
Foundations of RDF Databases

Marcelo Arenas1, Claudio Gutierrez2 and Jorge Pérez1

1 Pontificia Universidad Católica de Chile
2 Universidad de Chile

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 1 / 108

Semantic Web

“The Semantic Web is an extension of the current web in which
information is given well-defined meaning, better enabling
computers and people to work in cooperation.”

[Tim Berners-Lee et al. 2001.]

Specific Goals:

◮ Build a description language with standard semantics

◮ Make semantics machine-processable and understandable

◮ Incorporate logical infrastructure to reason about resources

◮ W3C Proposal: Resource Description Framework (RDF)

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 2 / 108

RDF in a nutshell

◮ RDF is the W3C proposal framework for representing
information in the Web

◮ Abstract syntax based on directed labeled graph

◮ Schema definition language (RDFS): Define new vocabulary
(typing, inheritance of classes and properties)

◮ Extensible URI-based vocabulary

◮ Formal semantics

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 3 / 108

RDF formal model

Subject Object
Predicate

LB

U

U UB

U = set of Uris

B = set of Blank nodes

L = set of Literals

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 4 / 108

RDF formal model

Subject Object
Predicate

LB

U

U UB

U = set of Uris

B = set of Blank nodes

L = set of Literals

(s, p, o) ∈ (U ∪ B)× U × (U ∪ B ∪ L) is called an RDF triple

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 4 / 108

RDF formal model

Subject Object
Predicate

LB

U

U UB

U = set of Uris

B = set of Blank nodes

L = set of Literals

(s, p, o) ∈ (U ∪ B)× U × (U ∪ B ∪ L) is called an RDF triple

A set of RDF triples is called an RDF graph

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 4 / 108

RDF formal model

Proviso

In this talk, we do distinguish between URIs and literals.

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 5 / 108

RDF formal model

Proviso

In this talk, we do distinguish between URIs and literals.

◮ (s, p, o) ∈ (U ∪ B)× U × (U ∪ B) is called an RDF triple.

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 5 / 108

RDF formal model

Proviso

In this talk, we do distinguish between URIs and literals.

◮ (s, p, o) ∈ (U ∪ B)× U × (U ∪ B) is called an RDF triple.

◮ The inclusion of L does not change any of the results
presented in this talk.

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 5 / 108

RDF: An example

country

works in

rdf:sp

person

sportman

soccer player

rdf:sc

rdf:sc

rdf:dom

rdf:dom rdf:range

rdf:range

Barcelona

plays in

plays in

soccer team

company

rdf:typerdf:type

rdf:sc

Messi

SpainB

address
lives in

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 6 / 108

Why is RDF interesting from a database point of view?

Some new challenges:

◮ Existential variables as datavalues (null values)

◮ Built-in vocabulary with fixed semantics (RDFS)

◮ Graph model where nodes may also be edge labels

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 7 / 108

Why is RDF interesting from a database point of view?

Some new challenges:

◮ Existential variables as datavalues (null values)

◮ Built-in vocabulary with fixed semantics (RDFS)

◮ Graph model where nodes may also be edge labels

Why are database technologies interesting from an RDF point of
view?

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 7 / 108

Why is RDF interesting from a database point of view?

Some new challenges:

◮ Existential variables as datavalues (null values)

◮ Built-in vocabulary with fixed semantics (RDFS)

◮ Graph model where nodes may also be edge labels

Why are database technologies interesting from an RDF point of
view?

◮ RDF data processing can take advantage of database
techniques: Query processing, storing, indexing, . . .

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 7 / 108

Previous example: A better representation

country

works in

rdf:sp

person

sportman

soccer player

rdf:sc

rdf:sc

rdf:dom

rdf:dom rdf:range

rdf:range

Barcelona

plays in soccer team

company

rdf:typerdf:type

rdf:sc

Messi

SpainB

address
lives in

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 8 / 108

Previous example: A better representation

Messi

works in

rdf:sp

person

sportman

soccer player

rdf:sc

rdf:sc

rdf:dom

rdf:dom rdf:range

rdf:range

Barcelona

plays in soccer team

company

rdf:typerdf:type

rdf:sc

SpainB

lives in

country

address

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 8 / 108

Previous example: A better representation

Messi

works in

rdf:sp

person

sportman

soccer player

rdf:sc

rdf:sc

rdf:dom

rdf:dom rdf:range

rdf:range

Barcelona

plays in soccer team

company

rdf:typerdf:type

rdf:sc

SpainB

lives in

country

address

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 8 / 108

Previous example: A better representation

Messi

works in

rdf:sp

person

sportman

soccer player

rdf:sc

rdf:sc

rdf:dom

rdf:dom rdf:range

rdf:range

Barcelona

plays in soccer team

company

rdf:typerdf:type

rdf:sc

SpainB

lives in

country

address

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 8 / 108

First part: Ground RDF without RDFS vocabulary

SPARQL: A query language for RDF

◮ Syntax and formal semantics

◮ Complexity of the evaluation problem

◮ Optimization methods

◮ Expressiveness

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 9 / 108

First part: Ground RDF without RDFS vocabulary

SPARQL: A query language for RDF

◮ Syntax and formal semantics

◮ Complexity of the evaluation problem

◮ Optimization methods

◮ Expressiveness

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 10 / 108

Querying RDF: SPARQL

◮ SPARQL is the W3C recommendation query language for
RDF (January 2008).

◮ SPARQL is a recursive acronym that stands for SPARQL
Protocol and RDF Query Language.

◮ SPARQL is a graph-matching query language.

◮ A SPARQL query consists of three parts:

◮ Pattern matching: optional, union, nesting, filtering.
◮ Solution modifiers: projection, distinct, order, limit, offset.
◮ Output part: construction of new triples,

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 11 / 108

SPARQL in a nutshell

SELECT ?Name ?Email

WHERE

{

?X :name ?Name

?X :email ?Email

}

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 12 / 108

SPARQL in a nutshell

SELECT ?Name ?Email

WHERE

{

?X :name ?Name

?X :email ?Email

}

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 12 / 108

SPARQL in a nutshell

SELECT ?Name ?Email

WHERE

{

?X :name ?Name

?X :email ?Email

}

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 12 / 108

SPARQL in a nutshell

SELECT ?Name ?Email

WHERE

{

?X :name ?Name

?X :email ?Email

}

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 12 / 108

SPARQL in a nutshell

SELECT ?Name ?Email

WHERE

{

?X :name ?Name

?X :email ?Email

}

In general, in a query we have:

H ←

◮ Head: processing of some variables.

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 12 / 108

SPARQL in a nutshell

SELECT ?Name ?Email

WHERE

{

?X :name ?Name

?X :email ?Email

}

In general, in a query we have:

H ← P

◮ Head: processing of some variables.

◮ Body: pattern matching expression.

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 12 / 108

SPARQL in a nutshell

SELECT ?Name ?Email

WHERE

{

?X :name ?Name

?X :email ?Email

}

In general, in a query we have:

H ← P

◮ Head: processing of some variables.

◮ Body: pattern matching expression.

We focus on P .

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 12 / 108

But things can become more complex ...

Interesting features of pattern
matching on graphs

◮ Grouping

◮ Optional parts

◮ Nesting

◮ Union of patterns

◮ Filtering

{ P1

P2 }

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 13 / 108

But things can become more complex ...

Interesting features of pattern
matching on graphs

◮ Grouping

◮ Optional parts

◮ Nesting

◮ Union of patterns

◮ Filtering

{ { P1

P2 }

{ P3

P4 }

}

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 13 / 108

But things can become more complex ...

Interesting features of pattern
matching on graphs

◮ Grouping

◮ Optional parts

◮ Nesting

◮ Union of patterns

◮ Filtering

{ { P1

P2

OPTIONAL { P5 } }

{ P3

P4

OPTIONAL { P7 } }

}

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 13 / 108

But things can become more complex ...

Interesting features of pattern
matching on graphs

◮ Grouping

◮ Optional parts

◮ Nesting

◮ Union of patterns

◮ Filtering

{ { P1

P2

OPTIONAL { P5 } }

{ P3

P4

OPTIONAL { P7

OPTIONAL { P8 } } }

}

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 13 / 108

But things can become more complex ...

Interesting features of pattern
matching on graphs

◮ Grouping

◮ Optional parts

◮ Nesting

◮ Union of patterns

◮ Filtering

{ { P1

P2

OPTIONAL { P5 } }

{ P3

P4

OPTIONAL { P7

OPTIONAL { P8 } } }

}

UNION

{ P9 }

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 13 / 108

But things can become more complex ...

Interesting features of pattern
matching on graphs

◮ Grouping

◮ Optional parts

◮ Nesting

◮ Union of patterns

◮ Filtering

{ { P1

P2

OPTIONAL { P5 } }

{ P3

P4

OPTIONAL { P7

OPTIONAL { P8 } } }

}

UNION

{ P9

FILTER (R) }

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 13 / 108

A formal study of SPARQL

Why is this needed?

◮ Clarifying corner cases

◮ Eliminating ambiguities

◮ Helping in the implementation process
◮ Understanding the resources (time/space) needed to

implement SPARQL

◮ Understanding what can/cannot be expressed
◮ Discovering what needs to be added (aggregation, navigational

capabilities, recursion, . . .)

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 14 / 108

A standard algebraic syntax

◮ Triple patterns: just triples + variables, without blanks

?X :name "john" (?X , name, john)

◮ Graph patterns: full parenthesized algebra

{ P1 P2 } (P1 AND P2)

{ P1 OPTIONAL { P2 }} (P1 OPT P2)

{ P1 } UNION { P2 } (P1 UNION P2)

{ P1 FILTER (R) } (P1 FILTER R)

original SPARQL syntax algebraic syntax

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 15 / 108

A standard algebraic syntax

◮ Explicit precedence/association

Example

{ t1

t2

OPTIONAL { t3 }

OPTIONAL { t4 }

t5

}

((((t1 AND t2) OPT t3) OPT t4) AND t5)

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 16 / 108

Mappings: building block for the semantics

Definition

A mapping is a partial function from variables to RDF terms.

µ : Variables −→ U

The evaluation of a pattern results in a set of mappings.

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 17 / 108

Mappings: building block for the semantics

Definition

A mapping is a partial function from variables to RDF terms.

µ : Variables −→ U

The evaluation of a pattern results in a set of mappings.

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 17 / 108

The semantics of triple patterns

Given an RDF graph G and a triple pattern t.

Definition

The evaluation of t over G is the set of mappings µ that:

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 18 / 108

The semantics of triple patterns

Given an RDF graph G and a triple pattern t.

Definition

The evaluation of t over G is the set of mappings µ that:

◮ has as domain the variables in t: dom(µ) = var(t)

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 18 / 108

The semantics of triple patterns

Given an RDF graph G and a triple pattern t.

Definition

The evaluation of t over G is the set of mappings µ that:

◮ has as domain the variables in t: dom(µ) = var(t)

◮ makes t to match the graph: µ(t) ∈ G

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 18 / 108

The semantics of triple patterns

Given an RDF graph G and a triple pattern t.

Definition

The evaluation of t over G is the set of mappings µ that:

◮ has as domain the variables in t: dom(µ) = var(t)

◮ makes t to match the graph: µ(t) ∈ G

Example

graph triple evaluation
(R1, name, john)
(R1, email, J@ed.ex)
(R2, name, paul)

(?X , name, ?Y)
?X ?Y

µ1: R1 john
µ2: R2 paul

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 18 / 108

The semantics of triple patterns

Given an RDF graph G and a triple pattern t.

Definition

The evaluation of t over G is the set of mappings µ that:

◮ has as domain the variables in t: dom(µ) = var(t)

◮ makes t to match the graph: µ(t) ∈ G

Example

graph triple evaluation
(R1, name, john)
(R1, email, J@ed.ex)
(R2, name, paul)

(?X , name, ?Y)
?X ?Y

µ1: R1 john
µ2: R2 paul

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 18 / 108

The semantics of triple patterns

Given an RDF graph G and a triple pattern t.

Definition

The evaluation of t over G is the set of mappings µ that:

◮ has as domain the variables in t: dom(µ) = var(t)

◮ makes t to match the graph: µ(t) ∈ G

Example

graph triple evaluation
(R1, name, john)
(R1, email, J@ed.ex)
(R2, name, paul)

(?X , name, ?Y)
?X ?Y

µ1: R1 john
µ2: R2 paul

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 18 / 108

Compatible mappings

Definition

Mappings µ1 and µ2 are compatible if they agree in their common
variables:

If ?X ∈ dom(µ1) ∩ dom(µ2), then µ1(?X) = µ2(?X).

Example

?X ?Y ?Z ?V
µ1 : R1 john
µ2 : R1 J@edu.ex
µ3 : P@edu.ex R2

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 19 / 108

Compatible mappings

Definition

Mappings µ1 and µ2 are compatible if they agree in their common
variables:

If ?X ∈ dom(µ1) ∩ dom(µ2), then µ1(?X) = µ2(?X).

Example

?X ?Y ?Z ?V
µ1 : R1 john
µ2 : R1 J@edu.ex
µ3 : P@edu.ex R2

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 19 / 108

Compatible mappings

Definition

Mappings µ1 and µ2 are compatible if they agree in their common
variables:

If ?X ∈ dom(µ1) ∩ dom(µ2), then µ1(?X) = µ2(?X).

Example

?X ?Y ?Z ?V
µ1 : R1 john
µ2 : R1 J@edu.ex
µ3 : P@edu.ex R2

µ1 ∪ µ2 : R1 john J@edu.ex

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 19 / 108

Compatible mappings

Definition

Mappings µ1 and µ2 are compatible if they agree in their common
variables:

If ?X ∈ dom(µ1) ∩ dom(µ2), then µ1(?X) = µ2(?X).

Example

?X ?Y ?Z ?V
µ1 : R1 john
µ2 : R1 J@edu.ex
µ3 : P@edu.ex R2

µ1 ∪ µ2 : R1 john J@edu.ex

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 19 / 108

Compatible mappings

Definition

Mappings µ1 and µ2 are compatible if they agree in their common
variables:

If ?X ∈ dom(µ1) ∩ dom(µ2), then µ1(?X) = µ2(?X).

Example

?X ?Y ?Z ?V
µ1 : R1 john
µ2 : R1 J@edu.ex
µ3 : P@edu.ex R2

µ1 ∪ µ2 : R1 john J@edu.ex
µ1 ∪ µ3 : R1 john P@edu.ex R2

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 19 / 108

Compatible mappings

Definition

Mappings µ1 and µ2 are compatible if they agree in their common
variables:

If ?X ∈ dom(µ1) ∩ dom(µ2), then µ1(?X) = µ2(?X).

Example

?X ?Y ?Z ?V
µ1 : R1 john
µ2 : R1 J@edu.ex
µ3 : P@edu.ex R2

µ1 ∪ µ2 : R1 john J@edu.ex
µ1 ∪ µ3 : R1 john P@edu.ex R2

◮ µ2 and µ3 are not compatible

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 19 / 108

Sets of mappings and operations

Let Ω1 and Ω2 be sets of mappings.

Definition

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 20 / 108

Sets of mappings and operations

Let Ω1 and Ω2 be sets of mappings.

Definition

Join: extends mappings in Ω1 with compatible mappings in Ω2

◮ Ω1 Ω2 = {µ1 ∪ µ2 | µ1 ∈ Ω1, µ2 ∈ Ω2 and µ1, µ2 are
compatible}

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 20 / 108

Sets of mappings and operations

Let Ω1 and Ω2 be sets of mappings.

Definition

Join: extends mappings in Ω1 with compatible mappings in Ω2

◮ Ω1 Ω2 = {µ1 ∪ µ2 | µ1 ∈ Ω1, µ2 ∈ Ω2 and µ1, µ2 are
compatible}

Difference: selects mappings in Ω1 that cannot be extended with
mappings in Ω2

◮ Ω1 r Ω2 = {µ1 ∈ Ω1 | there is no mapping in Ω2 compatible
with µ1}

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 20 / 108

Sets of mappings and operations

Definition

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 21 / 108

Sets of mappings and operations

Definition

Union: includes mappings in Ω1 and in Ω2

◮ Ω1 ∪ Ω2 = {µ | µ ∈ Ω1 or µ ∈ Ω2}

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 21 / 108

Sets of mappings and operations

Definition

Union: includes mappings in Ω1 and in Ω2

◮ Ω1 ∪ Ω2 = {µ | µ ∈ Ω1 or µ ∈ Ω2}

Left Outer Join: extends mappings in Ω1 with compatible
mappings in Ω2 if possible

◮ Ω1 Ω2 = (Ω1 Ω2) ∪ (Ω1 r Ω2)

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 21 / 108

Semantics of SPARQL

Given an RDF graph G .

Definition

JtKG =

JP1 AND P2KG =

JP1 UNION P2KG =

JP1 OPT P2KG =

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 22 / 108

Semantics of SPARQL

Given an RDF graph G .

Definition

JtKG = {µ | dom(µ) = var(t) and µ(t) ∈ G}

JP1 AND P2KG =

JP1 UNION P2KG =

JP1 OPT P2KG =

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 22 / 108

Semantics of SPARQL

Given an RDF graph G .

Definition

JtKG = {µ | dom(µ) = var(t) and µ(t) ∈ G}

JP1 AND P2KG = JP1KG JP2KG

JP1 UNION P2KG =

JP1 OPT P2KG =

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 22 / 108

Semantics of SPARQL

Given an RDF graph G .

Definition

JtKG = {µ | dom(µ) = var(t) and µ(t) ∈ G}

JP1 AND P2KG = JP1KG JP2KG

JP1 UNION P2KG = JP1KG ∪ JP2KG

JP1 OPT P2KG =

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 22 / 108

Semantics of SPARQL

Given an RDF graph G .

Definition

JtKG = {µ | dom(µ) = var(t) and µ(t) ∈ G}

JP1 AND P2KG = JP1KG JP2KG

JP1 UNION P2KG = JP1KG ∪ JP2KG

JP1 OPT P2KG = JP1KG JP2KG

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 22 / 108

Semantics of SPARQL: An example

Example

(R1, name, john)
(R1, email, J@ed.ex)
(R2, name, paul)

((?X , name, ?Y) OPT (?X , email, ?E))

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 23 / 108

Semantics of SPARQL: An example

Example

(R1, name, john)
(R1, email, J@ed.ex)
(R2, name, paul)

((?X , name, ?Y) OPT (?X , email, ?E))

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 23 / 108

Semantics of SPARQL: An example

Example

(R1, name, john)
(R1, email, J@ed.ex)
(R2, name, paul)

((?X , name, ?Y) OPT (?X , email, ?E))

?X ?Y
R1 john
R2 paul

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 23 / 108

Semantics of SPARQL: An example

Example

(R1, name, john)
(R1, email, J@ed.ex)
(R2, name, paul)

((?X , name, ?Y) OPT (?X , email, ?E))

?X ?Y
R1 john
R2 paul

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 23 / 108

Semantics of SPARQL: An example

Example

(R1, name, john)
(R1, email, J@ed.ex)
(R2, name, paul)

((?X , name, ?Y) OPT (?X , email, ?E))

?X ?Y
R1 john
R2 paul

?X ?E
R1 J@ed.ex

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 23 / 108

Semantics of SPARQL: An example

Example

(R1, name, john)
(R1, email, J@ed.ex)
(R2, name, paul)

((?X , name, ?Y) OPT (?X , email, ?E))

?X ?Y
R1 john
R2 paul

?X ?E
R1 J@ed.ex

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 23 / 108

Semantics of SPARQL: An example

Example

(R1, name, john)
(R1, email, J@ed.ex)
(R2, name, paul)

((?X , name, ?Y) OPT (?X , email, ?E))

?X ?Y
R1 john
R2 paul

?X ?Y ?E
R1 john J@ed.ex
R2 paul

?X ?E
R1 J@ed.ex

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 23 / 108

Semantics of SPARQL: An example

Example

(R1, name, john)
(R1, email, J@ed.ex)
(R2, name, paul)

((?X , name, ?Y) OPT (?X , email, ?E))

?X ?Y
R1 john
R2 paul

?X ?Y ?E
R1 john J@ed.ex
R2 paul

?X ?E
R1 J@ed.ex

◮ from the Join

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 23 / 108

Semantics of SPARQL: An example

Example

(R1, name, john)
(R1, email, J@ed.ex)
(R2, name, paul)

((?X , name, ?Y) OPT (?X , email, ?E))

?X ?Y
R1 john
R2 paul

?X ?Y ?E
R1 john J@ed.ex
R2 paul

?X ?E
R1 J@ed.ex

◮ from the Difference

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 23 / 108

Semantics of SPARQL: An example

Example

(R1, name, john)
(R1, email, J@ed.ex)
(R2, name, paul)

((?X , name, ?Y) OPT (?X , email, ?E))

?X ?Y
R1 john
R2 paul

?X ?Y ?E
R1 john J@ed.ex
R2 paul

?X ?E
R1 J@ed.ex

◮ from the Union

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 23 / 108

Filter expressions (value constraints)

Filter expression: P FILTER R

◮ P is a graph pattern

◮ R is a built-in condition

We consider in R :

◮ equality = among variables and RDF terms

◮ unary predicate bound

◮ boolean combinations (∧, ∨, ¬)

We impose a safety condition: var(R) ⊆ var(P)

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 24 / 108

Satisfaction of value constraints

A mapping µ satisfies a condition R (µ |= R) if:

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 25 / 108

Satisfaction of value constraints

A mapping µ satisfies a condition R (µ |= R) if:

◮ R is ?X = c , ?X ∈ dom(µ) and µ(?X) = c ;

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 25 / 108

Satisfaction of value constraints

A mapping µ satisfies a condition R (µ |= R) if:

◮ R is ?X = c , ?X ∈ dom(µ) and µ(?X) = c ;

◮ R is ?X =?Y , ?X , ?Y ∈ dom(µ) and µ(?X) = µ(?Y);

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 25 / 108

Satisfaction of value constraints

A mapping µ satisfies a condition R (µ |= R) if:

◮ R is ?X = c , ?X ∈ dom(µ) and µ(?X) = c ;

◮ R is ?X =?Y , ?X , ?Y ∈ dom(µ) and µ(?X) = µ(?Y);

◮ R is bound(?X) and ?X ∈ dom(µ);

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 25 / 108

Satisfaction of value constraints

A mapping µ satisfies a condition R (µ |= R) if:

◮ R is ?X = c , ?X ∈ dom(µ) and µ(?X) = c ;

◮ R is ?X =?Y , ?X , ?Y ∈ dom(µ) and µ(?X) = µ(?Y);

◮ R is bound(?X) and ?X ∈ dom(µ);

◮ R is ¬R1 and µ 6|= R1;

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 25 / 108

Satisfaction of value constraints

A mapping µ satisfies a condition R (µ |= R) if:

◮ R is ?X = c , ?X ∈ dom(µ) and µ(?X) = c ;

◮ R is ?X =?Y , ?X , ?Y ∈ dom(µ) and µ(?X) = µ(?Y);

◮ R is bound(?X) and ?X ∈ dom(µ);

◮ R is ¬R1 and µ 6|= R1;

◮ R is R1 ∨ R2, and µ |= R1 or µ |= R2;

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 25 / 108

Satisfaction of value constraints

A mapping µ satisfies a condition R (µ |= R) if:

◮ R is ?X = c , ?X ∈ dom(µ) and µ(?X) = c ;

◮ R is ?X =?Y , ?X , ?Y ∈ dom(µ) and µ(?X) = µ(?Y);

◮ R is bound(?X) and ?X ∈ dom(µ);

◮ R is ¬R1 and µ 6|= R1;

◮ R is R1 ∨ R2, and µ |= R1 or µ |= R2;

◮ R is R1 ∧ R2, µ |= R1 and µ |= R2.

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 25 / 108

Satisfaction of value constraints

A mapping µ satisfies a condition R (µ |= R) if:

◮ R is ?X = c , ?X ∈ dom(µ) and µ(?X) = c ;

◮ R is ?X =?Y , ?X , ?Y ∈ dom(µ) and µ(?X) = µ(?Y);

◮ R is bound(?X) and ?X ∈ dom(µ);

◮ R is ¬R1 and µ 6|= R1;

◮ R is R1 ∨ R2, and µ |= R1 or µ |= R2;

◮ R is R1 ∧ R2, µ |= R1 and µ |= R2.

Definition

FILTER : selects mappings that satisfy a condition

JP FILTER RKG = {µ ∈ JPKG | µ |= R}

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 25 / 108

First part: Ground RDF without RDFS vocabulary

SPARQL: A query language for RDF

◮ Syntax and formal semantics

◮ Complexity of the evaluation problem

◮ Optimization methods

◮ Expressiveness

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 26 / 108

The evaluation problem

Input:

A mapping µ, a graph pattern P , and an RDF graph G

Question:

Does µ belong to the evaluation of P over G?

Does µ ∈ JPKG?

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 27 / 108

The evaluation problem

Input:

A mapping µ, a graph pattern P , and an RDF graph G

Question:

Does µ belong to the evaluation of P over G?

Does µ ∈ JPKG?

We study the combined complexity of the evaluation problem.

◮ µ, P and G are part of the input.

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 27 / 108

Evaluation of simple patterns is polynomial

Theorem (PAG06)

For patterns using only AND and FILTER operators (AND-FILTER
expressions), the evaluation problem is polynomial:

O(size of the pattern × size of the graph).

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 28 / 108

Evaluation of simple patterns is polynomial

Theorem (PAG06)

For patterns using only AND and FILTER operators (AND-FILTER
expressions), the evaluation problem is polynomial:

O(size of the pattern × size of the graph).

Proof sketch
◮ Check that the mapping makes every triple to match.

◮ Then check that the mapping satisfies the FILTERs.

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 28 / 108

Evaluation including UNION is NP-complete

Theorem (PAG06)

The evaluation problem is NP-complete for AND-FILTER-UNION
expressions.

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 29 / 108

Evaluation including UNION is NP-complete

Theorem (PAG06)

The evaluation problem is NP-complete for AND-FILTER-UNION
expressions.

Proof sketch of hardness
◮ Reduction from 3SAT.

◮ ¬ bound is used to verify that a satisfying truth assignment is
well defined.

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 29 / 108

Evaluation including UNION is NP-complete: Idea of the

reduction

Let ϕ = (q ∨ r ∨ ¬s) ∧ (¬q ∨ r ∨ ¬t)

We construct a mapping µ, a graph pattern P and an RDF graph
G such that:

ϕ is satisfiable iff µ ∈ JPKG

G is defined as {(1, is, true)}

P includes the variables ?Q, ?Q, ?R , ?R, ?S , ?S , ?T and ?T .

◮ µ(?Q) = 1 indicates that q is assigned value true,

◮ µ(?Q) = 1 indicates that ¬q is assigned value true.

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 30 / 108

Evaluation including UNION is NP-complete: Idea of the

reduction

Thus, the following pattern Pϕ almost does the job.
[

(?Q, is, true) UNION (?R , is, true) UNION (?S , is, true)

]

AND

[

(?Q, is, true) UNION (?R , is, true) UNION (?T , is, true)

]

Why does it fail?

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 31 / 108

Evaluation including UNION is NP-complete: Idea of the

reduction

Thus, the following pattern Pϕ almost does the job.
[

(?Q, is, true) UNION (?R , is, true) UNION (?S , is, true)

]

AND

[

(?Q, is, true) UNION (?R , is, true) UNION (?T , is, true)

]

Why does it fail?

◮ It can assign value 1 to ?Q and ?Q.

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 31 / 108

Evaluation including UNION is NP-complete: Idea of the

reduction

Thus, the following pattern Pϕ almost does the job.
[

(?Q, is, true) UNION (?R , is, true) UNION (?S , is, true)

]

AND

[

(?Q, is, true) UNION (?R , is, true) UNION (?T , is, true)

]

Why does it fail?

◮ It can assign value 1 to ?Q and ?Q.

Solution: consider the following condition R :

(¬ bound(?Q) ∨ ¬ bound(?Q)) ∧ (¬ bound(?R) ∨ ¬ bound(?R)) ∧

(¬ bound(?S) ∨ ¬ bound(?S)) ∧ (¬ bound(?T) ∨ ¬ bound(?T))

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 31 / 108

Evaluation including UNION is NP-complete: Idea of the

reduction

Then (Pϕ FILTER R) does the job.

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 32 / 108

Evaluation including UNION is NP-complete: Idea of the

reduction

Then (Pϕ FILTER R) does the job.

◮ But how do we define µ?

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 32 / 108

Evaluation including UNION is NP-complete: Idea of the

reduction

Then (Pϕ FILTER R) does the job.

◮ But how do we define µ?

Final step: define P as:
[

(?Q, is, true) AND (?Q, is, true) AND (?R , is, true) AND

(?R , is, true) AND (?S , is, true) AND (?S , is, true) AND

(?T , is, true) AND (?T , is, true)

]

AND

[

Pϕ FILTER R

]

and µ as:
?Q ?Q ?R ?R ?S ?S ?T ?T

1 1 1 1 1 1 1 1

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 32 / 108

In general: Evaluation problem is PSPACE-complete

Theorem (PAG06)

For general patterns that include OPT operator, the evaluation
problem is PSPACE-complete.

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 33 / 108

In general: Evaluation problem is PSPACE-complete

Theorem (PAG06)

For general patterns that include OPT operator, the evaluation
problem is PSPACE-complete.

Can we evaluate SPARQL queries in practice efficiently?

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 33 / 108

In general: Evaluation problem is PSPACE-complete

Theorem (PAG06)

For general patterns that include OPT operator, the evaluation
problem is PSPACE-complete.

Can we evaluate SPARQL queries in practice efficiently?

◮ We need to understand how the complexity depends on the
operators of SPARQL.

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 33 / 108

A simple normal from

Proposition (UNION Normal Form)

Every graph pattern is equivalent to one of the form

P1 UNION P2 UNION · · · UNION Pn

where each Pi is UNION–free.

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 34 / 108

A simple normal from

Proposition (UNION Normal Form)

Every graph pattern is equivalent to one of the form

P1 UNION P2 UNION · · · UNION Pn

where each Pi is UNION–free.

Graph pattern expressions are usually in this normal form.

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 34 / 108

A simple normal from

Proposition (UNION Normal Form)

Every graph pattern is equivalent to one of the form

P1 UNION P2 UNION · · · UNION Pn

where each Pi is UNION–free.

Graph pattern expressions are usually in this normal form.

Corollary

The evaluation problem is polynomial for AND-FILTER-UNION
expressions in the UNION normal form.

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 34 / 108

PSPACE-completeness: A stronger lower bound

Theorem (PAG06)

The evaluation problem remains PSPACE-complete for
AND-FILTER-OPT expressions.

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 35 / 108

PSPACE-completeness: A stronger lower bound

Theorem (PAG06)

The evaluation problem remains PSPACE-complete for
AND-FILTER-OPT expressions.

Proof sketch of hardness
◮ Reduction from QBF: A pattern encodes a quantified

propositional formula

∀x1∃y1∀x2∃y2 · · ·ψ.

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 35 / 108

PSPACE-completeness: A stronger lower bound

Theorem (PAG06)

The evaluation problem remains PSPACE-complete for
AND-FILTER-OPT expressions.

Proof sketch of hardness
◮ Reduction from QBF: A pattern encodes a quantified

propositional formula

∀x1∃y1∀x2∃y2 · · ·ψ.

◮ Nested OPTs are used to encode quantifier alternation.

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 35 / 108

PSPACE-hardness: A closer look

Assume ϕ = ∀x1∃y1 ψ, where ψ = (x1 ∨ ¬y1) ∧ (¬x1 ∨ y1).

We generate G , Pϕ and µ0 such that µ0 belongs to the answer of
Pϕ over G iff ϕ is valid:

G :

Rψ :

Pψ :

Pϕ :

µ0 :

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 36 / 108

PSPACE-hardness: A closer look

Assume ϕ = ∀x1∃y1 ψ, where ψ = (x1 ∨ ¬y1) ∧ (¬x1 ∨ y1).

We generate G , Pϕ and µ0 such that µ0 belongs to the answer of
Pϕ over G iff ϕ is valid:

G : {(a, tv, 0), (a, tv, 1), (a, false, 0), (a, true, 1)}

Rψ :

Pψ :

Pϕ :

µ0 :

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 36 / 108

PSPACE-hardness: A closer look

Assume ϕ = ∀x1∃y1 ψ, where ψ = (x1 ∨ ¬y1) ∧ (¬x1 ∨ y1).

We generate G , Pϕ and µ0 such that µ0 belongs to the answer of
Pϕ over G iff ϕ is valid:

G : {(a, tv, 0), (a, tv, 1), (a, false, 0), (a, true, 1)}

Rψ : ((?X1 = 1∨ ?Y1 = 0) ∧ (?X1 = 0∨ ?Y1 = 1))

Pψ :

Pϕ :

µ0 :

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 36 / 108

PSPACE-hardness: A closer look

Assume ϕ = ∀x1∃y1 ψ, where ψ = (x1 ∨ ¬y1) ∧ (¬x1 ∨ y1).

We generate G , Pϕ and µ0 such that µ0 belongs to the answer of
Pϕ over G iff ϕ is valid:

G : {(a, tv, 0), (a, tv, 1), (a, false, 0), (a, true, 1)}

Rψ : ((?X1 = 1∨ ?Y1 = 0) ∧ (?X1 = 0∨ ?Y1 = 1))

Pψ : (((a, tv, ?X1) AND (a, tv, ?Y1)) FILTER Rψ)

Pϕ :

µ0 :

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 36 / 108

PSPACE-hardness: A closer look

Assume ϕ = ∀x1∃y1 ψ, where ψ = (x1 ∨ ¬y1) ∧ (¬x1 ∨ y1).

We generate G , Pϕ and µ0 such that µ0 belongs to the answer of
Pϕ over G iff ϕ is valid:

G : {(a, tv, 0), (a, tv, 1), (a, false, 0), (a, true, 1)}

Rψ : ((?X1 = 1∨ ?Y1 = 0) ∧ (?X1 = 0∨ ?Y1 = 1))

Pψ : (((a, tv, ?X1) AND (a, tv, ?Y1)) FILTER Rψ)

Pϕ : (a, true, ?B0) OPT (P1 OPT (Q1 AND Pψ))

µ0 :

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 36 / 108

PSPACE-hardness: A closer look

Assume ϕ = ∀x1∃y1 ψ, where ψ = (x1 ∨ ¬y1) ∧ (¬x1 ∨ y1).

We generate G , Pϕ and µ0 such that µ0 belongs to the answer of
Pϕ over G iff ϕ is valid:

G : {(a, tv, 0), (a, tv, 1), (a, false, 0), (a, true, 1)}

Rψ : ((?X1 = 1∨ ?Y1 = 0) ∧ (?X1 = 0∨ ?Y1 = 1))

Pψ : (((a, tv, ?X1) AND (a, tv, ?Y1)) FILTER Rψ)

Pϕ : (a, true, ?B0) OPT (P1 OPT (Q1 AND Pψ))

µ0 : {?B0 7→ 1}

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 36 / 108

PSPACE-hardness: A closer look

ϕ : ∀x1∃y1 (x1 ∨ ¬y1) ∧ (¬x1 ∨ y1)
Pψ : (((a, tv, ?X1) AND (a, tv, ?Y1)) FILTER

((?X1 = 1∨ ?Y1 = 0) ∧ (?X1 = 0∨ ?Y1 = 1)))
Pϕ : (a, true, ?B0) OPT (P1 OPT (Q1 AND Pψ))
P1 : (a, tv, ?X1)
Q1 : (a, tv, ?X1) AND (a, tv, ?Y1) AND (a, false, ?B0)

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 37 / 108

PSPACE-hardness: A closer look

ϕ : ∀x1∃y1 (x1 ∨ ¬y1) ∧ (¬x1 ∨ y1)
Pψ : (((a, tv, ?X1) AND (a, tv, ?Y1)) FILTER

((?X1 = 1∨ ?Y1 = 0) ∧ (?X1 = 0∨ ?Y1 = 1)))
Pϕ : (a, true, ?B0) OPT (P1 OPT (Q1 AND Pψ))
P1 : (a, tv, ?X1)
Q1 : (a, tv, ?X1) AND (a, tv, ?Y1) AND (a, false, ?B0)

P1

?B0 7→ 1

?X1 7→ 0 ?Y1 7→ i ?B0 7→ 0

?X1 7→ 1 ?Y1 7→ j ?B0 7→ 0

Q1

?X1 7→ 0

?X1 7→ 1

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 37 / 108

PSPACE-hardness: A closer look

ϕ : ∀x1∃y1 (x1 ∨ ¬y1) ∧ (¬x1 ∨ y1)
Pψ : (((a, tv, ?X1) AND (a, tv, ?Y1)) FILTER

((?X1 = 1∨ ?Y1 = 0) ∧ (?X1 = 0∨ ?Y1 = 1)))
Pϕ : (a, true, ?B0) OPT (P1 OPT (Q1 AND Pψ))
P1 : (a, tv, ?X1)
Q1 : (a, tv, ?X1) AND (a, tv, ?Y1) AND (a, false, ?B0)

P1

?B0 7→ 1

?X1 7→ 0 ?Y1 7→ i ?B0 7→ 0

?X1 7→ 1 ?Y1 7→ j ?B0 7→ 0

Q1

?X1 7→ 0

?X1 7→ 1

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 37 / 108

PSPACE-hardness: A closer look

ϕ : ∀x1∃y1 (x1 ∨ ¬y1) ∧ (¬x1 ∨ y1)
Pψ : (((a, tv, ?X1) AND (a, tv, ?Y1)) FILTER

((?X1 = 1∨ ?Y1 = 0) ∧ (?X1 = 0∨ ?Y1 = 1)))
Pϕ : (a, true, ?B0) OPT (P1 OPT (Q1 AND Pψ))
P1 : (a, tv, ?X1)
Q1 : (a, tv, ?X1) AND (a, tv, ?Y1) AND (a, false, ?B0)

P1

?B0 7→ 1

?X1 7→ 0 ?Y1 7→ i ?B0 7→ 0

?X1 7→ 1 ?Y1 7→ j ?B0 7→ 0

Q1

?X1 7→ 0

?X1 7→ 1

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 37 / 108

PSPACE-hardness: A closer look

ϕ : ∀x1∃y1 (x1 ∨ ¬y1) ∧ (¬x1 ∨ y1)
Pψ : (((a, tv, ?X1) AND (a, tv, ?Y1)) FILTER

((?X1 = 1∨ ?Y1 = 0) ∧ (?X1 = 0∨ ?Y1 = 1)))
Pϕ : (a, true, ?B0) OPT (P1 OPT (Q1 AND Pψ))
P1 : (a, tv, ?X1)
Q1 : (a, tv, ?X1) AND (a, tv, ?Y1) AND (a, false, ?B0)

P1

?B0 7→ 1

?X1 7→ 0 ?Y1 7→ i ?B0 7→ 0

?X1 7→ 1 ?Y1 7→ j ?B0 7→ 0

Q1

?X1 7→ 0

?X1 7→ 1

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 37 / 108

PSPACE-hardness: A closer look

ϕ : ∀x1∃y1 (x1 ∨ ¬y1) ∧ (¬x1 ∨ y1)
Pψ : (((a, tv, ?X1) AND (a, tv, ?Y1)) FILTER

((?X1 = 1∨ ?Y1 = 0) ∧ (?X1 = 0∨ ?Y1 = 1)))
Pϕ : (a, true, ?B0) OPT (P1 OPT (Q1 AND Pψ))
P1 : (a, tv, ?X1)
Q1 : (a, tv, ?X1) AND (a, tv, ?Y1) AND (a, false, ?B0)

P1

?B0 7→ 1

?X1 7→ 0 ?Y1 7→ i ?B0 7→ 0

?X1 7→ 1 ?Y1 7→ j ?B0 7→ 0

Q1

?X1 7→ 0

?X1 7→ 1

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 37 / 108

What is the source of the high complexity?

Theorem (SML08)

The evaluation problem remains PSPACE-complete for OPT
expressions

The use of the OPT operator makes the evaluation problem
harder.

◮ How can we deal with this operator? How can we reduce the
complexity?

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 38 / 108

What is the source of the high complexity?

Theorem (SML08)

The evaluation problem remains PSPACE-complete for OPT
expressions

The use of the OPT operator makes the evaluation problem
harder.

◮ How can we deal with this operator? How can we reduce the
complexity?

◮ The formal study has some interesting practical implications.

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 38 / 108

AND-FILTER-OPT fragment: Reducing the complexity

Patterns in our reduction (and in [SML08]) are not very natural:

(a, true, ?B0) OPT (P1 OPT (Q1 AND Pψ))

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 39 / 108

AND-FILTER-OPT fragment: Reducing the complexity

Patterns in our reduction (and in [SML08]) are not very natural:

(a, true, ?B0) OPT (P1 OPT (Q1 AND Pψ))

↑
?B0

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 39 / 108

AND-FILTER-OPT fragment: Reducing the complexity

Patterns in our reduction (and in [SML08]) are not very natural:

(a, true, ?B0) OPT (P1 OPT (Q1 AND Pψ))

↑ ↑
?B0 ?B0

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 39 / 108

AND-FILTER-OPT fragment: Reducing the complexity

Patterns in our reduction (and in [SML08]) are not very natural:

(a, true, ?B0) OPT (P1 OPT (Q1 AND Pψ))

↑ ↑ ↑
?B0 × ?B0

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 39 / 108

AND-FILTER-OPT fragment: Reducing the complexity

Patterns in our reduction (and in [SML08]) are not very natural:

(a, true, ?B0) OPT (P1 OPT (Q1 AND Pψ))

↑ ↑ ↑
?B0 × ?B0

Is ?B0 giving optional information for P1?

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 39 / 108

AND-FILTER-OPT fragment: Reducing the complexity

Patterns in our reduction (and in [SML08]) are not very natural:

(a, true, ?B0) OPT (P1 OPT (Q1 AND Pψ))

↑ ↑ ↑
?B0 × ?B0

Is ?B0 giving optional information for P1?

◮ No, ?B0 is giving optional information for (a, true, ?B0)?

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 39 / 108

AND-FILTER-OPT fragment: Reducing the complexity

Patterns in our reduction (and in [SML08]) are not very natural:

(a, true, ?B0) OPT (P1 OPT (Q1 AND Pψ))

↑ ↑ ↑
?B0 × ?B0

Is ?B0 giving optional information for P1?

◮ No, ?B0 is giving optional information for (a, true, ?B0)?

These patterns rarely occur in practice.

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 39 / 108

Well–designed patterns

Definition

An AND-FILTER-OPT pattern is well–designed if for every OPT in
the pattern:

(· · · · · · · · · · · · (A OPT B) · · · · · · · · · · · ·)

if a variable occurs inside B and anywhere outside the OPT
operator, then the variable must also occur inside A.

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 40 / 108

Well–designed patterns

Definition

An AND-FILTER-OPT pattern is well–designed if for every OPT in
the pattern:

(· · · · · · · · · · · · (A OPT B) · · · · · · · · · · · ·)
↑

if a variable occurs inside B and anywhere outside the OPT
operator, then the variable must also occur inside A.

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 40 / 108

Well–designed patterns

Definition

An AND-FILTER-OPT pattern is well–designed if for every OPT in
the pattern:

(· · · · · · · · · · · · (A OPT B) · · · · · · · · · · · ·)
↑ ↑ ↑

if a variable occurs inside B and anywhere outside the OPT
operator, then the variable must also occur inside A.

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 40 / 108

Well–designed patterns

Definition

An AND-FILTER-OPT pattern is well–designed if for every OPT in
the pattern:

(· · · · · · · · · · · · (A OPT B) · · · · · · · · · · · ·)
↑ ↑ ↑ ↑

if a variable occurs inside B and anywhere outside the OPT
operator, then the variable must also occur inside A.

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 40 / 108

Well–designed patterns

Definition

An AND-FILTER-OPT pattern is well–designed if for every OPT in
the pattern:

(· · · · · · · · · · · · (A OPT B) · · · · · · · · · · · ·)
↑ ↑ ↑ ↑

if a variable occurs inside B and anywhere outside the OPT
operator, then the variable must also occur inside A.

Example
(

(?Y , name, paul) OPT (?X , email, ?Z)

)

AND (?X , name, john)

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 40 / 108

Well–designed patterns

Definition

An AND-FILTER-OPT pattern is well–designed if for every OPT in
the pattern:

(· · · · · · · · · · · · (A OPT B) · · · · · · · · · · · ·)
↑ ↑ ↑ ↑

if a variable occurs inside B and anywhere outside the OPT
operator, then the variable must also occur inside A.

Example
(

(?Y , name, paul) OPT (?X , email, ?Z)

)

AND (?X , name, john)

↑

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 40 / 108

Well–designed patterns

Definition

An AND-FILTER-OPT pattern is well–designed if for every OPT in
the pattern:

(· · · · · · · · · · · · (A OPT B) · · · · · · · · · · · ·)
↑ ↑ ↑ ↑

if a variable occurs inside B and anywhere outside the OPT
operator, then the variable must also occur inside A.

Example
(

(?Y , name, paul) OPT (?X , email, ?Z)

)

AND (?X , name, john)

↑ ↑

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 40 / 108

Well–designed patterns

Definition

An AND-FILTER-OPT pattern is well–designed if for every OPT in
the pattern:

(· · · · · · · · · · · · (A OPT B) · · · · · · · · · · · ·)
↑ ↑ ↑ ↑

if a variable occurs inside B and anywhere outside the OPT
operator, then the variable must also occur inside A.

Example
(

(?Y , name, paul) OPT (?X , email, ?Z)

)

AND (?X , name, john)

�� ↑ ↑

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 40 / 108

AND-FILTER-OPT fragment: Reducing the complexity

Theorem (PAG09)

The evaluation problem is coNP-complete for well-designed
AND-FILTER-OPT patterns.

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 41 / 108

AND-FILTER-OPT fragment: Reducing the complexity

Theorem (PAG09)

The evaluation problem is coNP-complete for well-designed
AND-FILTER-OPT patterns.

Proof sketch of membership

First step: Prove that if P ′ is obtained by removing some optional
parts of P , then P ′ cannot be more informative than P .

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 41 / 108

AND-FILTER-OPT fragment: Reducing the complexity

Theorem (PAG09)

The evaluation problem is coNP-complete for well-designed
AND-FILTER-OPT patterns.

Proof sketch of membership

First step: Prove that if P ′ is obtained by removing some optional
parts of P , then P ′ cannot be more informative than P .

◮ This holds for well-designed patterns.

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 41 / 108

AND-FILTER-OPT fragment: Reducing the complexity

Theorem (PAG09)

The evaluation problem is coNP-complete for well-designed
AND-FILTER-OPT patterns.

Proof sketch of membership

First step: Prove that if P ′ is obtained by removing some optional
parts of P , then P ′ cannot be more informative than P .

◮ This holds for well-designed patterns.

◮ This does not hold in general: G = {(1, a, b), (2, c, d)} and

(?X , a, b) OPT ((?Y , c, d) OPT (?X , c, d))

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 41 / 108

AND-FILTER-OPT fragment: Reducing the complexity

Notation:

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 42 / 108

AND-FILTER-OPT fragment: Reducing the complexity

Notation:

◮ µ ⊑ µ′: µ and µ′ are compatible and dom(µ) ⊆ dom(µ′)

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 42 / 108

AND-FILTER-OPT fragment: Reducing the complexity

Notation:

◮ µ ⊑ µ′: µ and µ′ are compatible and dom(µ) ⊆ dom(µ′)

◮ Ω ⊑ Ω′: for every µ ∈ Ω, there exists µ′ ∈ Ω′ s.t. µ ⊑ µ′

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 42 / 108

AND-FILTER-OPT fragment: Reducing the complexity

Notation:

◮ µ ⊑ µ′: µ and µ′ are compatible and dom(µ) ⊆ dom(µ′)

◮ Ω ⊑ Ω′: for every µ ∈ Ω, there exists µ′ ∈ Ω′ s.t. µ ⊑ µ′

◮ P ′ is a reduction of P : P ′ can be obtained from P by
replacing a sub-formula (P1 OPT P2) of P by P1

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 42 / 108

AND-FILTER-OPT fragment: Reducing the complexity

Notation:

◮ µ ⊑ µ′: µ and µ′ are compatible and dom(µ) ⊆ dom(µ′)

◮ Ω ⊑ Ω′: for every µ ∈ Ω, there exists µ′ ∈ Ω′ s.t. µ ⊑ µ′

◮ P ′ is a reduction of P : P ′ can be obtained from P by
replacing a sub-formula (P1 OPT P2) of P by P1

P = (t1 OPT t2) AND (t2 OPT (t3 AND t4))

P ′ = t1 AND (t2 OPT (t3 AND t4))

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 42 / 108

AND-FILTER-OPT fragment: Reducing the complexity

◮ E: Reflexive and transitive closure of the reduction relation

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 43 / 108

AND-FILTER-OPT fragment: Reducing the complexity

◮ E: Reflexive and transitive closure of the reduction relation

P = (t1 OPT t2) AND (t2 OPT (t3 AND t4))

P ′ = t1 AND (t2 OPT (t3 AND t4))

P ′′ = t1 AND t2

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 43 / 108

AND-FILTER-OPT fragment: Reducing the complexity

◮ E: Reflexive and transitive closure of the reduction relation

P = (t1 OPT t2) AND (t2 OPT (t3 AND t4))

P ′ = t1 AND (t2 OPT (t3 AND t4))

P ′′ = t1 AND t2

Proposition

If P is a UNION-free well-designed graph pattern and P ′ E P, then
JP ′KG ⊑ JPKG for every graph G.

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 43 / 108

AND-FILTER-OPT fragment: Reducing the complexity

Second step: Prove that the “compatible” information is not lost
by an OPT operator

◮ Again this holds for well-designed patterns.

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 44 / 108

AND-FILTER-OPT fragment: Reducing the complexity

Second step: Prove that the “compatible” information is not lost
by an OPT operator

◮ Again this holds for well-designed patterns.

More notation:

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 44 / 108

AND-FILTER-OPT fragment: Reducing the complexity

Second step: Prove that the “compatible” information is not lost
by an OPT operator

◮ Again this holds for well-designed patterns.

More notation:

◮ and(P): replace OPT by AND in P

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 44 / 108

AND-FILTER-OPT fragment: Reducing the complexity

Second step: Prove that the “compatible” information is not lost
by an OPT operator

◮ Again this holds for well-designed patterns.

More notation:

◮ and(P): replace OPT by AND in P

P = (t1 OPT t2) AND (t2 OPT (t3 AND t4))

and(P) = (t1 AND t2) AND (t2 AND (t3 AND t4))

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 44 / 108

AND-FILTER-OPT fragment: Reducing the complexity

Second step: Prove that the “compatible” information is not lost
by an OPT operator

◮ Again this holds for well-designed patterns.

More notation:

◮ and(P): replace OPT by AND in P

P = (t1 OPT t2) AND (t2 OPT (t3 AND t4))

and(P) = (t1 AND t2) AND (t2 AND (t3 AND t4))

◮ µ is a partial solution for P over G : there exists P ′ E P s.t.
µ ∈ Jand(P ′)KG .

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 44 / 108

AND-FILTER-OPT fragment: Reducing the complexity

Let P be a UNION-free well-designed graph pattern and G an
RDF graph.

Proposition

µ ∈ JPKG if and only if µ is a maximal (w.r.t. ⊑) partial solution
for P over G .

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 45 / 108

AND-FILTER-OPT fragment: Reducing the complexity

Let P be a UNION-free well-designed graph pattern and G an
RDF graph.

Proposition

µ ∈ JPKG if and only if µ is a maximal (w.r.t. ⊑) partial solution
for P over G .

Third step: Show that it can be decided in polynomial time
whether µ is a partial solution for P over G

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 45 / 108

AND-FILTER-OPT fragment: Reducing the complexity

Last step: Combine all the previous results

To verify whether µ 6∈ JPKG :

(1) Check whether µ is not a partial solution for P over G .
◮ If this is the case, then return true, else go to (2).

(2) Guess a mapping µ′ such that µ ⊑ µ′ and µ′ 6⊑ µ.

(2.1) If µ′ is a partial solution for P over G , then return true.

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 46 / 108

A corollary of the previous result

Corollary

The evaluation problem is coNP-complete for patterns of the form
P1 UNION P2 UNION · · · UNION Pk , where each Pi is a
well-designed AND-FILTER-OPT pattern.

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 47 / 108

A corollary of the previous result

Corollary

The evaluation problem is coNP-complete for patterns of the form
P1 UNION P2 UNION · · · UNION Pk , where each Pi is a
well-designed AND-FILTER-OPT pattern.

Can we use this in practice?

◮ Well-designed patterns are suitable for optimization.

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 47 / 108

First part: Ground RDF without RDFS vocabulary

SPARQL: A query language for RDF

◮ Syntax and formal semantics

◮ Complexity of the evaluation problem

◮ Optimization methods

◮ Expressiveness

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 48 / 108

Classical optimization

◮ Classical optimization assumes null-rejection.

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 49 / 108

Classical optimization

◮ Classical optimization assumes null-rejection.
◮ Null-rejection: the join/outer–join condition must fail in the

presence of nulls.

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 49 / 108

Classical optimization

◮ Classical optimization assumes null-rejection.
◮ Null-rejection: the join/outer–join condition must fail in the

presence of nulls.

◮ SPARQL operations are not null-rejecting.
◮ By definition of compatible mappings.

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 49 / 108

Classical optimization

◮ Classical optimization assumes null-rejection.
◮ Null-rejection: the join/outer–join condition must fail in the

presence of nulls.

◮ SPARQL operations are not null-rejecting.
◮ By definition of compatible mappings.

◮ Can we use classical optimization in the context of SPARQL?

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 49 / 108

Classical optimization

◮ Classical optimization assumes null-rejection.
◮ Null-rejection: the join/outer–join condition must fail in the

presence of nulls.

◮ SPARQL operations are not null-rejecting.
◮ By definition of compatible mappings.

◮ Can we use classical optimization in the context of SPARQL?
◮ Well-designed patterns are suitable for reordering, and then for

classical optimization.

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 49 / 108

Well–designed graph patterns and optimization

Consider the following rules:

((P1 OPT P2) FILTER R) −→ ((P1 FILTER R) OPT P2) (1)

(P1 AND (P2 OPT P3)) −→ ((P1 AND P2) OPT P3) (2)

((P1 OPT P2) AND P3) −→ ((P1 AND P3) OPT P2) (3)

Proposition

If P is a well-designed pattern and Q is obtained from P by
applying either (1) or (2) or (3), then Q is a well-designed pattern
equivalent to P.

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 50 / 108

Well–designed graph patterns and optimization

A graph pattern P is in OPT normal form if there exist
AND-FILTER patterns Q1, . . ., Qk such that:

P is constructed from Q1, . . ., Qk by using only the OPT operator.

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 51 / 108

Well–designed graph patterns and optimization

A graph pattern P is in OPT normal form if there exist
AND-FILTER patterns Q1, . . ., Qk such that:

P is constructed from Q1, . . ., Qk by using only the OPT operator.

Theorem (PAG06)

Every well-designed pattern is equivalent to a pattern in OPT
normal form.

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 51 / 108

Well–designed graph patterns and optimization

Previous theorem suggests a strategy for evaluating a well-designed
pattern P .

◮ Transform P into an equivalent pattern Q in OPT normal form, and
then evaluate Q.

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 52 / 108

Well–designed graph patterns and optimization

Previous theorem suggests a strategy for evaluating a well-designed
pattern P .

◮ Transform P into an equivalent pattern Q in OPT normal form, and
then evaluate Q.

Why this could be a good approach?

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 52 / 108

Well–designed graph patterns and optimization

Previous theorem suggests a strategy for evaluating a well-designed
pattern P .

◮ Transform P into an equivalent pattern Q in OPT normal form, and
then evaluate Q.

Why this could be a good approach?

◮ FILTER should be applied as soon as possible.

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 52 / 108

Well–designed graph patterns and optimization

Previous theorem suggests a strategy for evaluating a well-designed
pattern P .

◮ Transform P into an equivalent pattern Q in OPT normal form, and
then evaluate Q.

Why this could be a good approach?

◮ FILTER should be applied as soon as possible.

◮ AND is better as a filter than OPT:

JP1 AND P2KG ⊆ JP1 OPT P2KG .

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 52 / 108

Well–designed graph patterns and optimization

Previous theorem suggests a strategy for evaluating a well-designed
pattern P .

◮ Transform P into an equivalent pattern Q in OPT normal form, and
then evaluate Q.

Why this could be a good approach?

◮ FILTER should be applied as soon as possible.

◮ AND is better as a filter than OPT:

JP1 AND P2KG ⊆ JP1 OPT P2KG .

An experimental evaluation is needed.

◮ The final strategy will probably have to consider alternative
re-orderings (not always the OPT normal form).

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 52 / 108

First part: Ground RDF without RDFS vocabulary

SPARQL: A query language for RDF

◮ Syntax and formal semantics

◮ Complexity of the evaluation problem

◮ Optimization methods

◮ Expressiveness

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 53 / 108

Is SPARQL expressive enough?

How do we study the expressive power of a language?

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 54 / 108

Is SPARQL expressive enough?

How do we study the expressive power of a language?

◮ How do we prove that a language has a good expressive
power?

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 54 / 108

Is SPARQL expressive enough?

How do we study the expressive power of a language?

◮ How do we prove that a language has a good expressive
power?

One alternative: Compare it with a well-known language

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 54 / 108

Is SPARQL expressive enough?

How do we study the expressive power of a language?

◮ How do we prove that a language has a good expressive
power?

One alternative: Compare it with a well-known language

◮ Relational Algebra is a very good alternative

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 54 / 108

Is SPARQL expressive enough?

How do we study the expressive power of a language?

◮ How do we prove that a language has a good expressive
power?

One alternative: Compare it with a well-known language

◮ Relational Algebra is a very good alternative

◮ We show that SPARQL and Relational Algebra have the same
expressive power

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 54 / 108

But not so fast ...

We first have to say over which class of structure we compare
Relational Algebra with SPARQL.

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 55 / 108

But not so fast ...

We first have to say over which class of structure we compare
Relational Algebra with SPARQL.

◮ Conditional XPath is the same as FO

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 55 / 108

But not so fast ...

We first have to say over which class of structure we compare
Relational Algebra with SPARQL.

◮ Conditional XPath is the same as FO over trees [M04]

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 55 / 108

But not so fast ...

We first have to say over which class of structure we compare
Relational Algebra with SPARQL.

◮ Conditional XPath is the same as FO over trees [M04]

We use the following relational schema:

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 55 / 108

But not so fast ...

We first have to say over which class of structure we compare
Relational Algebra with SPARQL.

◮ Conditional XPath is the same as FO over trees [M04]

We use the following relational schema:

◮ triple(·, ·, ·)

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 55 / 108

But not so fast ...

We first have to say over which class of structure we compare
Relational Algebra with SPARQL.

◮ Conditional XPath is the same as FO over trees [M04]

We use the following relational schema:

◮ triple(·, ·, ·)

◮ N(·): It only contains value null

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 55 / 108

But not so fast ...

We first have to say over which class of structure we compare
Relational Algebra with SPARQL.

◮ Conditional XPath is the same as FO over trees [M04]

We use the following relational schema:

◮ triple(·, ·, ·)

◮ N(·): It only contains value null

Every RDF graph G can be naturally translated into an instance IG
over this schema.

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 55 / 108

But not so fast ...

We use a language that has the same expressive power as
Relational Algebra: nr-Datalog¬

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 56 / 108

But not so fast ...

We use a language that has the same expressive power as
Relational Algebra: nr-Datalog¬

Answer(X) ← Q(X ,Y),Y = a,¬R(Y ,Y)

R(U,V) ← Q(U,Z),Q(Z ,V)

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 56 / 108

But not so fast ...

We use a language that has the same expressive power as
Relational Algebra: nr-Datalog¬

Answer(X) ← Q(X ,Y),Y = a,¬R(Y ,Y)

R(U,V) ← Q(U,Z),Q(Z ,V)

Last point: It is easy to prove that

Answer(X) ← triple(X ,Y ,Z)

is not equivalent to any SPARQL graph pattern.

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 56 / 108

But not so fast ...

We use a language that has the same expressive power as
Relational Algebra: nr-Datalog¬

Answer(X) ← Q(X ,Y),Y = a,¬R(Y ,Y)

R(U,V) ← Q(U,Z),Q(Z ,V)

Last point: It is easy to prove that

Answer(X) ← triple(X ,Y ,Z)

is not equivalent to any SPARQL graph pattern.

◮ We need to consider the SELECT operator

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 56 / 108

SPARQL SELECT language

A SPARQL SELECT query is a tuple (W ,P):

◮ P is an SPARQL graph pattern

◮ W is subset of var(P)

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 57 / 108

SPARQL SELECT language

A SPARQL SELECT query is a tuple (W ,P):

◮ P is an SPARQL graph pattern

◮ W is subset of var(P)

Notation: µ|W is the restriction of µ to W

◮ dom(µ|W) = dom(µ) ∩W , and µ|W (?X) = µ(?X) for every
?X ∈ dom(µ) ∩W

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 57 / 108

SPARQL SELECT language

A SPARQL SELECT query is a tuple (W ,P):

◮ P is an SPARQL graph pattern

◮ W is subset of var(P)

Notation: µ|W is the restriction of µ to W

◮ dom(µ|W) = dom(µ) ∩W , and µ|W (?X) = µ(?X) for every
?X ∈ dom(µ) ∩W

Definition

Given an RDF graph G :

J(W ,P)KG = {µ|W | µ ∈ JPKG}

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 57 / 108

SPARQL SELECT ⊆ nr-Datalog¬

Theorem (AG08)

Every query expressible in SPARQL SELECT is expressible in
nr-Datalog¬.

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 58 / 108

SPARQL SELECT ⊆ nr-Datalog¬

Theorem (AG08)

Every query expressible in SPARQL SELECT is expressible in
nr-Datalog¬.

Example

((?X , a, b) OPT (?X , c , ?Z)) is equivalent to:

Answer(X ,Z) ← triple(X , a, b), triple(X , c ,Z)

Answer(X ,Z) ← triple(X , a, b),N(Z),¬q(X)

q(X) ← triple(X , c ,V)

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 58 / 108

nr-Datalog¬ ⊆ SPARQL SELECT

Theorem (AG08)

Every query over {triple} expressible in nr-Datalog¬ is expressible
in SPARQL SELECT.

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 59 / 108

nr-Datalog¬ ⊆ SPARQL SELECT

Theorem (AG08)

Every query over {triple} expressible in nr-Datalog¬ is expressible
in SPARQL SELECT.

But SPARQL SELECT is so positive!

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 59 / 108

nr-Datalog¬ ⊆ SPARQL SELECT

Theorem (AG08)

Every query over {triple} expressible in nr-Datalog¬ is expressible
in SPARQL SELECT.

But SPARQL SELECT is so positive!

◮ Difference operator is definable in SPARQL!

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 59 / 108

MINUS operator

Let MINUS be defined as:

JP1 MINUS P2KG = JP1KG r JP2KG

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 60 / 108

MINUS operator

Let MINUS be defined as:

JP1 MINUS P2KG = JP1KG r JP2KG

Proposition

(P1 MINUS P2) is equivalent to:

(

P1 OPT (P2 AND (?X1, ?X2, ?X3))

)

FILTER ¬ bound(?X1),

where ?X1, ?X2, ?X3 are mentioned neither in P1 nor in P2.

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 60 / 108

SPARQL SELECT ⊆ nr-Datalog¬: Example

Consider the following nr-Datalog¬ program:

Answer(X) ← triple(X , a, b),¬q(X)

q(X) ← triple(X , c ,Y), triple(Y , c ,Z)

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 61 / 108

SPARQL SELECT ⊆ nr-Datalog¬: Example

Consider the following nr-Datalog¬ program:

Answer(X) ← triple(X , a, b),¬q(X)

q(X) ← triple(X , c ,Y), triple(Y , c ,Z)

This program is equivalent to:

(?X , a, b) MINUS

(

(?X , c , ?Y) AND (?Y , c , ?Z)

)

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 61 / 108

Second part: Ground RDF with RDFS vocabulary

◮ Syntax and formal semantics

◮ Querying RDFS data

◮ nSPARQL: A navigational query language for RDFS

◮ Expressiveness

◮ Complexity of the evaluation problem

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 62 / 108

Second part: Ground RDF with RDFS vocabulary

◮ Syntax and formal semantics

◮ Querying RDFS data

◮ nSPARQL: A navigational query language for RDFS

◮ Expressiveness

◮ Complexity of the evaluation problem

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 63 / 108

Syntax of RDFS

RDFS extends RDF with a schema vocabulary: subPropertyOf
(rdf:sp), subClassOf (rdf:sc), domain (rdf:dom), range
(rdf:range), type (rdf:type).

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 64 / 108

Syntax of RDFS

RDFS extends RDF with a schema vocabulary: subPropertyOf
(rdf:sp), subClassOf (rdf:sc), domain (rdf:dom), range
(rdf:range), type (rdf:type).

How can one query RDFS data?

◮ Evaluating queries which involve this vocabulary is
challenging.

◮ There is not yet consensus in the Semantic Web community
on how to define a query language for RDFS.

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 64 / 108

A simple SPARQL query: (Messi, rdf:type, person)

lives in

works in

rdf:sp

person

sportman

soccer player

rdf:sc

rdf:sc

rdf:dom

rdf:dom rdf:range

rdf:range

Barcelona

plays in soccer team

company

rdf:typerdf:type

rdf:sc

Messi

Spain

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 65 / 108

Semantics of RDFS

Checking whether a triple t is in a graph G is the basic step when
answering queries over RDF.

◮ For the case of RDFS, we need to check whether t is implied by G .

The notion of entailment in RDFS can be defined in terms of
classical notions such as model, interpretation, etc.

◮ As for the case of first-order logic

This notion can also be characterized by a set of inference rules.

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 66 / 108

An inference system for RDFS

Inference rule:
R
R ′

◮ R and R ′ are sequences of RDF triples including symbols A,
X , . . ., to be replaced by elements from U.

Instantiation of a rule:
σ(R)
σ(R ′)

◮ σ : {A,X , . . .} → U

Application of a rule
R
R ′

to an RDF graph G :

◮ Select an assignment σ : {A,X , . . .} → U.

◮ if σ(R) ⊆ G , then obtain G ∪ σ(R ′)

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 67 / 108

An inference system for RDFS

Sub-property :
(A,rdf:sp,B) (B,rdf:sp,C)

(A,rdf:sp,C)

(A,rdf:sp,B) (X ,A,Y)
(X ,B,Y)

Subclass :
(A,rdf:sc,B) (B,rdf:sc,C)

(A,rdf:sc,C)

(A,rdf:sc,B) (X ,rdf:type,A)
(X ,rdf:type,B)

Typing :
(A,rdf:dom,B) (X ,A,Y)

(X ,rdf:type,B)

(A,rdf:range,B) (X ,A,Y)
(Y,rdf:type,B)

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 68 / 108

Entailment in RDFS

Theorem (H03,GHM04,MPG07)

The previous system of inference rules characterize the notion of
entailment in ground RDFS.

Thus, a triple t can be deduced from an RDF graph G (G |= t) if
there exists an RDF G ′ such that:

◮ t ∈ G ′

◮ G ′ can be obtained from G by successively applying the rules
in the previous system.

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 69 / 108

Entailment in RDFS: Closure of a graph

Definition

The closure of an RDFS graph G (cl(G)) is the graph obtained by
adding to G all the triples that are implied by G .

A basic property of the closure:

◮ G |= t iff t ∈ cl(G)

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 70 / 108

Second part: Ground RDF with RDFS vocabulary

◮ Syntax and formal semantics

◮ Querying RDFS data

◮ nSPARQL: A navigational query language for RDFS

◮ Expressiveness

◮ Complexity of the evaluation problem

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 71 / 108

Querying RDFS data

Basic step for answering queries over RDFS:

◮ Checking whether a triple t is in cl(G).

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 72 / 108

Querying RDFS data

Basic step for answering queries over RDFS:

◮ Checking whether a triple t is in cl(G).

Definition

The RDFS-evaluation of a graph pattern P over an RDFS graph G
is defined as the evaluation of P over cl(G):

JPKrdfs
G = JPKcl(G)

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 72 / 108

Example: (Messi, rdf:type, person) over the closure

Messi

works in

rdf:sp

person

sportman

soccer player

rdf:sc

rdf:sc

rdf:dom

rdf:dom rdf:range

rdf:range

Barcelona

plays in soccer team

company

rdf:typerdf:type

rdf:sc

rdf:type

rdf:sc

rdf:type

Spain

lives in

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 73 / 108

Answering SPARQL queries over RDFS

A simple approach for answering a SPARQL query P over an
RDFS graph G :

◮ Compute cl(G), and then evaluate P over cl(G) as for RDF.

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 74 / 108

Answering SPARQL queries over RDFS

A simple approach for answering a SPARQL query P over an
RDFS graph G :

◮ Compute cl(G), and then evaluate P over cl(G) as for RDF.

This approach has some drawbacks:

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 74 / 108

Answering SPARQL queries over RDFS

A simple approach for answering a SPARQL query P over an
RDFS graph G :

◮ Compute cl(G), and then evaluate P over cl(G) as for RDF.

This approach has some drawbacks:

◮ The size of the closure of G can be quadratic in the size of G .

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 74 / 108

Answering SPARQL queries over RDFS

A simple approach for answering a SPARQL query P over an
RDFS graph G :

◮ Compute cl(G), and then evaluate P over cl(G) as for RDF.

This approach has some drawbacks:

◮ The size of the closure of G can be quadratic in the size of G .

◮ Once the closure has been computed, all the queries are evaluated
over a graph which can be much larger than the original graph.

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 74 / 108

Answering SPARQL queries over RDFS

A simple approach for answering a SPARQL query P over an
RDFS graph G :

◮ Compute cl(G), and then evaluate P over cl(G) as for RDF.

This approach has some drawbacks:

◮ The size of the closure of G can be quadratic in the size of G .

◮ Once the closure has been computed, all the queries are evaluated
over a graph which can be much larger than the original graph.

◮ The approach is not goal-oriented.

When evaluating (a, rdf:sc, b), a goal-oriented approach should
not compute cl(G):

◮ It should just verify whether there exists a path from a to b in
G where every edge has label rdf:sc.

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 74 / 108

Extending SPARQL with navigational capabilities

The example (a, rdf:sc, b) suggests that a query language with
navigational capabilities could be appropriate for RDFS.

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 75 / 108

Extending SPARQL with navigational capabilities

The example (a, rdf:sc, b) suggests that a query language with
navigational capabilities could be appropriate for RDFS.

Possible approach: Extend SPARQL with navigational capabilities.

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 75 / 108

Extending SPARQL with navigational capabilities

The example (a, rdf:sc, b) suggests that a query language with
navigational capabilities could be appropriate for RDFS.

Possible approach: Extend SPARQL with navigational capabilities.

◮ A query P over an RDFS graph G is answered by navigating G
(cl(G) is not computed).

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 75 / 108

Extending SPARQL with navigational capabilities

The example (a, rdf:sc, b) suggests that a query language with
navigational capabilities could be appropriate for RDFS.

Possible approach: Extend SPARQL with navigational capabilities.

◮ A query P over an RDFS graph G is answered by navigating G
(cl(G) is not computed).

This approach has some advantages:

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 75 / 108

Extending SPARQL with navigational capabilities

The example (a, rdf:sc, b) suggests that a query language with
navigational capabilities could be appropriate for RDFS.

Possible approach: Extend SPARQL with navigational capabilities.

◮ A query P over an RDFS graph G is answered by navigating G
(cl(G) is not computed).

This approach has some advantages:

◮ It is goal-oriented.

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 75 / 108

Extending SPARQL with navigational capabilities

The example (a, rdf:sc, b) suggests that a query language with
navigational capabilities could be appropriate for RDFS.

Possible approach: Extend SPARQL with navigational capabilities.

◮ A query P over an RDFS graph G is answered by navigating G
(cl(G) is not computed).

This approach has some advantages:

◮ It is goal-oriented.

◮ It has been used to design query languages for XML (e.g., XPath
and XQuery). The results for these languages can be used here.

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 75 / 108

Extending SPARQL with navigational capabilities

The example (a, rdf:sc, b) suggests that a query language with
navigational capabilities could be appropriate for RDFS.

Possible approach: Extend SPARQL with navigational capabilities.

◮ A query P over an RDFS graph G is answered by navigating G
(cl(G) is not computed).

This approach has some advantages:

◮ It is goal-oriented.

◮ It has been used to design query languages for XML (e.g., XPath
and XQuery). The results for these languages can be used here.

◮ Navigational operators allow to express natural queries that are not
expressible in SPARQL over RDFS.

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 75 / 108

Navigational axes

Forward axes for an RDF triple (a, p, b):

next

ba

p

edge node

Backward axes for an RDF triple (a, p, b):

p

a b

next-1

node-1edge-1

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 76 / 108

A first attempt: rSPARQL

Syntax of navigational expressions:

exp := self | self::a | axis |

axis::a | exp/exp | exp|exp | exp∗

where a ∈ U and axis ∈ {next, next-1, edge, edge-1, node,
node-1}.

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 77 / 108

A first attempt: rSPARQL

Given an RDFS graph G , the semantics of navigational expressions
is defined as follows:

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 78 / 108

A first attempt: rSPARQL

Given an RDFS graph G , the semantics of navigational expressions
is defined as follows:

JselfKG = {(x , x) | x is in G}

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 78 / 108

A first attempt: rSPARQL

Given an RDFS graph G , the semantics of navigational expressions
is defined as follows:

JselfKG = {(x , x) | x is in G}
JnextKG = {(x , y) | ∃z ∈ U (x , z , y) ∈ G}

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 78 / 108

A first attempt: rSPARQL

Given an RDFS graph G , the semantics of navigational expressions
is defined as follows:

JselfKG = {(x , x) | x is in G}
JnextKG = {(x , y) | ∃z ∈ U (x , z , y) ∈ G}
JedgeKG = {(x , y) | ∃z ∈ U (x , y , z) ∈ G}

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 78 / 108

A first attempt: rSPARQL

Given an RDFS graph G , the semantics of navigational expressions
is defined as follows:

JselfKG = {(x , x) | x is in G}
JnextKG = {(x , y) | ∃z ∈ U (x , z , y) ∈ G}
JedgeKG = {(x , y) | ∃z ∈ U (x , y , z) ∈ G}

Jself::aKG = {(a, a)}

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 78 / 108

A first attempt: rSPARQL

Given an RDFS graph G , the semantics of navigational expressions
is defined as follows:

JselfKG = {(x , x) | x is in G}
JnextKG = {(x , y) | ∃z ∈ U (x , z , y) ∈ G}
JedgeKG = {(x , y) | ∃z ∈ U (x , y , z) ∈ G}

Jself::aKG = {(a, a)}
Jnext::aKG = {(x , y) | (x , a, y) ∈ G}

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 78 / 108

A first attempt: rSPARQL

Given an RDFS graph G , the semantics of navigational expressions
is defined as follows:

JselfKG = {(x , x) | x is in G}
JnextKG = {(x , y) | ∃z ∈ U (x , z , y) ∈ G}
JedgeKG = {(x , y) | ∃z ∈ U (x , y , z) ∈ G}

Jself::aKG = {(a, a)}
Jnext::aKG = {(x , y) | (x , a, y) ∈ G}
Jedge::aKG = {(x , y) | (x , y , a) ∈ G}

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 78 / 108

A first attempt: rSPARQL

Given an RDFS graph G , the semantics of navigational expressions
is defined as follows:

JselfKG = {(x , x) | x is in G}
JnextKG = {(x , y) | ∃z ∈ U (x , z , y) ∈ G}
JedgeKG = {(x , y) | ∃z ∈ U (x , y , z) ∈ G}

Jself::aKG = {(a, a)}
Jnext::aKG = {(x , y) | (x , a, y) ∈ G}
Jedge::aKG = {(x , y) | (x , y , a) ∈ G}

Jexp1/exp2KG = {(x , y) | ∃z (x , z) ∈ Jexp1KG and
(z , y) ∈ Jexp2KG}

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 78 / 108

A first attempt: rSPARQL

Given an RDFS graph G , the semantics of navigational expressions
is defined as follows:

JselfKG = {(x , x) | x is in G}
JnextKG = {(x , y) | ∃z ∈ U (x , z , y) ∈ G}
JedgeKG = {(x , y) | ∃z ∈ U (x , y , z) ∈ G}

Jself::aKG = {(a, a)}
Jnext::aKG = {(x , y) | (x , a, y) ∈ G}
Jedge::aKG = {(x , y) | (x , y , a) ∈ G}

Jexp1/exp2KG = {(x , y) | ∃z (x , z) ∈ Jexp1KG and
(z , y) ∈ Jexp2KG}

Jexp1|exp2KG = Jexp1KG ∪ Jexp2KG

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 78 / 108

A first attempt: rSPARQL

Given an RDFS graph G , the semantics of navigational expressions
is defined as follows:

JselfKG = {(x , x) | x is in G}
JnextKG = {(x , y) | ∃z ∈ U (x , z , y) ∈ G}
JedgeKG = {(x , y) | ∃z ∈ U (x , y , z) ∈ G}

Jself::aKG = {(a, a)}
Jnext::aKG = {(x , y) | (x , a, y) ∈ G}
Jedge::aKG = {(x , y) | (x , y , a) ∈ G}

Jexp1/exp2KG = {(x , y) | ∃z (x , z) ∈ Jexp1KG and
(z , y) ∈ Jexp2KG}

Jexp1|exp2KG = Jexp1KG ∪ Jexp2KG

Jexp∗KG = JselfKG ∪ JexpKG ∪ Jexp/expKG ∪
Jexp/exp/expKG ∪ · · ·

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 78 / 108

A first attempt: rSPARQL

Syntax of rSPARQL:

◮ Basic component: A triple of the form (x , exp, y)

◮ exp is a navigational expression
◮ x (resp. y) is either an element from U or a variable

◮ Operators: AND, FILTER, UNION and OPT

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 79 / 108

A first attempt: rSPARQL

Syntax of rSPARQL:

◮ Basic component: A triple of the form (x , exp, y)

◮ exp is a navigational expression
◮ x (resp. y) is either an element from U or a variable

◮ Operators: AND, FILTER, UNION and OPT

Triple (?X , ?Y , ?Z) is not allowed.

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 79 / 108

A first attempt: rSPARQL

Syntax of rSPARQL:

◮ Basic component: A triple of the form (x , exp, y)

◮ exp is a navigational expression
◮ x (resp. y) is either an element from U or a variable

◮ Operators: AND, FILTER, UNION and OPT

Triple (?X , ?Y , ?Z) is not allowed.

◮ It computes the closure!

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 79 / 108

rSPARQL: What can we express?

Example

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 80 / 108

rSPARQL: What can we express?

Example

◮ (Messi, next::lives in, Spain): Equivalent to SPARQL
pattern (Messi, lives in, Spain)

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 80 / 108

rSPARQL: What can we express?

Example

◮ (Messi, next::lives in, Spain): Equivalent to SPARQL
pattern (Messi, lives in, Spain)

◮ (?X , edge::a, ?Y): Equivalent to SPARQL pattern
(?X , ?Y , a)

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 80 / 108

rSPARQL: What can we express?

Example

◮ (Messi, next::lives in, Spain): Equivalent to SPARQL
pattern (Messi, lives in, Spain)

◮ (?X , edge::a, ?Y): Equivalent to SPARQL pattern
(?X , ?Y , a)

◮ (?X , node::a, ?Y): Equivalent to SPARQL pattern
(a, ?X , ?Y)

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 80 / 108

rSPARQL: What can we express?

Example

◮ (Messi, next::lives in, Spain): Equivalent to SPARQL
pattern (Messi, lives in, Spain)

◮ (?X , edge::a, ?Y): Equivalent to SPARQL pattern
(?X , ?Y , a)

◮ (?X , node::a, ?Y): Equivalent to SPARQL pattern
(a, ?X , ?Y)

◮ (?X , (next::(rdf:sc))+, ?Y): Verifies whether ?X is a
subclass of ?Y .

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 80 / 108

A first attempt: rSPARQL

Semantics of rSPARQL: Evaluation of t = (?X , exp, ?Y) over an
RDF graph G is the set of mappings µ such that:

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 81 / 108

A first attempt: rSPARQL

Semantics of rSPARQL: Evaluation of t = (?X , exp, ?Y) over an
RDF graph G is the set of mappings µ such that:

◮ The domain of µ is {?X , ?Y }, and

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 81 / 108

A first attempt: rSPARQL

Semantics of rSPARQL: Evaluation of t = (?X , exp, ?Y) over an
RDF graph G is the set of mappings µ such that:

◮ The domain of µ is {?X , ?Y }, and

◮ (µ(?X), µ(?Y)) ∈ JexpKG

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 81 / 108

A first attempt: rSPARQL

Semantics of rSPARQL: Evaluation of t = (?X , exp, ?Y) over an
RDF graph G is the set of mappings µ such that:

◮ The domain of µ is {?X , ?Y }, and

◮ (µ(?X), µ(?Y)) ∈ JexpKG

Example

What does (?X , (next::KLM | next::AirFrance)+, ?Y) represent?

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 81 / 108

Is rSPARQL a good language for RDFS?

How do we test whether a language is appropriate for RDFS?

◮ Can we capture SPARQL over RDFS?

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 82 / 108

Is rSPARQL a good language for RDFS?

How do we test whether a language is appropriate for RDFS?

◮ Can we capture SPARQL over RDFS?

For every RDFS graph G and SPARQL pattern P , we would like to
find a rSPARQL pattern Q such that:

JPKrdfs
G = JQKG

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 82 / 108

Is rSPARQL a good language for RDFS?

How do we test whether a language is appropriate for RDFS?

◮ Can we capture SPARQL over RDFS?

For every RDFS graph G and SPARQL pattern P , we would like to
find a rSPARQL pattern Q such that:

JPKrdfs
G = JQKG

But we trivially fail because of triple (?X , ?Y , ?Z).

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 82 / 108

Is rSPARQL a good language for RDFS?

How do we test whether a language is appropriate for RDFS?

◮ Can we capture SPARQL over RDFS?

For every RDFS graph G and SPARQL pattern P , we would like to
find a rSPARQL pattern Q such that:

JPKrdfs
G = JQKG

But we trivially fail because of triple (?X , ?Y , ?Z).

◮ We need to use a fragment of SPARQL.

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 82 / 108

A good fragment of SPARQL for our study

T : Set of triples (x , y , z) where x ∈ U or y ∈ U or z ∈ U.

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 83 / 108

A good fragment of SPARQL for our study

T : Set of triples (x , y , z) where x ∈ U or y ∈ U or z ∈ U.

◮ (?X , a, b), (?X , a, ?Y) and (?X , ?Y , a)

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 83 / 108

A good fragment of SPARQL for our study

T : Set of triples (x , y , z) where x ∈ U or y ∈ U or z ∈ U.

◮ (?X , a, b), (?X , a, ?Y) and (?X , ?Y , a)

T -SPARQL: Fragment of SPARQL where triple patterns are taken
from T .

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 83 / 108

Is rSPARQL a good language for RDFS?

Theorem (PAG08)

There exists a T -SPARQL pattern P for which there is no
rSPARQL pattern Q such that JPKrdfs

G = JQKG for every RDF
graph G.

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 84 / 108

Is rSPARQL a good language for RDFS?

Theorem (PAG08)

There exists a T -SPARQL pattern P for which there is no
rSPARQL pattern Q such that JPKrdfs

G = JQKG for every RDF
graph G.

The previous theorem holds even for P = (?X , a, ?Y):

?Y

a
rdf:sp rdf:sp rdf:sp

?X

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 84 / 108

A successful attempt: Adding nesting

How can we capture T -SPARQL over RDFS?

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 85 / 108

A successful attempt: Adding nesting

How can we capture T -SPARQL over RDFS?

◮ We adopt the notion of branching from XPath.

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 85 / 108

A successful attempt: Adding nesting

How can we capture T -SPARQL over RDFS?

◮ We adopt the notion of branching from XPath.

Syntax of nested regular expressions:

exp := self | self::a | axis | axis::a |

self::[exp] | axis::[exp] | exp/exp | exp|exp | exp∗

where a ∈ U and axis ∈ {next, next-1, edge, edge-1, node,
node-1}.

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 85 / 108

A successful attempt: Adding nesting

Given an RDFS graph G , the semantics of nested regular
expressions is defined as follows:

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 86 / 108

A successful attempt: Adding nesting

Given an RDFS graph G , the semantics of nested regular
expressions is defined as follows:

Jnext::[exp]KG = {(x , y) | ∃z ,w ∈ U (x , z , y) ∈ G and
(z ,w) ∈ JexpKG}

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 86 / 108

A successful attempt: Adding nesting

Given an RDFS graph G , the semantics of nested regular
expressions is defined as follows:

Jnext::[exp]KG = {(x , y) | ∃z ,w ∈ U (x , z , y) ∈ G and
(z ,w) ∈ JexpKG}

Jedge::[exp]KG = {(x , y) | ∃z ,w ∈ U (x , y , z) ∈ G and
(z ,w) ∈ JexpKG}

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 86 / 108

Capturing T -SPARQL over RDFS

nSPARQL: Defined as rSPARQL but replacing navigational
expressions by nested regular expressions.

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 87 / 108

Capturing T -SPARQL over RDFS

nSPARQL: Defined as rSPARQL but replacing navigational
expressions by nested regular expressions.

Example

RDFS evaluation of (?X , a, ?Y) can be obtained by using nSPARQL:

(?X , next::[(next::(rdf:sp))∗/(self::a)], ?Y)

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 87 / 108

Capturing T -SPARQL over RDFS

nSPARQL: Defined as rSPARQL but replacing navigational
expressions by nested regular expressions.

Example

RDFS evaluation of (?X , a, ?Y) can be obtained by using nSPARQL:

(?X , next::[(next::(rdf:sp))∗/(self::a)], ?Y)

a
rdf:sp rdf:sp rdf:sp

?X

?Y

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 87 / 108

Capturing T -SPARQL over RDFS

nSPARQL: Defined as rSPARQL but replacing navigational
expressions by nested regular expressions.

Example

RDFS evaluation of (?X , a, ?Y) can be obtained by using nSPARQL:

(?X , next::[(next::(rdf:sp))∗/(self::a)], ?Y)

?Y

a
rdf:sp rdf:sp rdf:sp

?X

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 87 / 108

Second part: Ground RDF with RDFS vocabulary

◮ Syntax and formal semantics

◮ Querying RDFS data

◮ nSPARQL: A navigational query language for RDFS

◮ Expressiveness

◮ Complexity of the evaluation problem

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 88 / 108

nSPARQL captures T -SPARQL over RDFS

Theorem (PAG08)

For every T -SPARQL pattern P, there exists an nSPARQL pattern
Q such that JPKrdfs

G = JQKG for every RDF graph G.

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 89 / 108

nSPARQL captures T -SPARQL over RDFS

Theorem (PAG08)

For every T -SPARQL pattern P, there exists an nSPARQL pattern
Q such that JPKrdfs

G = JQKG for every RDF graph G.

Proof sketch

Replace (?X , a, ?Y) by (?X , trans(a), ?Y), where:

trans(rdf:dom) = next::(rdf:dom)
trans(rdf:range) = next::(rdf:range)
trans(rdf:sc) = (next::(rdf:sc))+

trans(rdf:sp) = (next::(rdf:sp))+

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 89 / 108

nSPARQL: Capturing SPARQL over RDFS

trans(rdf:type) =

next::(rdf:type)/(next::(rdf:sc))∗ |

edge/(next::(rdf:sp))∗/next::(rdf:dom)/(next::(rdf:sc))∗ |

node-1/(next::(rdf:sp))∗/next::(rdf:range)/(next::(rdf:sc))∗

trans(p) = next::[(next::(rdf:sp))∗/self::p]

for p /∈ {rdf:sc, rdf:sp, rdf:range, rdf:dom, rdf:type}

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 90 / 108

The extra expressive power of nSPARQL

A

CalaisParis Dover London

B C

train ferry

rdf:sp rdf:sp rdf:sp

rdf:sp rdf:sprdf:sp

transport

bus

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 91 / 108

The extra expressive power of nSPARQL

A

CalaisParis Dover London

B C

train ferry

rdf:sp rdf:sp rdf:sp

rdf:sp rdf:sprdf:sp

transport

bus

A natural query: (?X , (next::[(next::(rdf:sp))∗/(self::travel)])+, ?Y)

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 91 / 108

The extra expressive power of nSPARQL

transport

CalaisParis Dover London

B CA

train ferry bus

rdf:sp rdf:sp rdf:sp

rdf:sp rdf:sprdf:sp

A natural query: (?X , (next::[(next::(rdf:sp))∗/(self::travel)])+, ?Y)

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 91 / 108

The extra expressive power of nSPARQL

transport

CalaisParis Dover London

B CA

train ferry bus

rdf:sp rdf:sp rdf:sp

rdf:sp rdf:sprdf:sp

A natural query: (?X , (next::[(next::(rdf:sp))∗/(self::travel)])+, ?Y)

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 91 / 108

The extra expressive power of nSPARQL

rdf:sp

CalaisParis Dover London

B travel CA

train ferry bus

rdf:sp rdf:sp rdf:sp

rdf:sprdf:sp

transport

A natural query: (?X , (next::[(next::(rdf:sp))∗/(self::travel)])+, ?Y)

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 91 / 108

The extra expressive power of nSPARQL

rdf:sp

CalaisParis Dover London

B CA

train ferry bus

rdf:sp rdf:sp rdf:sp

rdf:sprdf:sp

transport

A natural query: (?X , (next::[(next::(rdf:sp))∗/(self::travel)])+, ?Y)

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 91 / 108

The extra expressive power of nSPARQL

rdf:sp

CalaisParis Dover London

B CA

train ferry bus

rdf:sp rdf:sp rdf:sp

rdf:sprdf:sp

transport

A natural query: (?X , (next::[(next::(rdf:sp))∗/(self::travel)])+, ?Y)

◮ This query cannot be expressed in SPARQL over RDFS.

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 91 / 108

Second part: Ground RDF with RDFS vocabulary

◮ Syntax and formal semantics

◮ Querying RDFS data

◮ nSPARQL: A navigational query language for RDFS

◮ Expressiveness

◮ Complexity of the evaluation problem

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 92 / 108

The evaluation problem for nSPARQL

What is the complexity of the evaluation problem for nSPARQL?

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 93 / 108

The evaluation problem for nSPARQL

What is the complexity of the evaluation problem for nSPARQL?

◮ The lower bounds for SPARQL also apply in this case.
◮ Just take a look at the proofs

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 93 / 108

The evaluation problem for nSPARQL

What is the complexity of the evaluation problem for nSPARQL?

◮ The lower bounds for SPARQL also apply in this case.
◮ Just take a look at the proofs

Are there any new problems to consider?

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 93 / 108

The evaluation problem for nSPARQL

What is the complexity of the evaluation problem for nSPARQL?

◮ The lower bounds for SPARQL also apply in this case.
◮ Just take a look at the proofs

Are there any new problems to consider?

◮ What is the complexity of evaluating a nested regular
expression?

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 93 / 108

The evaluation problem for nSPARQL

What is the complexity of the evaluation problem for nSPARQL?

◮ The lower bounds for SPARQL also apply in this case.
◮ Just take a look at the proofs

Are there any new problems to consider?

◮ What is the complexity of evaluating a nested regular
expression?

◮ Can this be done efficiently?

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 93 / 108

The evaluation problem for nested regular expressions

Input:

A pair (a, b) ∈ U ×U, a nested regular expression exp and an RDF
graph G

Question:

Does (a, b) ∈ JexpKG?

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 94 / 108

The evaluation problem for nested regular expressions

Theorem (PAG08)

The evaluation problem for nested regular expressions is solvable in
time O(|G | · |exp|).

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 95 / 108

The evaluation problem for nested regular expressions

Theorem (PAG08)

The evaluation problem for nested regular expressions is solvable in
time O(|G | · |exp|).

Proof sketch

Use an efficient evaluation algorithm for PDL.

◮ There are a few issues that have to be considered.

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 95 / 108

The evaluation problem for nested regular expressions

Simple example: pair (a, b), RDF graph G and navigational
expression exp

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 96 / 108

The evaluation problem for nested regular expressions

Simple example: pair (a, b), RDF graph G and navigational
expression exp

(1) Transform exp into an ǫ-NFA Aexp

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 96 / 108

The evaluation problem for nested regular expressions

Simple example: pair (a, b), RDF graph G and navigational
expression exp

(1) Transform exp into an ǫ-NFA Aexp

(2) Construct an automaton AG from G :

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 96 / 108

The evaluation problem for nested regular expressions

Simple example: pair (a, b), RDF graph G and navigational
expression exp

(1) Transform exp into an ǫ-NFA Aexp

(2) Construct an automaton AG from G :
◮ The states of AG are the elements mentioned in G

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 96 / 108

The evaluation problem for nested regular expressions

Simple example: pair (a, b), RDF graph G and navigational
expression exp

(1) Transform exp into an ǫ-NFA Aexp

(2) Construct an automaton AG from G :
◮ The states of AG are the elements mentioned in G

◮ For every (a, b, c) ∈ G , automaton AG contains:

(a, next::b, c) (a, edge::c , b) (b, node::a, c)
(c , next-1::b, a) (b, edge-1::c , a) (c , node-1::a, b)

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 96 / 108

The evaluation problem for nested regular expressions

Simple example: pair (a, b), RDF graph G and navigational
expression exp

(1) Transform exp into an ǫ-NFA Aexp

(2) Construct an automaton AG from G :
◮ The states of AG are the elements mentioned in G

◮ For every (a, b, c) ∈ G , automaton AG contains:

(a, next::b, c) (a, edge::c , b) (b, node::a, c)
(c , next-1::b, a) (b, edge-1::c , a) (c , node-1::a, b)

◮ Every state is final

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 96 / 108

The evaluation problem for nested regular expressions

Simple example: pair (a, b), RDF graph G and navigational
expression exp

(1) Transform exp into an ǫ-NFA Aexp

(2) Construct an automaton AG from G :
◮ The states of AG are the elements mentioned in G

◮ For every (a, b, c) ∈ G , automaton AG contains:

(a, next::b, c) (a, edge::c , b) (b, node::a, c)
(c , next-1::b, a) (b, edge-1::c , a) (c , node-1::a, b)

◮ Every state is final

(3) Compute AG ×Aexp

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 96 / 108

The evaluation problem for nested regular expressions

Simple example: pair (a, b), RDF graph G and navigational
expression exp

(1) Transform exp into an ǫ-NFA Aexp

(2) Construct an automaton AG from G :
◮ The states of AG are the elements mentioned in G

◮ For every (a, b, c) ∈ G , automaton AG contains:

(a, next::b, c) (a, edge::c , b) (b, node::a, c)
(c , next-1::b, a) (b, edge-1::c , a) (c , node-1::a, b)

◮ Every state is final

(3) Compute AG ×Aexp

(4) Verify whether (b, qf) is reachable from (a, q0) in AG ×Aexp

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 96 / 108

Third part: RDF with RDFS vocabulary

◮ Formal semantics

◮ A little bit about complexity

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 97 / 108

Third part: RDF with RDFS vocabulary

◮ Formal semantics

◮ A little bit about complexity

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 98 / 108

Does the blank node add some information?

country

works in

rdf:sp

person

sportman

soccer player

rdf:sc

rdf:sc

rdf:dom

rdf:dom rdf:range

rdf:range

Barcelona

plays in soccer team

company

rdf:typerdf:type

rdf:sc

Messi

SpainB

address
lives in

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 99 / 108

What about now?

lives in

works in

rdf:sp

person

sportman

soccer player

rdf:sc

rdf:sc

rdf:dom

rdf:dom rdf:range

rdf:range

Barcelona

plays in soccer team

company

rdf:typerdf:type

rdf:sc

Messi

SpainB

lives in

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 100 / 108

A fundamental notion: homomorphism

Definition

h : U ∪ B → U ∪ B is a homomorphism from G1 to G2 if:

◮ h(c) = c for every c ∈ U;

◮ for every (a, b, c) ∈ G1, (h(a), h(b), h(c)) ∈ G2

Notation: G1 → G2

Example

a

b

B
p

p

a

b

p

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 101 / 108

Homomorphism and the notion of entailment

Example

In this case: G1 6→ G2 and G2 → G1

G1

a

b

B
p

p

p

a

b

p

G2

Intuitively: G1 contains more information than G2

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 102 / 108

A general notion of entailment

In this general scenario, entailment can also be defined in terms of
classical notions such as model, interpretation, etc.

◮ As for the case of RDFS graphs without blank nodes

This notion can also be characterized by a set of inference rules.

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 103 / 108

A general system of inference rules

Existential rule :

Subproperty rules :

Subclass rules :

Typing rules :

Implicit typing :

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 104 / 108

A general system of inference rules

Existential rule :
G1

G2
if G2 → G1

Subproperty rules :

Subclass rules :

Typing rules :

Implicit typing :

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 104 / 108

A general system of inference rules

Existential rule :
G1

G2
if G2 → G1

Subproperty rules :
(p, rdf:sp, q) (a, p, b)

(a, q, b)

Subclass rules :

Typing rules :

Implicit typing :

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 104 / 108

A general system of inference rules

Existential rule :
G1

G2
if G2 → G1

Subproperty rules :
(p, rdf:sp, q) (a, p, b)

(a, q, b)

Subclass rules :
(a, rdf:sc, b) (b, rdf:sc, c)

(a, rdf:sc, c)

Typing rules :

Implicit typing :

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 104 / 108

A general system of inference rules

Existential rule :
G1

G2
if G2 → G1

Subproperty rules :
(p, rdf:sp, q) (a, p, b)

(a, q, b)

Subclass rules :
(a, rdf:sc, b) (b, rdf:sc, c)

(a, rdf:sc, c)

Typing rules :
(p, rdf:dom, c) (a, p, b)

(a, rdf:type, c)

Implicit typing :

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 104 / 108

A general system of inference rules

Existential rule :
G1

G2
if G2 → G1

Subproperty rules :
(p, rdf:sp, q) (a, p, b)

(a, q, b)

Subclass rules :
(a, rdf:sc, b) (b, rdf:sc, c)

(a, rdf:sc, c)

Typing rules :
(p, rdf:dom, c) (a, p, b)

(a, rdf:type, c)

Implicit typing :
(q, rdf:dom, a) (p, rdf:sp, q) (b, p, c)

(b, rdf:type, a)

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 104 / 108

A general system of inference rules

Existential rule :

Subproperty rules :
(p, rdf:sp, q) (a, p, b)

(a, q, b)

Subclass rules :

Typing rules :
(p, rdf:dom, c) (a, p, b)

(a, rdf:type, c)

Implicit typing :
(q, rdf:dom, a) (p, rdf:sp, q) (b, p, c)

(b, rdf:type, a)

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 104 / 108

A general system of inference rules

Existential rule :

Subproperty rules :
(p, rdf:sp, q) (a, p, b)

(a, q, b)

Subclass rules :

Typing rules :
(p, rdf:dom, c) (a, p, b)

(a, rdf:type, c)

Implicit typing :
(B, rdf:dom, a) (p, rdf:sp,B) (b, p, c)

(b, rdf:type, a)

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 104 / 108

RDFS Entailment

Theorem (H03,GHM04,MPG07)

The previous system of inference rules characterize the notion of
entailment in RDFS.

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 105 / 108

RDFS Entailment

Theorem (H03,GHM04,MPG07)

The previous system of inference rules characterize the notion of
entailment in RDFS.

This system can be used to define cl(G).

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 105 / 108

RDFS Entailment

Theorem (H03,GHM04,MPG07)

The previous system of inference rules characterize the notion of
entailment in RDFS.

This system can be used to define cl(G).

◮ This can be used to define the semantics of a query language
over RDFS data.

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 105 / 108

Third part: RDF with RDFS vocabulary

◮ Formal semantics

◮ A bit about complexity

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 106 / 108

A little about complexity

Complexity (GHM04)

RDFS entailment is NP-complete.

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 107 / 108

A little about complexity

Complexity (GHM04)

RDFS entailment is NP-complete.

Proof sketch

Membership in NP: If G |= t, then there exists a polynomial-size
proof of this fact.

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 107 / 108

Thank you!

M. Arenas, C. Gutierrez and J. Pérez – Foundations of RDF Databases 108 / 108

