ?V
µ1 : R1 john
µ2 : R1 J@edu.ex
µ3 : P@edu.ex R2
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Compatible mappings

Definition

Mappings µ1 and µ2 are compatible if they agree in their common
variables:

If ?X ∈ dom(µ1) ∩ dom(µ2), then µ1(?X ) = µ2(?X ).

Example

?X ?Y ?Z ?V
µ1 : R1 john
µ2 : R1 J@edu.ex
µ3 : P@edu.ex R2

µ1 ∪ µ2 : R1 john J@edu.ex
µ1 ∪ µ3 : R1 john P@edu.ex R2

◮ µ2 and µ3 are not compatible
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Sets of mappings and operations

Let Ω1 and Ω2 be sets of mappings.

Definition
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Sets of mappings and operations

Let Ω1 and Ω2 be sets of mappings.

Definition

Join: extends mappings in Ω1 with compatible mappings in Ω2

◮ Ω1 Ω2 = {µ1 ∪ µ2 | µ1 ∈ Ω1, µ2 ∈ Ω2 and µ1, µ2 are
compatible}
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Sets of mappings and operations

Let Ω1 and Ω2 be sets of mappings.

Definition

Join: extends mappings in Ω1 with compatible mappings in Ω2

◮ Ω1 Ω2 = {µ1 ∪ µ2 | µ1 ∈ Ω1, µ2 ∈ Ω2 and µ1, µ2 are
compatible}

Difference: selects mappings in Ω1 that cannot be extended with
mappings in Ω2

◮ Ω1 r Ω2 = {µ1 ∈ Ω1 | there is no mapping in Ω2 compatible
with µ1}
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Sets of mappings and operations

Definition

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 21 / 108



Sets of mappings and operations

Definition

Union: includes mappings in Ω1 and in Ω2

◮ Ω1 ∪ Ω2 = {µ | µ ∈ Ω1 or µ ∈ Ω2}
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Sets of mappings and operations

Definition

Union: includes mappings in Ω1 and in Ω2

◮ Ω1 ∪ Ω2 = {µ | µ ∈ Ω1 or µ ∈ Ω2}

Left Outer Join: extends mappings in Ω1 with compatible
mappings in Ω2 if possible

◮ Ω1 Ω2 = (Ω1 Ω2) ∪ (Ω1 r Ω2)
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Semantics of SPARQL

Given an RDF graph G .

Definition

JtKG =

JP1 AND P2KG =

JP1 UNION P2KG =

JP1 OPT P2KG =
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M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 22 / 108



Semantics of SPARQL

Given an RDF graph G .

Definition

JtKG = {µ | dom(µ) = var(t) and µ(t) ∈ G}

JP1 AND P2KG = JP1KG JP2KG

JP1 UNION P2KG = JP1KG ∪ JP2KG

JP1 OPT P2KG = JP1KG JP2KG
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Semantics of SPARQL: An example

Example

(R1, name, john)
(R1, email, J@ed.ex)
(R2, name, paul)

( (?X , name, ?Y ) OPT (?X , email, ?E ) )
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Semantics of SPARQL: An example
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R2 paul

?X ?E
R1 J@ed.ex

◮ from the Join
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Semantics of SPARQL: An example

Example

(R1, name, john)
(R1, email, J@ed.ex)
(R2, name, paul)

( (?X , name, ?Y ) OPT (?X , email, ?E ) )

?X ?Y
R1 john
R2 paul

?X ?Y ?E
R1 john J@ed.ex
R2 paul

?X ?E
R1 J@ed.ex

◮ from the Difference
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Semantics of SPARQL: An example

Example

(R1, name, john)
(R1, email, J@ed.ex)
(R2, name, paul)

( (?X , name, ?Y ) OPT (?X , email, ?E ) )

?X ?Y
R1 john
R2 paul

?X ?Y ?E
R1 john J@ed.ex
R2 paul

?X ?E
R1 J@ed.ex

◮ from the Union
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Filter expressions (value constraints)

Filter expression: P FILTER R

◮ P is a graph pattern

◮ R is a built-in condition

We consider in R :

◮ equality = among variables and RDF terms

◮ unary predicate bound

◮ boolean combinations (∧, ∨, ¬)

We impose a safety condition: var(R) ⊆ var(P)
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Satisfaction of value constraints

A mapping µ satisfies a condition R (µ |= R) if:
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Satisfaction of value constraints

A mapping µ satisfies a condition R (µ |= R) if:

◮ R is ?X = c , ?X ∈ dom(µ) and µ(?X ) = c ;

◮ R is ?X =?Y , ?X , ?Y ∈ dom(µ) and µ(?X ) = µ(?Y );

◮ R is bound(?X ) and ?X ∈ dom(µ);

◮ R is ¬R1 and µ 6|= R1;

◮ R is R1 ∨ R2, and µ |= R1 or µ |= R2;
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Satisfaction of value constraints

A mapping µ satisfies a condition R (µ |= R) if:

◮ R is ?X = c , ?X ∈ dom(µ) and µ(?X ) = c ;

◮ R is ?X =?Y , ?X , ?Y ∈ dom(µ) and µ(?X ) = µ(?Y );

◮ R is bound(?X ) and ?X ∈ dom(µ);

◮ R is ¬R1 and µ 6|= R1;

◮ R is R1 ∨ R2, and µ |= R1 or µ |= R2;

◮ R is R1 ∧ R2, µ |= R1 and µ |= R2.
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Satisfaction of value constraints

A mapping µ satisfies a condition R (µ |= R) if:

◮ R is ?X = c , ?X ∈ dom(µ) and µ(?X ) = c ;

◮ R is ?X =?Y , ?X , ?Y ∈ dom(µ) and µ(?X ) = µ(?Y );

◮ R is bound(?X ) and ?X ∈ dom(µ);

◮ R is ¬R1 and µ 6|= R1;

◮ R is R1 ∨ R2, and µ |= R1 or µ |= R2;

◮ R is R1 ∧ R2, µ |= R1 and µ |= R2.

Definition

FILTER : selects mappings that satisfy a condition

JP FILTER RKG = {µ ∈ JPKG | µ |= R}
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First part: Ground RDF without RDFS vocabulary

SPARQL: A query language for RDF

◮ Syntax and formal semantics

◮ Complexity of the evaluation problem

◮ Optimization methods

◮ Expressiveness
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The evaluation problem

Input:

A mapping µ, a graph pattern P , and an RDF graph G

Question:

Does µ belong to the evaluation of P over G?

Does µ ∈ JPKG?
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The evaluation problem

Input:

A mapping µ, a graph pattern P , and an RDF graph G

Question:

Does µ belong to the evaluation of P over G?

Does µ ∈ JPKG?

We study the combined complexity of the evaluation problem.

◮ µ, P and G are part of the input.
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Evaluation of simple patterns is polynomial

Theorem (PAG06)

For patterns using only AND and FILTER operators (AND-FILTER
expressions), the evaluation problem is polynomial:

O(size of the pattern × size of the graph).
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Evaluation of simple patterns is polynomial

Theorem (PAG06)

For patterns using only AND and FILTER operators (AND-FILTER
expressions), the evaluation problem is polynomial:

O(size of the pattern × size of the graph).

Proof sketch
◮ Check that the mapping makes every triple to match.

◮ Then check that the mapping satisfies the FILTERs.
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Evaluation including UNION is NP-complete

Theorem (PAG06)

The evaluation problem is NP-complete for AND-FILTER-UNION
expressions.
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Evaluation including UNION is NP-complete

Theorem (PAG06)

The evaluation problem is NP-complete for AND-FILTER-UNION
expressions.

Proof sketch of hardness
◮ Reduction from 3SAT.

◮ ¬ bound is used to verify that a satisfying truth assignment is
well defined.
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Evaluation including UNION is NP-complete: Idea of the

reduction

Let ϕ = (q ∨ r ∨ ¬s) ∧ (¬q ∨ r ∨ ¬t)

We construct a mapping µ, a graph pattern P and an RDF graph
G such that:

ϕ is satisfiable iff µ ∈ JPKG

G is defined as {(1, is, true)}

P includes the variables ?Q, ?Q, ?R , ?R, ?S , ?S , ?T and ?T .

◮ µ(?Q) = 1 indicates that q is assigned value true,

◮ µ(?Q) = 1 indicates that ¬q is assigned value true.

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 30 / 108



Evaluation including UNION is NP-complete: Idea of the

reduction

Thus, the following pattern Pϕ almost does the job.
[

(?Q, is, true) UNION (?R , is, true) UNION (?S , is, true)

]

AND

[

(?Q, is, true) UNION (?R , is, true) UNION (?T , is, true)

]

Why does it fail?
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]

AND

[

(?Q, is, true) UNION (?R , is, true) UNION (?T , is, true)

]

Why does it fail?

◮ It can assign value 1 to ?Q and ?Q.
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Evaluation including UNION is NP-complete: Idea of the

reduction

Thus, the following pattern Pϕ almost does the job.
[

(?Q, is, true) UNION (?R , is, true) UNION (?S , is, true)

]

AND

[

(?Q, is, true) UNION (?R , is, true) UNION (?T , is, true)

]

Why does it fail?

◮ It can assign value 1 to ?Q and ?Q.

Solution: consider the following condition R :

(¬ bound(?Q) ∨ ¬ bound(?Q)) ∧ (¬ bound(?R) ∨ ¬ bound(?R)) ∧

(¬ bound(?S) ∨ ¬ bound(?S)) ∧ (¬ bound(?T ) ∨ ¬ bound(?T ))
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Evaluation including UNION is NP-complete: Idea of the

reduction

Then (Pϕ FILTER R) does the job.

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 32 / 108



Evaluation including UNION is NP-complete: Idea of the

reduction

Then (Pϕ FILTER R) does the job.

◮ But how do we define µ?
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Evaluation including UNION is NP-complete: Idea of the

reduction

Then (Pϕ FILTER R) does the job.

◮ But how do we define µ?

Final step: define P as:
[

(?Q, is, true) AND (?Q, is, true) AND (?R , is, true) AND

(?R , is, true) AND (?S , is, true) AND (?S , is, true) AND

(?T , is, true) AND (?T , is, true)

]

AND

[

Pϕ FILTER R

]

and µ as:
?Q ?Q ?R ?R ?S ?S ?T ?T

1 1 1 1 1 1 1 1
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In general: Evaluation problem is PSPACE-complete

Theorem (PAG06)

For general patterns that include OPT operator, the evaluation
problem is PSPACE-complete.
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Theorem (PAG06)

For general patterns that include OPT operator, the evaluation
problem is PSPACE-complete.

Can we evaluate SPARQL queries in practice efficiently?
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In general: Evaluation problem is PSPACE-complete

Theorem (PAG06)

For general patterns that include OPT operator, the evaluation
problem is PSPACE-complete.

Can we evaluate SPARQL queries in practice efficiently?

◮ We need to understand how the complexity depends on the
operators of SPARQL.
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A simple normal from

Proposition (UNION Normal Form)

Every graph pattern is equivalent to one of the form

P1 UNION P2 UNION · · · UNION Pn

where each Pi is UNION–free.
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A simple normal from

Proposition (UNION Normal Form)

Every graph pattern is equivalent to one of the form

P1 UNION P2 UNION · · · UNION Pn

where each Pi is UNION–free.

Graph pattern expressions are usually in this normal form.

Corollary

The evaluation problem is polynomial for AND-FILTER-UNION
expressions in the UNION normal form.
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PSPACE-completeness: A stronger lower bound

Theorem (PAG06)

The evaluation problem remains PSPACE-complete for
AND-FILTER-OPT expressions.
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PSPACE-completeness: A stronger lower bound

Theorem (PAG06)

The evaluation problem remains PSPACE-complete for
AND-FILTER-OPT expressions.

Proof sketch of hardness
◮ Reduction from QBF: A pattern encodes a quantified

propositional formula

∀x1∃y1∀x2∃y2 · · ·ψ.
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PSPACE-completeness: A stronger lower bound

Theorem (PAG06)

The evaluation problem remains PSPACE-complete for
AND-FILTER-OPT expressions.

Proof sketch of hardness
◮ Reduction from QBF: A pattern encodes a quantified

propositional formula

∀x1∃y1∀x2∃y2 · · ·ψ.

◮ Nested OPTs are used to encode quantifier alternation.
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PSPACE-hardness: A closer look

Assume ϕ = ∀x1∃y1 ψ, where ψ = (x1 ∨ ¬y1) ∧ (¬x1 ∨ y1).

We generate G , Pϕ and µ0 such that µ0 belongs to the answer of
Pϕ over G iff ϕ is valid:

G :

Rψ :

Pψ :

Pϕ :

µ0 :
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Assume ϕ = ∀x1∃y1 ψ, where ψ = (x1 ∨ ¬y1) ∧ (¬x1 ∨ y1).

We generate G , Pϕ and µ0 such that µ0 belongs to the answer of
Pϕ over G iff ϕ is valid:

G : {(a, tv, 0), (a, tv, 1), (a, false, 0), (a, true, 1)}
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We generate G , Pϕ and µ0 such that µ0 belongs to the answer of
Pϕ over G iff ϕ is valid:

G : {(a, tv, 0), (a, tv, 1), (a, false, 0), (a, true, 1)}

Rψ : ((?X1 = 1∨ ?Y1 = 0) ∧ (?X1 = 0∨ ?Y1 = 1))

Pψ : (((a, tv, ?X1) AND (a, tv, ?Y1)) FILTER Rψ)

Pϕ :
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We generate G , Pϕ and µ0 such that µ0 belongs to the answer of
Pϕ over G iff ϕ is valid:

G : {(a, tv, 0), (a, tv, 1), (a, false, 0), (a, true, 1)}

Rψ : ((?X1 = 1∨ ?Y1 = 0) ∧ (?X1 = 0∨ ?Y1 = 1))
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PSPACE-hardness: A closer look

Assume ϕ = ∀x1∃y1 ψ, where ψ = (x1 ∨ ¬y1) ∧ (¬x1 ∨ y1).

We generate G , Pϕ and µ0 such that µ0 belongs to the answer of
Pϕ over G iff ϕ is valid:

G : {(a, tv, 0), (a, tv, 1), (a, false, 0), (a, true, 1)}

Rψ : ((?X1 = 1∨ ?Y1 = 0) ∧ (?X1 = 0∨ ?Y1 = 1))

Pψ : (((a, tv, ?X1) AND (a, tv, ?Y1)) FILTER Rψ)

Pϕ : (a, true, ?B0) OPT (P1 OPT (Q1 AND Pψ))

µ0 : {?B0 7→ 1}

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 36 / 108



PSPACE-hardness: A closer look

ϕ : ∀x1∃y1 (x1 ∨ ¬y1) ∧ (¬x1 ∨ y1)
Pψ : (((a, tv, ?X1) AND (a, tv, ?Y1)) FILTER

((?X1 = 1∨ ?Y1 = 0) ∧ (?X1 = 0∨ ?Y1 = 1)))
Pϕ : (a, true, ?B0) OPT (P1 OPT (Q1 AND Pψ))
P1 : (a, tv, ?X1)
Q1 : (a, tv, ?X1) AND (a, tv, ?Y1) AND (a, false, ?B0)
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PSPACE-hardness: A closer look

ϕ : ∀x1∃y1 (x1 ∨ ¬y1) ∧ (¬x1 ∨ y1)
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Q1 : (a, tv, ?X1) AND (a, tv, ?Y1) AND (a, false, ?B0)

P1

?B0 7→ 1

?X1 7→ 0 ?Y1 7→ i ?B0 7→ 0

?X1 7→ 1 ?Y1 7→ j ?B0 7→ 0

Q1

?X1 7→ 0

?X1 7→ 1
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What is the source of the high complexity?

Theorem (SML08)

The evaluation problem remains PSPACE-complete for OPT
expressions

The use of the OPT operator makes the evaluation problem
harder.

◮ How can we deal with this operator? How can we reduce the
complexity?
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What is the source of the high complexity?

Theorem (SML08)

The evaluation problem remains PSPACE-complete for OPT
expressions

The use of the OPT operator makes the evaluation problem
harder.

◮ How can we deal with this operator? How can we reduce the
complexity?

◮ The formal study has some interesting practical implications.
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AND-FILTER-OPT fragment: Reducing the complexity

Patterns in our reduction (and in [SML08]) are not very natural:

(a, true, ?B0) OPT (P1 OPT (Q1 AND Pψ))
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AND-FILTER-OPT fragment: Reducing the complexity
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↑
?B0
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AND-FILTER-OPT fragment: Reducing the complexity

Patterns in our reduction (and in [SML08]) are not very natural:

(a, true, ?B0) OPT (P1 OPT (Q1 AND Pψ))

↑ ↑ ↑
?B0 × ?B0
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AND-FILTER-OPT fragment: Reducing the complexity

Patterns in our reduction (and in [SML08]) are not very natural:

(a, true, ?B0) OPT (P1 OPT (Q1 AND Pψ))

↑ ↑ ↑
?B0 × ?B0

Is ?B0 giving optional information for P1?
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AND-FILTER-OPT fragment: Reducing the complexity

Patterns in our reduction (and in [SML08]) are not very natural:

(a, true, ?B0) OPT (P1 OPT (Q1 AND Pψ))

↑ ↑ ↑
?B0 × ?B0

Is ?B0 giving optional information for P1?

◮ No, ?B0 is giving optional information for (a, true, ?B0)?
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AND-FILTER-OPT fragment: Reducing the complexity

Patterns in our reduction (and in [SML08]) are not very natural:

(a, true, ?B0) OPT (P1 OPT (Q1 AND Pψ))

↑ ↑ ↑
?B0 × ?B0

Is ?B0 giving optional information for P1?

◮ No, ?B0 is giving optional information for (a, true, ?B0)?

These patterns rarely occur in practice.
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Well–designed patterns

Definition

An AND-FILTER-OPT pattern is well–designed if for every OPT in
the pattern:

( · · · · · · · · · · · · ( A OPT B ) · · · · · · · · · · · · )

if a variable occurs inside B and anywhere outside the OPT
operator, then the variable must also occur inside A.
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Well–designed patterns

Definition

An AND-FILTER-OPT pattern is well–designed if for every OPT in
the pattern:

( · · · · · · · · · · · · ( A OPT B ) · · · · · · · · · · · · )
↑ ↑ ↑ ↑

if a variable occurs inside B and anywhere outside the OPT
operator, then the variable must also occur inside A.

Example
(

(?Y , name, paul) OPT (?X , email, ?Z )

)
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AND-FILTER-OPT fragment: Reducing the complexity

Theorem (PAG09)

The evaluation problem is coNP-complete for well-designed
AND-FILTER-OPT patterns.
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First step: Prove that if P ′ is obtained by removing some optional
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AND-FILTER-OPT fragment: Reducing the complexity

Theorem (PAG09)

The evaluation problem is coNP-complete for well-designed
AND-FILTER-OPT patterns.

Proof sketch of membership

First step: Prove that if P ′ is obtained by removing some optional
parts of P , then P ′ cannot be more informative than P .

◮ This holds for well-designed patterns.

◮ This does not hold in general: G = {(1, a, b), (2, c, d)} and

(?X , a, b) OPT ((?Y , c, d) OPT (?X , c, d))
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AND-FILTER-OPT fragment: Reducing the complexity

Notation:
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AND-FILTER-OPT fragment: Reducing the complexity

Notation:

◮ µ ⊑ µ′: µ and µ′ are compatible and dom(µ) ⊆ dom(µ′)

◮ Ω ⊑ Ω′: for every µ ∈ Ω, there exists µ′ ∈ Ω′ s.t. µ ⊑ µ′

◮ P ′ is a reduction of P : P ′ can be obtained from P by
replacing a sub-formula (P1 OPT P2) of P by P1

P = (t1 OPT t2) AND (t2 OPT (t3 AND t4))

P ′ = t1 AND (t2 OPT (t3 AND t4))
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AND-FILTER-OPT fragment: Reducing the complexity

◮ E: Reflexive and transitive closure of the reduction relation
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AND-FILTER-OPT fragment: Reducing the complexity

◮ E: Reflexive and transitive closure of the reduction relation

P = (t1 OPT t2) AND (t2 OPT (t3 AND t4))

P ′ = t1 AND (t2 OPT (t3 AND t4))

P ′′ = t1 AND t2

Proposition

If P is a UNION-free well-designed graph pattern and P ′ E P, then
JP ′KG ⊑ JPKG for every graph G.
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AND-FILTER-OPT fragment: Reducing the complexity

Second step: Prove that the “compatible” information is not lost
by an OPT operator

◮ Again this holds for well-designed patterns.
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AND-FILTER-OPT fragment: Reducing the complexity

Second step: Prove that the “compatible” information is not lost
by an OPT operator

◮ Again this holds for well-designed patterns.

More notation:

◮ and(P): replace OPT by AND in P

P = (t1 OPT t2) AND (t2 OPT (t3 AND t4))

and(P) = (t1 AND t2) AND (t2 AND (t3 AND t4))

◮ µ is a partial solution for P over G : there exists P ′ E P s.t.
µ ∈ Jand(P ′)KG .
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AND-FILTER-OPT fragment: Reducing the complexity

Let P be a UNION-free well-designed graph pattern and G an
RDF graph.

Proposition

µ ∈ JPKG if and only if µ is a maximal (w.r.t. ⊑) partial solution
for P over G .
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AND-FILTER-OPT fragment: Reducing the complexity

Let P be a UNION-free well-designed graph pattern and G an
RDF graph.

Proposition

µ ∈ JPKG if and only if µ is a maximal (w.r.t. ⊑) partial solution
for P over G .

Third step: Show that it can be decided in polynomial time
whether µ is a partial solution for P over G
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AND-FILTER-OPT fragment: Reducing the complexity

Last step: Combine all the previous results

To verify whether µ 6∈ JPKG :

(1) Check whether µ is not a partial solution for P over G .
◮ If this is the case, then return true, else go to (2).

(2) Guess a mapping µ′ such that µ ⊑ µ′ and µ′ 6⊑ µ.

(2.1) If µ′ is a partial solution for P over G , then return true.
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A corollary of the previous result

Corollary

The evaluation problem is coNP-complete for patterns of the form
P1 UNION P2 UNION · · · UNION Pk , where each Pi is a
well-designed AND-FILTER-OPT pattern.
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A corollary of the previous result

Corollary

The evaluation problem is coNP-complete for patterns of the form
P1 UNION P2 UNION · · · UNION Pk , where each Pi is a
well-designed AND-FILTER-OPT pattern.

Can we use this in practice?

◮ Well-designed patterns are suitable for optimization.
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First part: Ground RDF without RDFS vocabulary

SPARQL: A query language for RDF

◮ Syntax and formal semantics

◮ Complexity of the evaluation problem

◮ Optimization methods

◮ Expressiveness
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Classical optimization

◮ Classical optimization assumes null-rejection.
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Classical optimization

◮ Classical optimization assumes null-rejection.
◮ Null-rejection: the join/outer–join condition must fail in the

presence of nulls.

◮ SPARQL operations are not null-rejecting.
◮ By definition of compatible mappings.

◮ Can we use classical optimization in the context of SPARQL?
◮ Well-designed patterns are suitable for reordering, and then for

classical optimization.
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Well–designed graph patterns and optimization

Consider the following rules:

((P1 OPT P2) FILTER R) −→ ((P1 FILTER R) OPT P2) (1)

(P1 AND (P2 OPT P3)) −→ ((P1 AND P2) OPT P3) (2)

((P1 OPT P2) AND P3) −→ ((P1 AND P3) OPT P2) (3)

Proposition

If P is a well-designed pattern and Q is obtained from P by
applying either (1) or (2) or (3), then Q is a well-designed pattern
equivalent to P.
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Well–designed graph patterns and optimization

A graph pattern P is in OPT normal form if there exist
AND-FILTER patterns Q1, . . ., Qk such that:

P is constructed from Q1, . . ., Qk by using only the OPT operator.
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Well–designed graph patterns and optimization

A graph pattern P is in OPT normal form if there exist
AND-FILTER patterns Q1, . . ., Qk such that:

P is constructed from Q1, . . ., Qk by using only the OPT operator.

Theorem (PAG06)

Every well-designed pattern is equivalent to a pattern in OPT
normal form.
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Well–designed graph patterns and optimization

Previous theorem suggests a strategy for evaluating a well-designed
pattern P .

◮ Transform P into an equivalent pattern Q in OPT normal form, and
then evaluate Q.
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◮ Transform P into an equivalent pattern Q in OPT normal form, and
then evaluate Q.

Why this could be a good approach?

◮ FILTER should be applied as soon as possible.

◮ AND is better as a filter than OPT:
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Well–designed graph patterns and optimization

Previous theorem suggests a strategy for evaluating a well-designed
pattern P .

◮ Transform P into an equivalent pattern Q in OPT normal form, and
then evaluate Q.

Why this could be a good approach?

◮ FILTER should be applied as soon as possible.

◮ AND is better as a filter than OPT:

JP1 AND P2KG ⊆ JP1 OPT P2KG .

An experimental evaluation is needed.

◮ The final strategy will probably have to consider alternative
re-orderings (not always the OPT normal form).
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First part: Ground RDF without RDFS vocabulary

SPARQL: A query language for RDF

◮ Syntax and formal semantics

◮ Complexity of the evaluation problem

◮ Optimization methods

◮ Expressiveness
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Is SPARQL expressive enough?

How do we study the expressive power of a language?
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Is SPARQL expressive enough?

How do we study the expressive power of a language?

◮ How do we prove that a language has a good expressive
power?

One alternative: Compare it with a well-known language

◮ Relational Algebra is a very good alternative

◮ We show that SPARQL and Relational Algebra have the same
expressive power
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But not so fast ...

We first have to say over which class of structure we compare
Relational Algebra with SPARQL.
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But not so fast ...

We first have to say over which class of structure we compare
Relational Algebra with SPARQL.

◮ Conditional XPath is the same as FO over trees [M04]

We use the following relational schema:

◮ triple(·, ·, ·)

◮ N(·): It only contains value null

Every RDF graph G can be naturally translated into an instance IG
over this schema.
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But not so fast ...

We use a language that has the same expressive power as
Relational Algebra: nr-Datalog¬
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R(U,V ) ← Q(U,Z ),Q(Z ,V )

Last point: It is easy to prove that

Answer(X ) ← triple(X ,Y ,Z )

is not equivalent to any SPARQL graph pattern.
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But not so fast ...

We use a language that has the same expressive power as
Relational Algebra: nr-Datalog¬

Answer(X ) ← Q(X ,Y ),Y = a,¬R(Y ,Y )

R(U,V ) ← Q(U,Z ),Q(Z ,V )

Last point: It is easy to prove that

Answer(X ) ← triple(X ,Y ,Z )

is not equivalent to any SPARQL graph pattern.

◮ We need to consider the SELECT operator
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SPARQL SELECT language

A SPARQL SELECT query is a tuple (W ,P):

◮ P is an SPARQL graph pattern

◮ W is subset of var(P)
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SPARQL SELECT language

A SPARQL SELECT query is a tuple (W ,P):

◮ P is an SPARQL graph pattern

◮ W is subset of var(P)

Notation: µ|W is the restriction of µ to W

◮ dom(µ|W ) = dom(µ) ∩W , and µ|W (?X ) = µ(?X ) for every
?X ∈ dom(µ) ∩W
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SPARQL SELECT language

A SPARQL SELECT query is a tuple (W ,P):

◮ P is an SPARQL graph pattern

◮ W is subset of var(P)

Notation: µ|W is the restriction of µ to W

◮ dom(µ|W ) = dom(µ) ∩W , and µ|W (?X ) = µ(?X ) for every
?X ∈ dom(µ) ∩W

Definition

Given an RDF graph G :

J(W ,P)KG = {µ|W | µ ∈ JPKG}
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SPARQL SELECT ⊆ nr-Datalog¬

Theorem (AG08)

Every query expressible in SPARQL SELECT is expressible in
nr-Datalog¬.
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SPARQL SELECT ⊆ nr-Datalog¬

Theorem (AG08)

Every query expressible in SPARQL SELECT is expressible in
nr-Datalog¬.

Example

((?X , a, b) OPT (?X , c , ?Z )) is equivalent to:

Answer(X ,Z ) ← triple(X , a, b), triple(X , c ,Z )

Answer(X ,Z ) ← triple(X , a, b),N(Z ),¬q(X )

q(X ) ← triple(X , c ,V )
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nr-Datalog¬ ⊆ SPARQL SELECT

Theorem (AG08)

Every query over {triple} expressible in nr-Datalog¬ is expressible
in SPARQL SELECT.
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nr-Datalog¬ ⊆ SPARQL SELECT

Theorem (AG08)

Every query over {triple} expressible in nr-Datalog¬ is expressible
in SPARQL SELECT.

But SPARQL SELECT is so positive!
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nr-Datalog¬ ⊆ SPARQL SELECT

Theorem (AG08)

Every query over {triple} expressible in nr-Datalog¬ is expressible
in SPARQL SELECT.

But SPARQL SELECT is so positive!

◮ Difference operator is definable in SPARQL!
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MINUS operator

Let MINUS be defined as:

JP1 MINUS P2KG = JP1KG r JP2KG
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MINUS operator

Let MINUS be defined as:

JP1 MINUS P2KG = JP1KG r JP2KG

Proposition

(P1 MINUS P2) is equivalent to:

(

P1 OPT (P2 AND (?X1, ?X2, ?X3))

)

FILTER ¬ bound(?X1),

where ?X1, ?X2, ?X3 are mentioned neither in P1 nor in P2.
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SPARQL SELECT ⊆ nr-Datalog¬: Example

Consider the following nr-Datalog¬ program:

Answer(X ) ← triple(X , a, b),¬q(X )

q(X ) ← triple(X , c ,Y ), triple(Y , c ,Z )
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SPARQL SELECT ⊆ nr-Datalog¬: Example

Consider the following nr-Datalog¬ program:

Answer(X ) ← triple(X , a, b),¬q(X )

q(X ) ← triple(X , c ,Y ), triple(Y , c ,Z )

This program is equivalent to:

(?X , a, b) MINUS

(

(?X , c , ?Y ) AND (?Y , c , ?Z )

)
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Second part: Ground RDF with RDFS vocabulary

◮ Syntax and formal semantics

◮ Querying RDFS data

◮ nSPARQL: A navigational query language for RDFS

◮ Expressiveness

◮ Complexity of the evaluation problem
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Syntax of RDFS

RDFS extends RDF with a schema vocabulary: subPropertyOf
(rdf:sp), subClassOf (rdf:sc), domain (rdf:dom), range
(rdf:range), type (rdf:type).
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Syntax of RDFS

RDFS extends RDF with a schema vocabulary: subPropertyOf
(rdf:sp), subClassOf (rdf:sc), domain (rdf:dom), range
(rdf:range), type (rdf:type).

How can one query RDFS data?

◮ Evaluating queries which involve this vocabulary is
challenging.

◮ There is not yet consensus in the Semantic Web community
on how to define a query language for RDFS.
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A simple SPARQL query: (Messi, rdf:type, person)

lives in

works in

rdf:sp

person

sportman

soccer player

rdf:sc

rdf:sc

rdf:dom

rdf:dom rdf:range

rdf:range

Barcelona

plays in soccer team

company

rdf:typerdf:type

rdf:sc

Messi

Spain
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Semantics of RDFS

Checking whether a triple t is in a graph G is the basic step when
answering queries over RDF.

◮ For the case of RDFS, we need to check whether t is implied by G .

The notion of entailment in RDFS can be defined in terms of
classical notions such as model, interpretation, etc.

◮ As for the case of first-order logic

This notion can also be characterized by a set of inference rules.
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An inference system for RDFS

Inference rule:
R
R ′

◮ R and R ′ are sequences of RDF triples including symbols A,
X , . . ., to be replaced by elements from U.

Instantiation of a rule:
σ(R)
σ(R ′)

◮ σ : {A,X , . . .} → U

Application of a rule
R
R ′

to an RDF graph G :

◮ Select an assignment σ : {A,X , . . .} → U.

◮ if σ(R) ⊆ G , then obtain G ∪ σ(R ′)
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An inference system for RDFS

Sub-property :
(A,rdf:sp,B) (B,rdf:sp,C)

(A,rdf:sp,C)

(A,rdf:sp,B) (X ,A,Y)
(X ,B,Y)

Subclass :
(A,rdf:sc,B) (B,rdf:sc,C)

(A,rdf:sc,C)

(A,rdf:sc,B) (X ,rdf:type,A)
(X ,rdf:type,B)

Typing :
(A,rdf:dom,B) (X ,A,Y)

(X ,rdf:type,B)

(A,rdf:range,B) (X ,A,Y)
(Y,rdf:type,B)
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Entailment in RDFS

Theorem (H03,GHM04,MPG07)

The previous system of inference rules characterize the notion of
entailment in ground RDFS.

Thus, a triple t can be deduced from an RDF graph G (G |= t) if
there exists an RDF G ′ such that:

◮ t ∈ G ′

◮ G ′ can be obtained from G by successively applying the rules
in the previous system.
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Entailment in RDFS: Closure of a graph

Definition

The closure of an RDFS graph G (cl(G )) is the graph obtained by
adding to G all the triples that are implied by G .

A basic property of the closure:

◮ G |= t iff t ∈ cl(G )
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Second part: Ground RDF with RDFS vocabulary

◮ Syntax and formal semantics

◮ Querying RDFS data

◮ nSPARQL: A navigational query language for RDFS

◮ Expressiveness

◮ Complexity of the evaluation problem
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Querying RDFS data

Basic step for answering queries over RDFS:

◮ Checking whether a triple t is in cl(G ).
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Querying RDFS data

Basic step for answering queries over RDFS:

◮ Checking whether a triple t is in cl(G ).

Definition

The RDFS-evaluation of a graph pattern P over an RDFS graph G
is defined as the evaluation of P over cl(G ):

JPKrdfs
G = JPKcl(G)
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Example: (Messi, rdf:type, person) over the closure

Messi

works in

rdf:sp

person

sportman

soccer player

rdf:sc

rdf:sc

rdf:dom

rdf:dom rdf:range

rdf:range

Barcelona

plays in soccer team

company

rdf:typerdf:type

rdf:sc

rdf:type

rdf:sc

rdf:type

Spain

lives in
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Answering SPARQL queries over RDFS

A simple approach for answering a SPARQL query P over an
RDFS graph G :

◮ Compute cl(G ), and then evaluate P over cl(G ) as for RDF.
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Answering SPARQL queries over RDFS

A simple approach for answering a SPARQL query P over an
RDFS graph G :
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This approach has some drawbacks:
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RDFS graph G :

◮ Compute cl(G ), and then evaluate P over cl(G ) as for RDF.

This approach has some drawbacks:

◮ The size of the closure of G can be quadratic in the size of G .

◮ Once the closure has been computed, all the queries are evaluated
over a graph which can be much larger than the original graph.
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Answering SPARQL queries over RDFS

A simple approach for answering a SPARQL query P over an
RDFS graph G :

◮ Compute cl(G ), and then evaluate P over cl(G ) as for RDF.

This approach has some drawbacks:

◮ The size of the closure of G can be quadratic in the size of G .

◮ Once the closure has been computed, all the queries are evaluated
over a graph which can be much larger than the original graph.

◮ The approach is not goal-oriented.

When evaluating (a, rdf:sc, b), a goal-oriented approach should
not compute cl(G):

◮ It should just verify whether there exists a path from a to b in
G where every edge has label rdf:sc.
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Extending SPARQL with navigational capabilities

The example (a, rdf:sc, b) suggests that a query language with
navigational capabilities could be appropriate for RDFS.
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◮ A query P over an RDFS graph G is answered by navigating G
(cl(G) is not computed).
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Extending SPARQL with navigational capabilities

The example (a, rdf:sc, b) suggests that a query language with
navigational capabilities could be appropriate for RDFS.

Possible approach: Extend SPARQL with navigational capabilities.

◮ A query P over an RDFS graph G is answered by navigating G
(cl(G) is not computed).

This approach has some advantages:

◮ It is goal-oriented.

◮ It has been used to design query languages for XML (e.g., XPath
and XQuery). The results for these languages can be used here.
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Extending SPARQL with navigational capabilities

The example (a, rdf:sc, b) suggests that a query language with
navigational capabilities could be appropriate for RDFS.

Possible approach: Extend SPARQL with navigational capabilities.

◮ A query P over an RDFS graph G is answered by navigating G
(cl(G) is not computed).

This approach has some advantages:

◮ It is goal-oriented.

◮ It has been used to design query languages for XML (e.g., XPath
and XQuery). The results for these languages can be used here.

◮ Navigational operators allow to express natural queries that are not
expressible in SPARQL over RDFS.
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Navigational axes

Forward axes for an RDF triple (a, p, b):

next

ba

p

edge node

Backward axes for an RDF triple (a, p, b):

p

a b

next-1

node-1edge-1
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A first attempt: rSPARQL

Syntax of navigational expressions:

exp := self | self::a | axis |

axis::a | exp/exp | exp|exp | exp∗

where a ∈ U and axis ∈ {next, next-1, edge, edge-1, node,
node-1}.
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A first attempt: rSPARQL

Given an RDFS graph G , the semantics of navigational expressions
is defined as follows:
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A first attempt: rSPARQL

Given an RDFS graph G , the semantics of navigational expressions
is defined as follows:

JselfKG = {(x , x) | x is in G}
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A first attempt: rSPARQL

Given an RDFS graph G , the semantics of navigational expressions
is defined as follows:

JselfKG = {(x , x) | x is in G}
JnextKG = {(x , y) | ∃z ∈ U (x , z , y) ∈ G}
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A first attempt: rSPARQL

Given an RDFS graph G , the semantics of navigational expressions
is defined as follows:

JselfKG = {(x , x) | x is in G}
JnextKG = {(x , y) | ∃z ∈ U (x , z , y) ∈ G}
JedgeKG = {(x , y) | ∃z ∈ U (x , y , z) ∈ G}
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A first attempt: rSPARQL

Given an RDFS graph G , the semantics of navigational expressions
is defined as follows:

JselfKG = {(x , x) | x is in G}
JnextKG = {(x , y) | ∃z ∈ U (x , z , y) ∈ G}
JedgeKG = {(x , y) | ∃z ∈ U (x , y , z) ∈ G}

Jself::aKG = {(a, a)}
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A first attempt: rSPARQL

Given an RDFS graph G , the semantics of navigational expressions
is defined as follows:
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JnextKG = {(x , y) | ∃z ∈ U (x , z , y) ∈ G}
JedgeKG = {(x , y) | ∃z ∈ U (x , y , z) ∈ G}

Jself::aKG = {(a, a)}
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A first attempt: rSPARQL

Given an RDFS graph G , the semantics of navigational expressions
is defined as follows:

JselfKG = {(x , x) | x is in G}
JnextKG = {(x , y) | ∃z ∈ U (x , z , y) ∈ G}
JedgeKG = {(x , y) | ∃z ∈ U (x , y , z) ∈ G}

Jself::aKG = {(a, a)}
Jnext::aKG = {(x , y) | (x , a, y) ∈ G}
Jedge::aKG = {(x , y) | (x , y , a) ∈ G}
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A first attempt: rSPARQL

Given an RDFS graph G , the semantics of navigational expressions
is defined as follows:

JselfKG = {(x , x) | x is in G}
JnextKG = {(x , y) | ∃z ∈ U (x , z , y) ∈ G}
JedgeKG = {(x , y) | ∃z ∈ U (x , y , z) ∈ G}

Jself::aKG = {(a, a)}
Jnext::aKG = {(x , y) | (x , a, y) ∈ G}
Jedge::aKG = {(x , y) | (x , y , a) ∈ G}

Jexp1/exp2KG = {(x , y) | ∃z (x , z) ∈ Jexp1KG and
(z , y) ∈ Jexp2KG}
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A first attempt: rSPARQL

Given an RDFS graph G , the semantics of navigational expressions
is defined as follows:

JselfKG = {(x , x) | x is in G}
JnextKG = {(x , y) | ∃z ∈ U (x , z , y) ∈ G}
JedgeKG = {(x , y) | ∃z ∈ U (x , y , z) ∈ G}

Jself::aKG = {(a, a)}
Jnext::aKG = {(x , y) | (x , a, y) ∈ G}
Jedge::aKG = {(x , y) | (x , y , a) ∈ G}

Jexp1/exp2KG = {(x , y) | ∃z (x , z) ∈ Jexp1KG and
(z , y) ∈ Jexp2KG}

Jexp1|exp2KG = Jexp1KG ∪ Jexp2KG
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A first attempt: rSPARQL

Given an RDFS graph G , the semantics of navigational expressions
is defined as follows:

JselfKG = {(x , x) | x is in G}
JnextKG = {(x , y) | ∃z ∈ U (x , z , y) ∈ G}
JedgeKG = {(x , y) | ∃z ∈ U (x , y , z) ∈ G}

Jself::aKG = {(a, a)}
Jnext::aKG = {(x , y) | (x , a, y) ∈ G}
Jedge::aKG = {(x , y) | (x , y , a) ∈ G}

Jexp1/exp2KG = {(x , y) | ∃z (x , z) ∈ Jexp1KG and
(z , y) ∈ Jexp2KG}

Jexp1|exp2KG = Jexp1KG ∪ Jexp2KG

Jexp∗KG = JselfKG ∪ JexpKG ∪ Jexp/expKG ∪
Jexp/exp/expKG ∪ · · ·
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A first attempt: rSPARQL

Syntax of rSPARQL:

◮ Basic component: A triple of the form (x , exp, y)

◮ exp is a navigational expression
◮ x (resp. y) is either an element from U or a variable

◮ Operators: AND, FILTER, UNION and OPT
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A first attempt: rSPARQL

Syntax of rSPARQL:

◮ Basic component: A triple of the form (x , exp, y)

◮ exp is a navigational expression
◮ x (resp. y) is either an element from U or a variable

◮ Operators: AND, FILTER, UNION and OPT

Triple (?X , ?Y , ?Z ) is not allowed.
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A first attempt: rSPARQL

Syntax of rSPARQL:

◮ Basic component: A triple of the form (x , exp, y)

◮ exp is a navigational expression
◮ x (resp. y) is either an element from U or a variable

◮ Operators: AND, FILTER, UNION and OPT

Triple (?X , ?Y , ?Z ) is not allowed.

◮ It computes the closure!
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rSPARQL: What can we express?

Example
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rSPARQL: What can we express?

Example

◮ (Messi, next::lives in, Spain): Equivalent to SPARQL
pattern (Messi, lives in, Spain)
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rSPARQL: What can we express?

Example

◮ (Messi, next::lives in, Spain): Equivalent to SPARQL
pattern (Messi, lives in, Spain)

◮ (?X , edge::a, ?Y ): Equivalent to SPARQL pattern
(?X , ?Y , a)
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rSPARQL: What can we express?

Example

◮ (Messi, next::lives in, Spain): Equivalent to SPARQL
pattern (Messi, lives in, Spain)

◮ (?X , edge::a, ?Y ): Equivalent to SPARQL pattern
(?X , ?Y , a)

◮ (?X , node::a, ?Y ): Equivalent to SPARQL pattern
(a, ?X , ?Y )
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rSPARQL: What can we express?

Example

◮ (Messi, next::lives in, Spain): Equivalent to SPARQL
pattern (Messi, lives in, Spain)

◮ (?X , edge::a, ?Y ): Equivalent to SPARQL pattern
(?X , ?Y , a)

◮ (?X , node::a, ?Y ): Equivalent to SPARQL pattern
(a, ?X , ?Y )

◮ (?X , (next::(rdf:sc))+, ?Y ): Verifies whether ?X is a
subclass of ?Y .
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A first attempt: rSPARQL

Semantics of rSPARQL: Evaluation of t = (?X , exp, ?Y ) over an
RDF graph G is the set of mappings µ such that:
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A first attempt: rSPARQL

Semantics of rSPARQL: Evaluation of t = (?X , exp, ?Y ) over an
RDF graph G is the set of mappings µ such that:

◮ The domain of µ is {?X , ?Y }, and
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A first attempt: rSPARQL

Semantics of rSPARQL: Evaluation of t = (?X , exp, ?Y ) over an
RDF graph G is the set of mappings µ such that:

◮ The domain of µ is {?X , ?Y }, and

◮ (µ(?X ), µ(?Y )) ∈ JexpKG
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A first attempt: rSPARQL

Semantics of rSPARQL: Evaluation of t = (?X , exp, ?Y ) over an
RDF graph G is the set of mappings µ such that:

◮ The domain of µ is {?X , ?Y }, and

◮ (µ(?X ), µ(?Y )) ∈ JexpKG

Example

What does (?X , (next::KLM | next::AirFrance)+, ?Y ) represent?
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Is rSPARQL a good language for RDFS?

How do we test whether a language is appropriate for RDFS?

◮ Can we capture SPARQL over RDFS?
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Is rSPARQL a good language for RDFS?

How do we test whether a language is appropriate for RDFS?

◮ Can we capture SPARQL over RDFS?

For every RDFS graph G and SPARQL pattern P , we would like to
find a rSPARQL pattern Q such that:

JPKrdfs
G = JQKG
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Is rSPARQL a good language for RDFS?

How do we test whether a language is appropriate for RDFS?

◮ Can we capture SPARQL over RDFS?

For every RDFS graph G and SPARQL pattern P , we would like to
find a rSPARQL pattern Q such that:

JPKrdfs
G = JQKG

But we trivially fail because of triple (?X , ?Y , ?Z ).
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Is rSPARQL a good language for RDFS?

How do we test whether a language is appropriate for RDFS?

◮ Can we capture SPARQL over RDFS?

For every RDFS graph G and SPARQL pattern P , we would like to
find a rSPARQL pattern Q such that:

JPKrdfs
G = JQKG

But we trivially fail because of triple (?X , ?Y , ?Z ).

◮ We need to use a fragment of SPARQL.
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A good fragment of SPARQL for our study

T : Set of triples (x , y , z) where x ∈ U or y ∈ U or z ∈ U.
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A good fragment of SPARQL for our study

T : Set of triples (x , y , z) where x ∈ U or y ∈ U or z ∈ U.

◮ (?X , a, b), (?X , a, ?Y ) and (?X , ?Y , a)
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A good fragment of SPARQL for our study

T : Set of triples (x , y , z) where x ∈ U or y ∈ U or z ∈ U.

◮ (?X , a, b), (?X , a, ?Y ) and (?X , ?Y , a)

T -SPARQL: Fragment of SPARQL where triple patterns are taken
from T .
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Is rSPARQL a good language for RDFS?

Theorem (PAG08)

There exists a T -SPARQL pattern P for which there is no
rSPARQL pattern Q such that JPKrdfs

G = JQKG for every RDF
graph G.
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Is rSPARQL a good language for RDFS?

Theorem (PAG08)

There exists a T -SPARQL pattern P for which there is no
rSPARQL pattern Q such that JPKrdfs

G = JQKG for every RDF
graph G.

The previous theorem holds even for P = (?X , a, ?Y ):

?Y

a
rdf:sp rdf:sp rdf:sp

?X
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A successful attempt: Adding nesting

How can we capture T -SPARQL over RDFS?
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A successful attempt: Adding nesting

How can we capture T -SPARQL over RDFS?

◮ We adopt the notion of branching from XPath.

Syntax of nested regular expressions:

exp := self | self::a | axis | axis::a |

self::[exp] | axis::[exp] | exp/exp | exp|exp | exp∗

where a ∈ U and axis ∈ {next, next-1, edge, edge-1, node,
node-1}.
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A successful attempt: Adding nesting

Given an RDFS graph G , the semantics of nested regular
expressions is defined as follows:
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A successful attempt: Adding nesting

Given an RDFS graph G , the semantics of nested regular
expressions is defined as follows:

Jnext::[exp]KG = {(x , y) | ∃z ,w ∈ U (x , z , y) ∈ G and
(z ,w) ∈ JexpKG}
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A successful attempt: Adding nesting

Given an RDFS graph G , the semantics of nested regular
expressions is defined as follows:

Jnext::[exp]KG = {(x , y) | ∃z ,w ∈ U (x , z , y) ∈ G and
(z ,w) ∈ JexpKG}

Jedge::[exp]KG = {(x , y) | ∃z ,w ∈ U (x , y , z) ∈ G and
(z ,w) ∈ JexpKG}
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Capturing T -SPARQL over RDFS

nSPARQL: Defined as rSPARQL but replacing navigational
expressions by nested regular expressions.
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Capturing T -SPARQL over RDFS

nSPARQL: Defined as rSPARQL but replacing navigational
expressions by nested regular expressions.

Example

RDFS evaluation of (?X , a, ?Y ) can be obtained by using nSPARQL:

(?X , next::[(next::(rdf:sp))∗/(self::a)], ?Y )

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 87 / 108



Capturing T -SPARQL over RDFS

nSPARQL: Defined as rSPARQL but replacing navigational
expressions by nested regular expressions.

Example

RDFS evaluation of (?X , a, ?Y ) can be obtained by using nSPARQL:

(?X , next::[(next::(rdf:sp))∗/(self::a)], ?Y )

a
rdf:sp rdf:sp rdf:sp

?X
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Capturing T -SPARQL over RDFS

nSPARQL: Defined as rSPARQL but replacing navigational
expressions by nested regular expressions.

Example

RDFS evaluation of (?X , a, ?Y ) can be obtained by using nSPARQL:

(?X , next::[(next::(rdf:sp))∗/(self::a)], ?Y )

?Y

a
rdf:sp rdf:sp rdf:sp

?X
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Second part: Ground RDF with RDFS vocabulary

◮ Syntax and formal semantics

◮ Querying RDFS data

◮ nSPARQL: A navigational query language for RDFS

◮ Expressiveness

◮ Complexity of the evaluation problem
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nSPARQL captures T -SPARQL over RDFS

Theorem (PAG08)

For every T -SPARQL pattern P, there exists an nSPARQL pattern
Q such that JPKrdfs

G = JQKG for every RDF graph G.
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nSPARQL captures T -SPARQL over RDFS

Theorem (PAG08)

For every T -SPARQL pattern P, there exists an nSPARQL pattern
Q such that JPKrdfs

G = JQKG for every RDF graph G.

Proof sketch

Replace (?X , a, ?Y ) by (?X , trans(a), ?Y ), where:

trans(rdf:dom) = next::(rdf:dom)
trans(rdf:range) = next::(rdf:range)
trans(rdf:sc) = (next::(rdf:sc))+

trans(rdf:sp) = (next::(rdf:sp))+
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nSPARQL: Capturing SPARQL over RDFS

trans(rdf:type) =

next::(rdf:type)/(next::(rdf:sc))∗ |

edge/(next::(rdf:sp))∗/next::(rdf:dom)/(next::(rdf:sc))∗ |

node-1/(next::(rdf:sp))∗/next::(rdf:range)/(next::(rdf:sc))∗

trans(p) = next::[(next::(rdf:sp))∗/self::p]

for p /∈ {rdf:sc, rdf:sp, rdf:range, rdf:dom, rdf:type}
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The extra expressive power of nSPARQL

A

CalaisParis Dover London

B C

train ferry

rdf:sp rdf:sp rdf:sp

rdf:sp rdf:sprdf:sp

transport

bus
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A

CalaisParis Dover London

B C

train ferry

rdf:sp rdf:sp rdf:sp

rdf:sp rdf:sprdf:sp

transport

bus

A natural query: (?X , (next::[(next::(rdf:sp))∗/(self::travel)])+, ?Y )
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The extra expressive power of nSPARQL
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B CA

train ferry bus
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The extra expressive power of nSPARQL

rdf:sp

CalaisParis Dover London

B CA

train ferry bus

rdf:sp rdf:sp rdf:sp

rdf:sprdf:sp

transport

A natural query: (?X , (next::[(next::(rdf:sp))∗/(self::travel)])+, ?Y )

◮ This query cannot be expressed in SPARQL over RDFS.
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Second part: Ground RDF with RDFS vocabulary

◮ Syntax and formal semantics

◮ Querying RDFS data

◮ nSPARQL: A navigational query language for RDFS

◮ Expressiveness

◮ Complexity of the evaluation problem
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The evaluation problem for nSPARQL

What is the complexity of the evaluation problem for nSPARQL?
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The evaluation problem for nSPARQL

What is the complexity of the evaluation problem for nSPARQL?

◮ The lower bounds for SPARQL also apply in this case.
◮ Just take a look at the proofs
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The evaluation problem for nSPARQL

What is the complexity of the evaluation problem for nSPARQL?

◮ The lower bounds for SPARQL also apply in this case.
◮ Just take a look at the proofs

Are there any new problems to consider?

◮ What is the complexity of evaluating a nested regular
expression?
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The evaluation problem for nSPARQL

What is the complexity of the evaluation problem for nSPARQL?

◮ The lower bounds for SPARQL also apply in this case.
◮ Just take a look at the proofs

Are there any new problems to consider?

◮ What is the complexity of evaluating a nested regular
expression?

◮ Can this be done efficiently?
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The evaluation problem for nested regular expressions

Input:

A pair (a, b) ∈ U ×U, a nested regular expression exp and an RDF
graph G

Question:

Does (a, b) ∈ JexpKG?
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The evaluation problem for nested regular expressions

Theorem (PAG08)

The evaluation problem for nested regular expressions is solvable in
time O(|G | · |exp|).
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The evaluation problem for nested regular expressions

Theorem (PAG08)

The evaluation problem for nested regular expressions is solvable in
time O(|G | · |exp|).

Proof sketch

Use an efficient evaluation algorithm for PDL.

◮ There are a few issues that have to be considered.

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 95 / 108



The evaluation problem for nested regular expressions

Simple example: pair (a, b), RDF graph G and navigational
expression exp
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expression exp
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The evaluation problem for nested regular expressions

Simple example: pair (a, b), RDF graph G and navigational
expression exp

(1) Transform exp into an ǫ-NFA Aexp

(2) Construct an automaton AG from G :
◮ The states of AG are the elements mentioned in G

◮ For every (a, b, c) ∈ G , automaton AG contains:

(a, next::b, c) (a, edge::c , b) (b, node::a, c)
(c , next-1::b, a) (b, edge-1::c , a) (c , node-1::a, b)
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expression exp
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M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 96 / 108



The evaluation problem for nested regular expressions

Simple example: pair (a, b), RDF graph G and navigational
expression exp

(1) Transform exp into an ǫ-NFA Aexp

(2) Construct an automaton AG from G :
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The evaluation problem for nested regular expressions

Simple example: pair (a, b), RDF graph G and navigational
expression exp

(1) Transform exp into an ǫ-NFA Aexp

(2) Construct an automaton AG from G :
◮ The states of AG are the elements mentioned in G

◮ For every (a, b, c) ∈ G , automaton AG contains:

(a, next::b, c) (a, edge::c , b) (b, node::a, c)
(c , next-1::b, a) (b, edge-1::c , a) (c , node-1::a, b)

◮ Every state is final

(3) Compute AG ×Aexp

(4) Verify whether (b, qf ) is reachable from (a, q0) in AG ×Aexp
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Third part: RDF with RDFS vocabulary

◮ Formal semantics

◮ A little bit about complexity
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Does the blank node add some information?

country

works in

rdf:sp

person

sportman

soccer player

rdf:sc

rdf:sc

rdf:dom

rdf:dom rdf:range

rdf:range

Barcelona

plays in soccer team

company

rdf:typerdf:type

rdf:sc

Messi

SpainB

address
lives in
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What about now?

lives in

works in

rdf:sp

person

sportman

soccer player

rdf:sc

rdf:sc

rdf:dom

rdf:dom rdf:range

rdf:range

Barcelona

plays in soccer team

company

rdf:typerdf:type

rdf:sc

Messi

SpainB

lives in
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A fundamental notion: homomorphism

Definition

h : U ∪ B → U ∪ B is a homomorphism from G1 to G2 if:

◮ h(c) = c for every c ∈ U;

◮ for every (a, b, c) ∈ G1, (h(a), h(b), h(c)) ∈ G2

Notation: G1 → G2

Example

a

b

B
p

p

a

b

p
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Homomorphism and the notion of entailment

Example

In this case: G1 6→ G2 and G2 → G1

G1

a

b

B
p

p

p

a

b

p

G2

Intuitively: G1 contains more information than G2
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A general notion of entailment

In this general scenario, entailment can also be defined in terms of
classical notions such as model, interpretation, etc.

◮ As for the case of RDFS graphs without blank nodes

This notion can also be characterized by a set of inference rules.
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A general system of inference rules

Existential rule :

Subproperty rules :

Subclass rules :

Typing rules :

Implicit typing :
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Existential rule :
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if G2 → G1
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A general system of inference rules

Existential rule :
G1

G2
if G2 → G1

Subproperty rules :
(p, rdf:sp, q) (a, p, b)

(a, q, b)

Subclass rules :

Typing rules :

Implicit typing :
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Subclass rules :
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(a, rdf:sc, c)

Typing rules :
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(a, rdf:type, c)

Implicit typing :
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(a, q, b)

Subclass rules :
(a, rdf:sc, b) (b, rdf:sc, c)

(a, rdf:sc, c)

Typing rules :
(p, rdf:dom, c) (a, p, b)

(a, rdf:type, c)

Implicit typing :
(q, rdf:dom, a) (p, rdf:sp, q) (b, p, c)

(b, rdf:type, a)
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Implicit typing :
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A general system of inference rules

Existential rule :

Subproperty rules :
(p, rdf:sp, q) (a, p, b)

(a, q, b)

Subclass rules :

Typing rules :
(p, rdf:dom, c) (a, p, b)

(a, rdf:type, c)

Implicit typing :
(B, rdf:dom, a) (p, rdf:sp,B) (b, p, c)

(b, rdf:type, a)
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RDFS Entailment

Theorem (H03,GHM04,MPG07)

The previous system of inference rules characterize the notion of
entailment in RDFS.
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RDFS Entailment

Theorem (H03,GHM04,MPG07)

The previous system of inference rules characterize the notion of
entailment in RDFS.

This system can be used to define cl(G ).

◮ This can be used to define the semantics of a query language
over RDFS data.
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Third part: RDF with RDFS vocabulary

◮ Formal semantics

◮ A bit about complexity
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A little about complexity

Complexity (GHM04)

RDFS entailment is NP-complete.
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A little about complexity

Complexity (GHM04)

RDFS entailment is NP-complete.

Proof sketch

Membership in NP: If G |= t, then there exists a polynomial-size
proof of this fact.
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Thank you!
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