
Paths in semantic search: A back and forth story

Marcelo Arenas

PUC Chile

The story

Navigational capabilities are important for graph data models.

RDF is a new data model.

◮ It can be considered as a graph data model, but it has some
non-trivial new features.

Interaction between databases and semantic web.

The story

Navigational capabilities are important for graph data models.

RDF is a new data model.

◮ It can be considered as a graph data model, but it has some
non-trivial new features.

Interaction between databases and semantic web.

�– Need for navigational capabilities in SPARQL

The story

Navigational capabilities are important for graph data models.

RDF is a new data model.

◮ It can be considered as a graph data model, but it has some
non-trivial new features.

Interaction between databases and semantic web.

�– Need for navigational capabilities in SPARQL

–� Extensive use of regular expressions to specify paths in graph
databases and XML

The story

Navigational capabilities are important for graph data models.

RDF is a new data model.

◮ It can be considered as a graph data model, but it has some
non-trivial new features.

Interaction between databases and semantic web.

�– Need for navigational capabilities in SPARQL

–� Extensive use of regular expressions to specify paths in graph
databases and XML

�– Regular expressions are included in SPARQL 1.1, but with a
multiset (bag) semantics

The story (cont.)

–� Techniques from graph databases, automata theory and
computational complexity

The story (cont.)

–� Techniques from graph databases, automata theory and
computational complexity

�– New proposal of an intermediate semantics for regular
expressions in SPARQL 1.1

The story (cont.)

–� Techniques from graph databases, automata theory and
computational complexity

�– New proposal of an intermediate semantics for regular
expressions in SPARQL 1.1

–� Pure existential (set) semantics could be a better alternative

The story (cont.)

–� Techniques from graph databases, automata theory and
computational complexity

�– New proposal of an intermediate semantics for regular
expressions in SPARQL 1.1

–� Pure existential (set) semantics could be a better alternative

�– RDFS and OWL vocabularies have to be considered when
discovering paths

The story (cont.)

–� Techniques from graph databases, automata theory and
computational complexity

�– New proposal of an intermediate semantics for regular
expressions in SPARQL 1.1

–� Pure existential (set) semantics could be a better alternative

�– RDFS and OWL vocabularies have to be considered when
discovering paths

�– Paths can be part of the output

The story (cont.)

–� Techniques from graph databases, automata theory and
computational complexity

�– New proposal of an intermediate semantics for regular
expressions in SPARQL 1.1

–� Pure existential (set) semantics could be a better alternative

�– RDFS and OWL vocabularies have to be considered when
discovering paths

�– Paths can be part of the output

–� . . .

�– . . .

SPARQL 1.0 provides limited navigational capabilities

URI 2
:email

paul@puc.cl
:name

:email

:phone

:name

:friendOf john@utexas.edu

URI 1

Paul
446928888

John

Peter
:name

:name
George

URI 0

:friendOf

URI 3

:friendOf

SPARQL 1.0 provides limited navigational capabilities

URI 2
:email

paul@puc.cl
:name

:email

:phone

:name

:friendOf john@utexas.edu

URI 1

Paul
446928888

John

Peter
:name

:name
George

URI 0

:friendOf

URI 3

:friendOf

SELECT ?x

WHERE

{

?x :friendOf ?y .

?y :name "George" .

}

SPARQL 1.0 provides limited navigational capabilities

URI 2
:email

paul@puc.cl
:name

:email

:phone

:name

:friendOf john@utexas.edu

URI 1

Paul
446928888

John

Peter
:name

:name
George

URI 0

:friendOf

URI 3

:friendOf

SELECT ?x

WHERE

{

?x :friendOf ?y .

?y :name "George" .

}

SPARQL 1.0 provides limited navigational capabilities

URI 2
:email

paul@puc.cl
:name

:email

:phone

:name

:friendOf john@utexas.edu

URI 1

Paul
446928888

John

Peter
:name

:name
George

URI 0

:friendOf

URI 3

:friendOf

SELECT ?x

WHERE

{

?x :friendOf ?y .

?y :name "George" .

}

A possible solution: Regular expressions in graph databases

URI 2
:email

paul@puc.cl
:name

:email

:phone

:name

:friendOf john@utexas.edu

URI 1

Paul
446928888

John

Peter
:name

:name
George

URI 0

:friendOf

URI 3

:friendOf

A possible solution: Regular expressions in graph databases

URI 2
:email

paul@puc.cl
:name

:email

:phone

:name

:friendOf john@utexas.edu

URI 1

Paul
446928888

John

Peter
:name

:name
George

URI 0

:friendOf

URI 3

:friendOf

SELECT ?x

WHERE

{

?x (:friendOf)* ?y .

?y :name "George" .

}

A possible solution: Regular expressions in graph databases

URI 2
:email

paul@puc.cl
:name

:email

:phone

:name

:friendOf john@utexas.edu

URI 1

Paul
446928888

John

Peter
:name

:name
George

URI 0

:friendOf

URI 3

:friendOf

SELECT ?x

WHERE

{

?x (:friendOf)* ?y . ← SPARQL 1.1 property path
?y :name "George" .

}

Problems to study

◮ Syntax

◮ Semantics

◮ Efficient algorithms for evaluating property paths

◮ Complexity of the evaluation problem

Problems to study

◮ Syntax

◮ Semantics

◮ Efficient algorithms for evaluating property paths

◮ Complexity of the evaluation problem

All this has to be done considering the use cases.

Syntax and semantics of property paths

Syntax: Property paths are regular expressions (/, |, *)

Semantics: Repeated values are needed in some use cases.

Syntax and semantics of property paths

Syntax: Property paths are regular expressions (/, |, *)

Semantics: Repeated values are needed in some use cases.

◮ Retrieving all the elements of a linked list

Syntax and semantics of property paths

Syntax: Property paths are regular expressions (/, |, *)

Semantics: Repeated values are needed in some use cases.

◮ Retrieving all the elements of a linked list

:b1

:b2

rdf:rest

:b3

rdf:rest

rdf:nil

rdf:rest

4.5
rdf:first

3.9
rdf:first

4.5
rdf:first

:s
:grades

Property paths are designed to count

:a

:b

:c

:p

:p

:p

:p

:d

SELECT ?x

WHERE { :a (:p)* ?x }

Property paths are designed to count

:a

:b

:c

:p

:p

:p

:p

:d

SELECT ?x

WHERE { :a (:p)* ?x }

?x
:a

:b

:c

:d

:d

Property paths are designed to count

:a

:b

:c

:p

:p

:p

:p

:d

SELECT ?x

WHERE { :a (:p)* ?x }

?x
:a

:b

:c

:d

:d

Property paths are designed to count

:p:a

:b

:c

:p

:p

:p

:p

:d

SELECT ?x

WHERE { :a (:p)* ?x }

?x
:a

:b

:c

:d

:d

Property paths are designed to count

:p:a

:b

:c

:p

:p

:p

:p

:d

SELECT ?x

WHERE { :a (:p)* ?x }

?x
:a

:b

:c

:d

:d

:c

:d

Definition of the semantics of property paths

SELECT ?x

WHERE { :a (:b/:c) ?x }

Definition of the semantics of property paths

SELECT ?x

WHERE { :a (:b/:c) ?x }

is replaced by:

SELECT ?x

WHERE { :a :b ?y .

?y :c ?x . }

Definition of the semantics of property paths

SELECT ?x

WHERE { :a (:b/:c) ?x }

is replaced by:

SELECT ?x

WHERE { :a :b ?y .

?y :c ?x . }

Same idea is applied to define |

Definition of the semantics of property paths

SELECT ?x

WHERE { :a (:b/:c) ?x }

is replaced by:

SELECT ?x

WHERE { :a :b ?y .

?y :c ?x . }

Same idea is applied to define |

But how do we evaluate *?

◮ How do we deal with cycles?

Definition of the semantics of *

Evaluation of path*

“the algorithm extends the multiset of results by one application of path.

If a node has been visited for path, it is not a candidate for another step.

A node can be visited multiple times if different paths visit it.”

SPARQL 1.1 Last Call (Jan 2012)

Definition of the semantics of *

Evaluation of path*

“the algorithm extends the multiset of results by one application of path.

If a node has been visited for path, it is not a candidate for another step.

A node can be visited multiple times if different paths visit it.”

SPARQL 1.1 Last Call (Jan 2012)

◮ SPARQL 1.1 document provides a special procedure to handle
cycles and make the count

Is this a good semantics?

Linked list example:

SELECT ?x

WHERE { :s :grades/(rdf:rest)*/rdf:first ?x }

Is this a good semantics?

Linked list example:

SELECT ?x

WHERE { :s :grades/(rdf:rest)*/rdf:first ?x }

Couldn’t these use cases be handled with a simpler semantics?

◮ Isn’t a problem to use an arbitrary procedure to count paths?
What are we counting?

Is this a good semantics? (cont.)

Regular expressions with an existential semantics have been widely
studied and used in databases.

◮ Why don’t we take advantage of this experience?

Is this a good semantics? (cont.)

Regular expressions with an existential semantics have been widely
studied and used in databases.

◮ Why don’t we take advantage of this experience?

A new problem need to be solved: Counting the number of paths
in a graph that conform to a regular expression

◮ How difficult is this problem?

Some experimental results with synthetic data

Data:
◮ cliques (complete graphs) of different size
◮ from 2 nodes (87 bytes) to 13 nodes (970 bytes)

:p
:a0

:a1

:a3

:p

:p

:p

:p

:p

:a2

RDF clique with 4 nodes (127 bytes)

Some experimental results with synthetic data

1

10

100

1000

2 4 6 8 10 12 14 16

ARQ

+ + + + + + +
+

+

+

+
+

RDFQ

× × × ×
×

×

×

×

×

×
KGram

∗ ∗ ∗ ∗ ∗
∗
∗

∗

∗

∗
Sesame

2 2 2 2

2

2

2

2

2

SELECT * WHERE { :a0 (:p)* :a1 }

Some experimental results with real data

Data:

◮ Social Network data given by foaf:knows links

◮ Crawled from Axel Polleres’ foaf document (3 steps)

◮ Different documents, deleting some nodes

foaf:knows

axel:me

ivan:me

bizer:chris

richard:cygri

...

· · ·

andreas:ah

· · ·

· · ·

Some experimental results with real data

SELECT * WHERE { axel:me (foaf:knows)* ?x }

Some experimental results with real data

SELECT * WHERE { axel:me (foaf:knows)* ?x }

Input ARQ RDFQ Kgram Sesame
9.2KB 5.13 75.70 313.37 –

10.9KB 8.20 325.83 – –
11.4KB 65.87 – – –
13.2KB 292.43 – – –
14.8KB – – – –
17.2KB – – – –
20.5KB – – – –
25.8KB – – – –

(time in seconds, timeout = 1hr)

Counting the number of solutions

Data: Clique of size n

{ :a0 (:p)* :a1 }

every solution is a copy of the empty mapping (| | in ARQ)

Counting the number of solutions

Data: Clique of size n

{ :a0 (:p)* :a1 }

n # Sol.
9 13,700
10 109,601
11 986,410
12 9,864,101
13 –

every solution is a copy of the empty mapping (| | in ARQ)

Counting the number of solutions

Data: Clique of size n

{ :a0 (:p)* :a1 } { :a0 ((:p)*)* :a1 }

n # Sol.
9 13,700
10 109,601
11 986,410
12 9,864,101
13 –

every solution is a copy of the empty mapping (| | in ARQ)

Counting the number of solutions

Data: Clique of size n

{ :a0 (:p)* :a1 } { :a0 ((:p)*)* :a1 }

n # Sol.
9 13,700
10 109,601
11 986,410
12 9,864,101
13 –

n # Sol
2 1
3 6
4 305
5 418,576
6 –

every solution is a copy of the empty mapping (| | in ARQ)

Counting the number of solutions

Data: Clique of size n

{ :a0 (:p)* :a1 } { :a0 ((:p)*)* :a1 } { :a0 (((:p)*)*)* :a1 }

n # Sol.
9 13,700
10 109,601
11 986,410
12 9,864,101
13 –

n # Sol
2 1
3 6
4 305
5 418,576
6 –

every solution is a copy of the empty mapping (| | in ARQ)

Counting the number of solutions

Data: Clique of size n

{ :a0 (:p)* :a1 } { :a0 ((:p)*)* :a1 } { :a0 (((:p)*)*)* :a1 }

n # Sol.
9 13,700
10 109,601
11 986,410
12 9,864,101
13 –

n # Sol
2 1
3 6
4 305
5 418,576
6 –

n # Sol.
2 1
3 42
4 –

every solution is a copy of the empty mapping (| | in ARQ)

Counting the number of solutions (cont.)

Data: foaf links crawled from the Web

{ axel:me (foaf:knows)* ?x }

Counting the number of solutions (cont.)

Data: foaf links crawled from the Web

{ axel:me (foaf:knows)* ?x }

File # URIs # Sol. Output Size
9.2KB 38 29,817 2MB
10.9KB 43 122,631 8.4MB
11.4KB 47 1,739,331 120MB
13.2KB 52 8,511,943 587MB
14.8KB 54 – –

Counting the number of solutions (cont.)

Data: foaf links crawled from the Web

{ axel:me (foaf:knows)* ?x }

File # URIs # Sol. Output Size
9.2KB 38 29,817 2MB
10.9KB 43 122,631 8.4MB
11.4KB 47 1,739,331 120MB
13.2KB 52 8,511,943 587MB
14.8KB 54 – –

What is going on?

Theory can help

It is possible to construct a formula for calculating the number of
solutions in the clique experiment.

◮ A double exponential lower bound is obtained

Theory can help

It is possible to construct a formula for calculating the number of
solutions in the clique experiment.

◮ A double exponential lower bound is obtained

{ :a0 ((:p)*)* :a1 }

n # Sol.
2 1
3 6
4 305
5 418,576
6 –
7 –
8 –

Theory can help

It is possible to construct a formula for calculating the number of
solutions in the clique experiment.

◮ A double exponential lower bound is obtained

{ :a0 ((:p)*)* :a1 }

n # Sol.
2 1
3 6
4 305
5 418,576
6 – ← 28× 109

7 – ← 144× 1015

8 – ← 79× 1024

Theory can help

It is possible to construct a formula for calculating the number of
solutions in the clique experiment.

◮ A double exponential lower bound is obtained

{ :a0 ((:p)*)* :a1 }

n # Sol.
2 1
3 6
4 305
5 418,576
6 – ← 28× 109

7 – ← 144× 1015

8 – ← 79× 1024

79 Yottabytes for the answer over a file of 379 bytes

Current situation

Normative semantics of SPARQL 1.1 property paths will be
changed to overcome these issues.

◮ Existential semantics (no counting) when evaluating *

◮ / and | are defined as before

Current situation

Normative semantics of SPARQL 1.1 property paths will be
changed to overcome these issues.

◮ Existential semantics (no counting) when evaluating *

◮ / and | are defined as before

Are we done?

Current situation

Normative semantics of SPARQL 1.1 property paths will be
changed to overcome these issues.

◮ Existential semantics (no counting) when evaluating *

◮ / and | are defined as before

Are we done? Some questions have to be answered.

Current situation

Normative semantics of SPARQL 1.1 property paths will be
changed to overcome these issues.

◮ Existential semantics (no counting) when evaluating *

◮ / and | are defined as before

Are we done? Some questions have to be answered.

◮ Is this a reasonable semantics? (:a/:b/:c) counts, but
(:a/:b/:c)* does not

Current situation

Normative semantics of SPARQL 1.1 property paths will be
changed to overcome these issues.

◮ Existential semantics (no counting) when evaluating *

◮ / and | are defined as before

Are we done? Some questions have to be answered.

◮ Is this a reasonable semantics? (:a/:b/:c) counts, but
(:a/:b/:c)* does not

◮ Is the language expressive enough?

A pure existential semantics can handle the use cases

Linked list example:

:b1

:b2

rdf:rest

:b3

rdf:rest

rdf:nil

rdf:rest

4.5
rdf:first

3.9
rdf:first

4.5
rdf:first

:s
:grades

SELECT ?x

WHERE { :s :grades ?y .

?y (rdf:rest)* ?z .

?z rdf:first ?x . }

Expressiveness: There is still some work to do

List the pairs a, b of cities such that there is a way to travel from a to b.

sp

CalaisParis Dover London

SeeFranceTGV NatExpress

train service ferry service bus service

sp sp sp

transportation service

sp sp

Expressiveness: There is still some work to do

List the pairs a, b of cities such that there is a way to travel from a to b.

sp

CalaisParis Dover London

SeeFranceTGV NatExpress

train service ferry service bus service

sp sp sp

transportation service

sp sp

nSPARQL:

Expressiveness: There is still some work to do

List the pairs a, b of cities such that there is a way to travel from a to b.

sp

CalaisParis Dover London

SeeFranceTGV NatExpress

train service ferry service bus service

sp sp sp

transportation service

sp sp

nSPARQL: ?x ?y

Expressiveness: There is still some work to do

List the pairs a, b of cities such that there is a way to travel from a to b.

sp

CalaisParis Dover London

SeeFranceTGV NatExpress

train service ferry service bus service

sp sp sp

transportation service

sp sp

nSPARQL: ?x (next:)+ ?y

Expressiveness: There is still some work to do

List the pairs a, b of cities such that there is a way to travel from a to b.

sp

CalaisParis Dover London

SeeFranceTGV NatExpress

train service ferry service bus service

sp sp sp

transportation service

sp sp

nSPARQL: ?x (next:[])+ ?y

Expressiveness: There is still some work to do

List the pairs a, b of cities such that there is a way to travel from a to b.

sp

CalaisParis Dover London

SeeFranceTGV NatExpress

train service ferry service bus service

sp sp sp

transportation service

sp sp

nSPARQL: ?x (next:[(next:sp)*/])+ ?y

Expressiveness: There is still some work to do

List the pairs a, b of cities such that there is a way to travel from a to b.

sp

CalaisParis Dover London

SeeFranceTGV NatExpress

train service ferry service bus service

sp sp sp

transportation service

sp sp

nSPARQL: ?x (next:[(next:sp)*/transportation service])+ ?y

Expressiveness: There is still some work to do

List the pairs a, b of cities such that there is a way to travel from a to b.

sp

CalaisParis Dover London

SeeFranceTGV NatExpress

train service ferry service bus service

sp sp sp

transportation service

sp sp

nSPARQL: ?x (next:[(next:sp)*/transportation service])+ ?y

Expressiveness: There is still some work to do

List the pairs a, b of cities such that there is a way to travel from a to b.

sp

CalaisParis Dover London

SeeFranceTGV NatExpress

train service ferry service bus service

sp sp sp

transportation service

sp sp

nSPARQL: ?x (next:[(next:sp)*/transportation service])+ ?y

Expressiveness: There is still some work to do

List the pairs a, b of cities such that there is a way to travel from a to b.

sp

CalaisParis Dover London

SeeFranceTGV NatExpress

train service ferry service bus service

sp sp sp

transportation service

sp sp

nSPARQL: ?x (next:[(next:sp)*/transportation service])+ ?y

Expressiveness: There is still some work to do

List the pairs a, b of cities such that there is a way to travel from a to b.

sp

CalaisParis Dover London

SeeFranceTGV NatExpress

train service ferry service bus service

sp sp sp

transportation service

sp sp

nSPARQL: ?x (next:[(next:sp)*/transportation service])+ ?y

Expressiveness: There is still some work to do (cont.)

In the previous example, it would be great to be able to list some
paths from a to b.

◮ This feature is needed in many use cases

This feature is present in some graph/RDF query languages, but it
has not been standardized.

◮ Paths can be returned as strings in Cypher (Neo4j)

◮ Virtuoso provides some options in the transitivity extension
that allow to store paths in the output table

