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Data exchange: Some lessons learned

Key steps in the development of the area:

◮ Definition of schema mapping: Precise syntax and semantics

◮ Definition of the notion of solution

◮ Identification of good solutions
◮ Universal solutions

◮ Polynomial time algorithms for materializing good solutions
◮ Based on the chase procedure
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Key steps in the development of the area:

◮ Definition of schema mapping: Precise syntax and semantics

◮ Definition of the notion of solution

◮ Identification of good solutions
◮ Universal solutions

◮ Polynomial time algorithms for materializing good solutions
◮ Based on the chase procedure

Creating schema mappings is a time consuming and expensive
process

◮ Manual or semi-automatic process in general
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Ongoing project: Reusing schema mappings

ΣSU

ΣST

S T U

ΣTU
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Ongoing project: Reusing schema mappings

ΣSU = ΣST ◦ ΣTU

ΣST

S T U

ΣTU

We need some operators for schema mappings

◮ Composition in the above case
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Metadata management

This has motivated the need for the development of a general
infrastructure for managing schema mappings.

The problem of managing schema mappings is called metadata

management.

High-level algebraic operators, such as compose, are used to
manipulate mappings.

◮ What other operators are needed?
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An inverse operator is also needed

ΣVS?

ΣST

S T U

ΣTU

V

ΣSVΣVS = Σ−1
SV

(Σ−1
VS ◦ ΣST) ◦ ΣTUΣ−1

VS ◦ ΣST
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Metadata management: A more general data exchange

framework is needed

Composition and inverse operators have been extensively studied in the
relational world.

◮ Semantics, computation, . . .

Combining these operators is an open issue.

M. Arenas – Data Exchange beyond Complete Data 8 / 56



Metadata management: A more general data exchange

framework is needed

Composition and inverse operators have been extensively studied in the
relational world.

◮ Semantics, computation, . . .

Combining these operators is an open issue.

◮ Key observation: A target instance of a mapping can be the source
instance of another mapping

M. Arenas – Data Exchange beyond Complete Data 8 / 56



Metadata management: A more general data exchange

framework is needed

Composition and inverse operators have been extensively studied in the
relational world.

◮ Semantics, computation, . . .

Combining these operators is an open issue.

◮ Key observation: A target instance of a mapping can be the source
instance of another mapping

◮ Sources instances may contain null values

M. Arenas – Data Exchange beyond Complete Data 8 / 56



Metadata management: A more general data exchange

framework is needed

Composition and inverse operators have been extensively studied in the
relational world.

◮ Semantics, computation, . . .

Combining these operators is an open issue.

◮ Key observation: A target instance of a mapping can be the source
instance of another mapping

◮ Sources instances may contain null values

There is a need for a data exchange framework that can handle databases

with incomplete information.
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Data exchange in the RDF world

There is an increasing interest in publishing relational data as RDF

◮ Resulted in the creation of the W3C RDB2RDF Working Group

The problem of translating relational data into RDF can be seen as a
data exchange problem

◮ Schema mappings can be used to describe how the relational data is
to be mapped into RDF
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There is an increasing interest in publishing relational data as RDF

◮ Resulted in the creation of the W3C RDB2RDF Working Group

The problem of translating relational data into RDF can be seen as a
data exchange problem

◮ Schema mappings can be used to describe how the relational data is
to be mapped into RDF

But there is a mismatch here: A relational database under a closed-world
semantics is to be translated into an RDF graph under an open-world
semantics

◮ There is a need for a data exchange framework that can handle
both databases with complete and incomplete information
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Data exchange in the RDF world

An issue discussed at the W3C RDB2RDF Working Group: Is a
mapping information preserving?

◮ In particular: For the default mapping defined by this group

How can we address this issue?

◮ Metadata management can help us
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Data exchange in the RDF world

An issue discussed at the W3C RDB2RDF Working Group: Is a
mapping information preserving?

◮ In particular: For the default mapping defined by this group

How can we address this issue?

◮ Metadata management can help us

Question to answer: Is a mapping invertible?

◮ This time an RDF graph is to be translated into a relational
database!

◮ We want to have a unifying framework for all these cases
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But these are not the only reasons . . .

Nowadays several applications use knowledge bases to represent data.

◮ A knowledge base has not only data but also rules that allows to
infer new data

◮ In the Semantics Web: RDFS and OWL ontologies
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In a data exchange application over the Semantics Web:

The input is a mapping and a source specification including data
and rules, and the output is a target specification also including
data and rules

There is a need for a data exchange framework that can handle

knowledge bases.
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One can exchange more than complete data

◮ In data exchange one starts with a database instance (with
complete information).

◮ What if we have an initial object that has several
interpretations?

◮ A representation of a set of possible instances

◮ We propose a new general formalism to exchange
representations of possible instances

◮ We apply it to the problems of exchanging instances with
incomplete information and exchanging knowledge bases
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Representation systems

A representation system R = (W, rep) consists of:

◮ a set W of representatives

◮ a function rep that assigns a set of instances to every element
in W

rep(V) = {I1, I2, I3, . . .} for every V ∈ W

Uniformity assumption: For every V ∈ W, there exists a relational
schema S (the type of V) such that rep(V) ⊆ Inst(S)
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◮ a set W of representatives

◮ a function rep that assigns a set of instances to every element
in W

rep(V) = {I1, I2, I3, . . .} for every V ∈ W

Uniformity assumption: For every V ∈ W, there exists a relational
schema S (the type of V) such that rep(V) ⊆ Inst(S)

Incomplete instances and knowledge bases are representation
systems
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In classical data exchange we consider only complete data

M is a mapping from S to T if M ⊆ Inst(S) × Inst(T)

◮ Given instances I of S and J of T: J is a solution for I under M if
S if (I , J) ∈ M
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In classical data exchange we consider only complete data

M is a mapping from S to T if M ⊆ Inst(S) × Inst(T)

◮ Given instances I of S and J of T: J is a solution for I under M if
S if (I , J) ∈ M

M is defined by a set Σ of dependencies (e.g., st-tgds) if: (I , J) ∈ M iff
(I , J) |= Σ.

◮ Notation: M = (S,T, Σ)
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Extending the definition to representation systems

SolM(I ): Set of solutions for I under M
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Extending the definition to representation systems

SolM(I ): Set of solutions for I under M

This can be extended to set of instances. Given X ⊆ Inst(S):

SolM(X ) =
⋃

I∈X

SolM(I )

M. Arenas – Data Exchange beyond Complete Data 16 / 56



Extending the definition to representation systems

Given:

◮ a mapping M from S to T
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◮ U ,V ∈ W of types S and T, respectively
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◮ a mapping M from S to T

◮ a representation system R = (W, rep)

◮ U ,V ∈ W of types S and T, respectively

Definition (APR11)

V is an R-solution of U under M if

rep(V) ⊆ SolM(rep(U))

Or equivalently: V is an R-solution of U if for every J ∈ rep(V),
there exists I ∈ rep(U) such that J ∈ SolM(I ).
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Extending the definition to representation systems
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Universal solutions

What is a good solution in this framework?
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Universal solutions

What is a good solution in this framework?

Definition (APR11)

V is an universal R-solution of U under M if

rep(V) = SolM(rep(U))
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Universal solutions in a figure

I2
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Strong representation systems

Let C be a class of mappings.
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R = (W, rep) is a strong representation system for C if for every
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Strong representation systems

Let C be a class of mappings.

Definition (APR11)

R = (W, rep) is a strong representation system for C if for every
M ∈ C from S to T, and for every U ∈ W of type S, there exists a
V ∈ W of type T:

rep(V) = SolM(rep(U))

If R = (W, rep) is a strong representation system, then the
universal solutions for the representatives in W can be represented
in the same system.
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Outline

◮ The need for a more general data exchange framework
◮ Two important scenarios: Incomplete databases and knowledge

bases
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Motivating questions

What is a strong representation system for the class of mappings
specified by st-tgds?

◮ Are instances including nulls enough?

Can the fundamental data exchange problems be solved in
polynomial time in this setting?

◮ Computing (universal) solutions
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Naive instances

We have already considered naive instances: Instances with null values

◮ Example: Universal solutions

A naive instance I has labeled nulls:

R(1, n1)
R(n1, 2)
R(1, n2)
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Naive instances

We have already considered naive instances: Instances with null values

◮ Example: Universal solutions

A naive instance I has labeled nulls:

R(1, n1)
R(n1, 2)
R(1, n2)

The interpretations of I are constructed by replacing nulls by constants:

rep(I) = {K | µ(I) ⊆ K for some valuation µ}
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Are naive instances expressive enough?

Naive instances have been extensively used in data exchange:

Proposition (FKMP03)

Let M = (S,T,Σ), where Σ is a set of st-tgds. Then for every
instance I of S, there exists a naive instance J of T such that:

rep(J ) = SolM(I )

In fact, every universal solution satisfies the property mentioned
above.
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Are naive instances expressive enough?

But naive instances are not expressive enough to deal with
incomplete information in the source instances:

Proposition (APR11)

Naive instances are not a strong representation system for the class
of mappings specified by st-tgds
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Are naive instances expressive enough?

Example

Consider a mapping M specified by:

Manager(x , y) → Reports(x , y)

Manager(x , x) → SelfManager(x)

The canonical universal solution for I = {Manager(n, Peter)} under M:

J = {Reports(n, Peter)}

But J is not a good solution for I.

◮ It cannot represent the fact that if n is given value Peter, then
SelfManager(Peter) should hold in the target.
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Conditional instances

What should be added to naive instances to obtain a strong
representation system?
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Conditional instances

What should be added to naive instances to obtain a strong
representation system?

◮ Answer from database theory: Conditions on the nulls

Conditional instances: Naive instances plus tuple conditions

A tuple condition is a positive Boolean combinations of:

◮ equalities and inequalities between nulls, and between nulls
and constants
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Conditional instances

Example

R(1, n1) n1 = n2

R(n1, n2) n1 6= n2 ∨ n2 = 2
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Conditional instances

Example

R(1, n1) n1 = n2

R(n1, n2) n1 6= n2 ∨ n2 = 2

Semantics:

µ(n1) = µ(n2) = 2 µ(n1) = µ(n2) = 3 µ(n1) = 2, µ(n2) = 3
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Conditional instances

Example

R(1, n1) n1 = n2

R(n1, n2) n1 6= n2 ∨ n2 = 2

Semantics:

µ(n1) = µ(n2) = 2
R(1, 2)
R(2, 2)

µ(n1) = µ(n2) = 3
R(1, 3)

µ(n1) = 2, µ(n2) = 3

R(2, 3)

Interpretations of a conditional instance I:

rep(I) = {K | µ(I) ⊆ K for some valuation µ}
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Positive conditional instances

Many problems are intractable over conditional instances.

◮ We also consider a restricted class of conditional instances

Positive conditional instances: Conditional instances without
inequalities
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(Positive) conditional instances are enough

Theorem (APR11)

Both conditional instances and positive conditional instances are strong
representation systems for the class of mappings specified by st-tgds.

Example

Consider again the mapping M specified by:

Manager(x , y) → Reports(x , y)

Manager(x , x) → SelfManager(x)

The following is a universal solution for I = {Manager(n, Peter)}

Reports(n, Peter) true
SelfManager(Peter) n = Peter
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Positive conditional instances are exactly the needed

representation system

Theorem (APR11)

All the following are needed to obtain a strong representation system for
the class of mappings specified by st-tgds:
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All the following are needed to obtain a strong representation system for
the class of mappings specified by st-tgds:

◮ equalities between nulls

◮ There exists a mapping M given by st-tgds and a source naive
instance I such that for every target positive conditional J not
mentioning equalities between nulls: rep(J ) 6= SolM(rep(I))
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Theorem (APR11)

All the following are needed to obtain a strong representation system for
the class of mappings specified by st-tgds:

◮ equalities between nulls

◮ There exists a mapping M given by st-tgds and a source naive
instance I such that for every target positive conditional J not
mentioning equalities between nulls: rep(J ) 6= SolM(rep(I))

◮ equalities between constant and nulls
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the class of mappings specified by st-tgds:
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instance I such that for every target positive conditional J not
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Positive conditional instances are exactly the needed

representation system

Theorem (APR11)

All the following are needed to obtain a strong representation system for
the class of mappings specified by st-tgds:

◮ equalities between nulls

◮ There exists a mapping M given by st-tgds and a source naive
instance I such that for every target positive conditional J not
mentioning equalities between nulls: rep(J ) 6= SolM(rep(I))

◮ equalities between constant and nulls

◮ conjunctions and disjunctions

Conditional instances are enough but not minimal.
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Positive conditional instance can be used in practice!

Let M = (S,T,Σ), where Σ is a set of st-tgds.
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Let M = (S,T,Σ), where Σ is a set of st-tgds.

Theorem (APR11)

There exists a polynomial time algorithm that, given a positive
conditional instance I over S, computes a positive conditional
instance J over T that is a universal solution for I under M.
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Positive conditional instance can be used in practice!

Let M = (S,T,Σ), where Σ is a set of st-tgds.

Theorem (APR11)

There exists a polynomial time algorithm that, given a positive
conditional instance I over S, computes a positive conditional
instance J over T that is a universal solution for I under M.

Remark

They are also appropriate for query answering in data exchange.

◮ Same polynomial-time cases as in the usual setting
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Outline

◮ The need for a more general data exchange framework
◮ Two important scenarios: Incomplete databases and knowledge

bases

◮ Formalism for exchanging representations systems

◮ Applications to incomplete databases

◮ Applications to metadata management

◮ Concluding remarks
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The composition operator

Definition (FKPT04)

Let M12 be a mapping from S1 to S2, and M23 a mapping from
S2 to S3:

M12 ◦M23 = {(I1, I3) |

∃I2 : (I1, I2) ∈ M12 and (I2, I3) ∈ M23}
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Expressing the composition of mappings

Question

What is the right language for expressing the composition?

◮ st-tgds?

Example (FKPT04)

Consider the mappings M12:

node(x) → ∃y coloring(x , y)

edge(x , y) → edge′(x , y)

and M23:

edge′(x , y) ∧ coloring (x , u) ∧ coloring(y , u) → error (x , y)

coloring (x , y) → color (y)
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SO tgds: The right language for expressing the

composition of mappings

Example (Cont’d)

The following dependency defines the composition:

∃f

[

∀x(node(x) → color (f (x))) ∧

∀x∀y(edge(x , y) ∧ f (x) = f (y) → error (x , y))

]
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SO tgds: The right language for expressing the

composition of mappings

Example (Cont’d)

The following dependency defines the composition:

∃f

[

∀x(node(x) → color (f (x))) ∧

∀x∀y(edge(x , y) ∧ f (x) = f (y) → error (x , y))

]

This example shows the main ingredients of SO tgds:

◮ Predicates including terms: color (f (x))

◮ Equality between terms: f (x) = f (y)
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SO tgds: The right language for expressing the

composition of mappings

SO tgds were introduced in [FKPT04]

◮ They have good properties regarding composition
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composition of mappings

SO tgds were introduced in [FKPT04]

◮ They have good properties regarding composition

Theorem (FKPT04)

If M12 and M23 are specified by SO tgds, then M12 ◦M23 can
be specified by an SO tgd
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SO tgds: The right language for expressing the

composition of mappings

SO tgds were introduced in [FKPT04]

◮ They have good properties regarding composition

Theorem (FKPT04)

If M12 and M23 are specified by SO tgds, then M12 ◦M23 can
be specified by an SO tgd

◮ There exists an exponential time algorithm that computes
such SO tgds
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SO tgds: The right language for expressing the

composition of mappings

Corollary (FKPT04)

The composition of a finite number of mappings, each defined by a
finite set of st-tgds, is defined by an SO tgd
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SO tgds: The right language for expressing the

composition of mappings

Corollary (FKPT04)

The composition of a finite number of mappings, each defined by a
finite set of st-tgds, is defined by an SO tgd

But not only that, SO tgds are exactly the right language:

Theorem (FKPT05)

Every SO tgd defines the composition of a finite number of
mappings, each defined by a finite set of st-tgds.
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The inverse operator

Schema TSchema S

ΣST
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The inverse operator

Question

What is the semantics of the inverse operator?

This turns out to be a very difficult question.

Several notions of inverse have been considered:

◮ Fagin-inverse [F06]

◮ Quasi-inverse [FKPT07]

◮ Maximum recovery [APR08]

◮ Maximum extended recovery [FKPT09]

◮ C-maximum recovery [APRR09]
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Recovery: specifies how to recover sound information

Data may be lost in the exchange through a mapping M

◮ We would like to find a mapping M⋆ that at least recovers
sound data w.r.t. M

◮ M⋆ is called a recovery of M
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Recovery: specifies how to recover sound information

Data may be lost in the exchange through a mapping M

◮ We would like to find a mapping M⋆ that at least recovers
sound data w.r.t. M

◮ M⋆ is called a recovery of M

Example

Consider a mapping M specified by:

emp(x , y , z) ∧ y 6= z → shuttle(x , z)

What mappings are recoveries of M?
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◮ We would like to find a mapping M⋆ that at least recovers
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◮ M⋆ is called a recovery of M

Example

Consider a mapping M specified by:

emp(x , y , z) ∧ y 6= z → shuttle(x , z)

What mappings are recoveries of M?

M⋆

1 : shuttle(x , z) → ∃u∃v emp(x , u, v)
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Recovery: specifies how to recover sound information

Data may be lost in the exchange through a mapping M

◮ We would like to find a mapping M⋆ that at least recovers
sound data w.r.t. M
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Maximum recovery: The most informative recovery

Example

Consider again mapping M specified by:

emp(x , y , z) ∧ y 6= z → shuttle(x , z)

These mappings are recoveries of M:

M⋆

1 : shuttle(x , z) → ∃u∃v emp(x , u, v)
M⋆

2 : shuttle(x , z) → ∃u emp(x , u, z)
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Maximum recovery: The most informative recovery

Example

Consider again mapping M specified by:

emp(x , y , z) ∧ y 6= z → shuttle(x , z)

These mappings are recoveries of M:

M⋆

1 : shuttle(x , z) → ∃u∃v emp(x , u, v)
M⋆

2 : shuttle(x , z) → ∃u emp(x , u, z)

Intuitively: M⋆

2 is better than M⋆

1
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Maximum recovery: The most informative recovery
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1
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Maximum recovery: The most informative recovery

Example

Consider again mapping M specified by:

emp(x , y , z) ∧ y 6= z → shuttle(x , z)

These mappings are recoveries of M:

M⋆

1 : shuttle(x , z) → ∃u∃v emp(x , u, v)
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Maximum recovery: The most informative recovery

Example

Consider again mapping M specified by:

emp(x , y , z) ∧ y 6= z → shuttle(x , z)

These mappings are recoveries of M:

M⋆

1 : shuttle(x , z) → ∃u∃v emp(x , u, v)
M⋆

2 : shuttle(x , z) → ∃u emp(x , u, z)
M⋆

4 : shuttle(x , z) → ∃u emp(x , u, z) ∧ u 6= z

Intuitively: M⋆

2 is better than M⋆

1

M⋆

4 is better than M⋆

2 and M⋆

1

We would like to find a recovery of M that is better than any
other recovery: Maximum recovery
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The notion of recovery: Formalization

Definition (APR08)

Let M be a mapping from S1 to S2 and M⋆ a mapping from S2

to S1. Then M⋆ is a recovery of M if:

for every instance I of S1: (I , I ) ∈ M ◦M⋆
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The notion of recovery: Formalization

Definition (APR08)

Let M be a mapping from S1 to S2 and M⋆ a mapping from S2

to S1. Then M⋆ is a recovery of M if:

for every instance I of S1: (I , I ) ∈ M ◦M⋆

Example

Consider again mapping M specified by:

emp(x , y , z) ∧ y 6= z → shuttle(x , z)

This mapping is not a recovery of M:

M⋆

3: shuttle(x , z) → ∃u emp(x , z , u)
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The notion of recovery: Formalization

Example (Cont’d)

On the other hand, these mappings are recoveries of M:

M⋆

1: shuttle(x , z) → ∃u∃v emp(x , u, v)
M⋆

2: shuttle(x , z) → ∃u emp(x , u, z)
M⋆

4: shuttle(x , z) → ∃u emp(x , u, z) ∧ u 6= z
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The notion of maximum recovery

M

I
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The notion of maximum recovery
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The notion of maximum recovery

M⋆

2

M

M⋆

1

I
M⋆

3

Definition (APR08)

M⋆ is a maximum recovery of M if:

◮ M⋆ is a recovery of M

◮ for every recovery M′ of M: M◦M⋆ ⊆ M◦M′

M. Arenas – Data Exchange beyond Complete Data 46 / 56



On the existence of maximum recoveries

Theorem (APR08)

Every mapping specified by a finite set of st-tgds has a maximum
recovery.
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On the existence of maximum recoveries

Theorem (APR08)

Every mapping specified by a finite set of st-tgds has a maximum
recovery.

But this does not hold if one also considers naive instances in the
source.

◮ Maximum extended recovery was introduced to overcome this
limitation
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We need to combine the operators

Can we combine the composition and inverse operators?

◮ Is there a good language for both operators?
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We need to combine the operators

Can we combine the composition and inverse operators?

◮ Is there a good language for both operators?

Bad news:

Theorem (APR11)

There exists a mapping specified by an SO tgd that does not have
a maximum recovery.
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We need to combine the operators

Even worse:

◮ Previous mapping has neither a Fagin-inverse nor a
quasi-inverse nor a C-maximum recovery (CQ ⊆ C)

◮ Semantics of maximum extended recovery is appropriate for
st-tgds.
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We need to combine the operators

Even worse:

◮ Previous mapping has neither a Fagin-inverse nor a
quasi-inverse nor a C-maximum recovery (CQ ⊆ C)

◮ Semantics of maximum extended recovery is appropriate for
st-tgds.

Do we need yet another notion of inverse?
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We need to combine the operators

Even worse:

◮ Previous mapping has neither a Fagin-inverse nor a
quasi-inverse nor a C-maximum recovery (CQ ⊆ C)

◮ Semantics of maximum extended recovery is appropriate for
st-tgds.

Do we need yet another notion of inverse?

◮ No, we need to revisit the semantics of mappings

M. Arenas – Data Exchange beyond Complete Data 49 / 56



What went wrong?

Key observation: A target instance of a mapping can be the source
instance of another mapping.

◮ Sources instances may contain null values
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What went wrong?

Key observation: A target instance of a mapping can be the source
instance of another mapping.

◮ Sources instances may contain null values

Theorem (APR11)

Positive conditional instances are a strong representation system
for the class of mappings specified by SO tgds.
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A solution to the problem

Theorem (APR11)

If (usual) instances are replaced by positive conditional instances:

◮ SO tgds are still the right language for the composition of
mappings given by st-tgds

◮ Every mapping specified by an SO tgd admits a maximum
recovery

M. Arenas – Data Exchange beyond Complete Data 51 / 56



Outline

◮ The need for a more general data exchange framework
◮ Two important scenarios: Incomplete databases and knowledge

bases

◮ Formalism for exchanging representations systems

◮ Applications to incomplete databases

◮ Applications to metadata management

◮ Concluding remarks
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We can exchange more than complete data

We propose a general formalism to exchange representation
systems

◮ Applications to incomplete instances

◮ Applications to metadata management

◮ Applications to knowledge bases
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We can exchange more than complete data

We propose a general formalism to exchange representation
systems

◮ Applications to incomplete instances

◮ Applications to metadata management

◮ Applications to knowledge bases

Next step: Apply our general setting to the Semantic Web

◮ Semantic Web data has nulls (blank nodes)

◮ Semantic Web specifications have rules (RDFS, OWL)
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Thank you!
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