
Data Exchange beyond Complete Data

Marcelo Arenas

Department of Computer Science
Pontificia Universidad Católica de Chile

Joint work with Jorge Pérez (U. de Chile) and Juan Reutter (U. Edinburgh)

M. Arenas – Data Exchange beyond Complete Data 1 / 56



Outline

◮ The need for a more general data exchange framework
◮ Two important scenarios: Incomplete databases and knowledge

bases

◮ Formalism for exchanging representations systems

◮ Applications to incomplete databases

◮ Applications to metadata management

◮ Concluding remarks

M. Arenas – Data Exchange beyond Complete Data 2 / 56



Outline

◮ The need for a more general data exchange framework
◮ Two important scenarios: Incomplete databases and knowledge

bases

◮ Formalism for exchanging representations systems

◮ Applications to incomplete databases

◮ Applications to metadata management

◮ Concluding remarks

M. Arenas – Data Exchange beyond Complete Data 3 / 56



Data exchange: Some lessons learned

Key steps in the development of the area:

◮ Definition of schema mapping: Precise syntax and semantics

◮ Definition of the notion of solution

◮ Identification of good solutions
◮ Universal solutions

◮ Polynomial time algorithms for materializing good solutions
◮ Based on the chase procedure

M. Arenas – Data Exchange beyond Complete Data 4 / 56



Data exchange: Some lessons learned

Key steps in the development of the area:

◮ Definition of schema mapping: Precise syntax and semantics

◮ Definition of the notion of solution

◮ Identification of good solutions
◮ Universal solutions

◮ Polynomial time algorithms for materializing good solutions
◮ Based on the chase procedure

Creating schema mappings is a time consuming and expensive
process

◮ Manual or semi-automatic process in general

M. Arenas – Data Exchange beyond Complete Data 4 / 56



Ongoing project: Reusing schema mappings

ΣSU

ΣST

S T U

ΣTU

M. Arenas – Data Exchange beyond Complete Data 5 / 56



Ongoing project: Reusing schema mappings

ΣSU

ΣST

S T U

ΣTU

M. Arenas – Data Exchange beyond Complete Data 5 / 56



Ongoing project: Reusing schema mappings

ΣSU?

ΣST

S T U

ΣTU

M. Arenas – Data Exchange beyond Complete Data 5 / 56



Ongoing project: Reusing schema mappings

ΣSU?

ΣST

S T U

ΣTU

We need some operators for schema mappings

M. Arenas – Data Exchange beyond Complete Data 5 / 56



Ongoing project: Reusing schema mappings

ΣSU = ΣST ◦ ΣTU

ΣST

S T U

ΣTU

We need some operators for schema mappings

◮ Composition in the above case

M. Arenas – Data Exchange beyond Complete Data 5 / 56



Metadata management

This has motivated the need for the development of a general
infrastructure for managing schema mappings.

The problem of managing schema mappings is called metadata

management.

High-level algebraic operators, such as compose, are used to
manipulate mappings.

◮ What other operators are needed?

M. Arenas – Data Exchange beyond Complete Data 6 / 56



An inverse operator is also needed

ΣVS?

ΣST

S T U

ΣTU

V

ΣSVΣVS = Σ−1
SV

(Σ−1
VS ◦ ΣST) ◦ ΣTUΣ−1

VS ◦ ΣST

M. Arenas – Data Exchange beyond Complete Data 7 / 56



An inverse operator is also needed

ΣVS?

ΣST

S T U

ΣTU

V

ΣSVΣVS = Σ−1
SV

(Σ−1
VS ◦ ΣST) ◦ ΣTUΣ−1

VS ◦ ΣST

M. Arenas – Data Exchange beyond Complete Data 7 / 56



An inverse operator is also needed

ΣVS?

ΣST

S T U

ΣTU

V

ΣSV

(Σ−1
VS ◦ ΣST) ◦ ΣTUΣ−1

VS ◦ ΣST

ΣVS = Σ−1
SV

M. Arenas – Data Exchange beyond Complete Data 7 / 56



An inverse operator is also needed

ΣVS = Σ−1
SV

ΣST

S T U

ΣTU

V

ΣSV

(Σ−1
VS ◦ ΣST) ◦ ΣTUΣ−1

VS ◦ ΣST

M. Arenas – Data Exchange beyond Complete Data 7 / 56



An inverse operator is also needed

Σ−1
SV ◦ ΣST

ΣST

S T U

ΣTU

V

ΣSV

(Σ−1
VS ◦ ΣST) ◦ ΣTU

ΣVS = Σ−1
SV

Composition and inverse operators have to be combined

M. Arenas – Data Exchange beyond Complete Data 7 / 56



An inverse operator is also needed

Σ−1
SV ◦ ΣST

ΣST

S T U

ΣTU

V

ΣSV

(Σ−1
SV ◦ ΣST) ◦ ΣTU

ΣVS = Σ−1
SV

Composition and inverse operators have to be combined

M. Arenas – Data Exchange beyond Complete Data 7 / 56



Metadata management: A more general data exchange

framework is needed

Composition and inverse operators have been extensively studied in the
relational world.

◮ Semantics, computation, . . .

Combining these operators is an open issue.

M. Arenas – Data Exchange beyond Complete Data 8 / 56



Metadata management: A more general data exchange

framework is needed

Composition and inverse operators have been extensively studied in the
relational world.

◮ Semantics, computation, . . .

Combining these operators is an open issue.

◮ Key observation: A target instance of a mapping can be the source
instance of another mapping

M. Arenas – Data Exchange beyond Complete Data 8 / 56



Metadata management: A more general data exchange

framework is needed

Composition and inverse operators have been extensively studied in the
relational world.

◮ Semantics, computation, . . .

Combining these operators is an open issue.

◮ Key observation: A target instance of a mapping can be the source
instance of another mapping

◮ Sources instances may contain null values

M. Arenas – Data Exchange beyond Complete Data 8 / 56



Metadata management: A more general data exchange

framework is needed

Composition and inverse operators have been extensively studied in the
relational world.

◮ Semantics, computation, . . .

Combining these operators is an open issue.

◮ Key observation: A target instance of a mapping can be the source
instance of another mapping

◮ Sources instances may contain null values

There is a need for a data exchange framework that can handle databases

with incomplete information.

M. Arenas – Data Exchange beyond Complete Data 8 / 56



Data exchange in the RDF world

There is an increasing interest in publishing relational data as RDF

◮ Resulted in the creation of the W3C RDB2RDF Working Group

The problem of translating relational data into RDF can be seen as a
data exchange problem

◮ Schema mappings can be used to describe how the relational data is
to be mapped into RDF

M. Arenas – Data Exchange beyond Complete Data 9 / 56



Data exchange in the RDF world

There is an increasing interest in publishing relational data as RDF

◮ Resulted in the creation of the W3C RDB2RDF Working Group

The problem of translating relational data into RDF can be seen as a
data exchange problem

◮ Schema mappings can be used to describe how the relational data is
to be mapped into RDF

But there is a mismatch here: A relational database under a closed-world
semantics is to be translated into an RDF graph under an open-world
semantics

◮ There is a need for a data exchange framework that can handle
both databases with complete and incomplete information

M. Arenas – Data Exchange beyond Complete Data 9 / 56



Data exchange in the RDF world

An issue discussed at the W3C RDB2RDF Working Group: Is a
mapping information preserving?

◮ In particular: For the default mapping defined by this group

How can we address this issue?

◮ Metadata management can help us

M. Arenas – Data Exchange beyond Complete Data 10 / 56



Data exchange in the RDF world

An issue discussed at the W3C RDB2RDF Working Group: Is a
mapping information preserving?

◮ In particular: For the default mapping defined by this group

How can we address this issue?

◮ Metadata management can help us

Question to answer: Is a mapping invertible?

M. Arenas – Data Exchange beyond Complete Data 10 / 56



Data exchange in the RDF world

An issue discussed at the W3C RDB2RDF Working Group: Is a
mapping information preserving?

◮ In particular: For the default mapping defined by this group

How can we address this issue?

◮ Metadata management can help us

Question to answer: Is a mapping invertible?

◮ This time an RDF graph is to be translated into a relational
database!

M. Arenas – Data Exchange beyond Complete Data 10 / 56



Data exchange in the RDF world

An issue discussed at the W3C RDB2RDF Working Group: Is a
mapping information preserving?

◮ In particular: For the default mapping defined by this group

How can we address this issue?

◮ Metadata management can help us

Question to answer: Is a mapping invertible?

◮ This time an RDF graph is to be translated into a relational
database!

◮ We want to have a unifying framework for all these cases

M. Arenas – Data Exchange beyond Complete Data 10 / 56



But these are not the only reasons . . .

Nowadays several applications use knowledge bases to represent data.

◮ A knowledge base has not only data but also rules that allows to
infer new data

◮ In the Semantics Web: RDFS and OWL ontologies

M. Arenas – Data Exchange beyond Complete Data 11 / 56



But these are not the only reasons . . .

Nowadays several applications use knowledge bases to represent data.

◮ A knowledge base has not only data but also rules that allows to
infer new data

◮ In the Semantics Web: RDFS and OWL ontologies

In a data exchange application over the Semantics Web:

The input is a mapping and a source specification including data
and rules, and the output is a target specification also including
data and rules

M. Arenas – Data Exchange beyond Complete Data 11 / 56



But these are not the only reasons . . .

Nowadays several applications use knowledge bases to represent data.

◮ A knowledge base has not only data but also rules that allows to
infer new data

◮ In the Semantics Web: RDFS and OWL ontologies

In a data exchange application over the Semantics Web:

The input is a mapping and a source specification including data
and rules, and the output is a target specification also including
data and rules

There is a need for a data exchange framework that can handle

knowledge bases.

M. Arenas – Data Exchange beyond Complete Data 11 / 56



One can exchange more than complete data

◮ In data exchange one starts with a database instance (with
complete information).

◮ What if we have an initial object that has several
interpretations?

◮ A representation of a set of possible instances

◮ We propose a new general formalism to exchange
representations of possible instances

◮ We apply it to the problems of exchanging instances with
incomplete information and exchanging knowledge bases

M. Arenas – Data Exchange beyond Complete Data 12 / 56



Outline

◮ The need for a more general data exchange framework
◮ Two important scenarios: Incomplete databases and knowledge

bases

◮ Formalism for exchanging representations systems

◮ Applications to incomplete databases

◮ Applications to metadata management

◮ Concluding remarks

M. Arenas – Data Exchange beyond Complete Data 13 / 56



Representation systems

A representation system R = (W, rep) consists of:

◮ a set W of representatives

◮ a function rep that assigns a set of instances to every element
in W

rep(V) = {I1, I2, I3, . . .} for every V ∈ W

Uniformity assumption: For every V ∈ W, there exists a relational
schema S (the type of V) such that rep(V) ⊆ Inst(S)

M. Arenas – Data Exchange beyond Complete Data 14 / 56



Representation systems

A representation system R = (W, rep) consists of:

◮ a set W of representatives

◮ a function rep that assigns a set of instances to every element
in W

rep(V) = {I1, I2, I3, . . .} for every V ∈ W

Uniformity assumption: For every V ∈ W, there exists a relational
schema S (the type of V) such that rep(V) ⊆ Inst(S)

Incomplete instances and knowledge bases are representation
systems

M. Arenas – Data Exchange beyond Complete Data 14 / 56



In classical data exchange we consider only complete data

M is a mapping from S to T if M ⊆ Inst(S) × Inst(T)

◮ Given instances I of S and J of T: J is a solution for I under M if
S if (I , J) ∈ M

M. Arenas – Data Exchange beyond Complete Data 15 / 56



In classical data exchange we consider only complete data

M is a mapping from S to T if M ⊆ Inst(S) × Inst(T)

◮ Given instances I of S and J of T: J is a solution for I under M if
S if (I , J) ∈ M

M is defined by a set Σ of dependencies (e.g., st-tgds) if: (I , J) ∈ M iff
(I , J) |= Σ.

◮ Notation: M = (S,T, Σ)

M. Arenas – Data Exchange beyond Complete Data 15 / 56



Extending the definition to representation systems

SolM(I ): Set of solutions for I under M

M. Arenas – Data Exchange beyond Complete Data 16 / 56



Extending the definition to representation systems

SolM(I ): Set of solutions for I under M

This can be extended to set of instances. Given X ⊆ Inst(S):

SolM(X ) =
⋃

I∈X

SolM(I )

M. Arenas – Data Exchange beyond Complete Data 16 / 56



Extending the definition to representation systems

Given:

◮ a mapping M from S to T

◮ a representation system R = (W, rep)

◮ U ,V ∈ W of types S and T, respectively

M. Arenas – Data Exchange beyond Complete Data 17 / 56



Extending the definition to representation systems

Given:

◮ a mapping M from S to T

◮ a representation system R = (W, rep)

◮ U ,V ∈ W of types S and T, respectively

Definition (APR11)

V is an R-solution of U under M if

rep(V) ⊆ SolM(rep(U))

M. Arenas – Data Exchange beyond Complete Data 17 / 56



Extending the definition to representation systems

Given:

◮ a mapping M from S to T

◮ a representation system R = (W, rep)

◮ U ,V ∈ W of types S and T, respectively

Definition (APR11)

V is an R-solution of U under M if

rep(V) ⊆ SolM(rep(U))

Or equivalently: V is an R-solution of U if for every J ∈ rep(V),
there exists I ∈ rep(U) such that J ∈ SolM(I ).

M. Arenas – Data Exchange beyond Complete Data 17 / 56



Extending the definition to representation systems

I4

rep(U)

U

rep(V)

I2

I3

V

M

I1

J1

J3

J2

M. Arenas – Data Exchange beyond Complete Data 18 / 56



Extending the definition to representation systems

I4

rep(U)

U

rep(V)

I2

I3

V

M

I1

J1

J3

J2

M. Arenas – Data Exchange beyond Complete Data 18 / 56



Extending the definition to representation systems

I4

rep(U)

U

rep(V)

I2

I3

V

M

I1

J1

J3

J2

M. Arenas – Data Exchange beyond Complete Data 18 / 56



Extending the definition to representation systems

I4

rep(U)

U

rep(V)

I2

I3

V

M

I1

J1

J3

J2

M. Arenas – Data Exchange beyond Complete Data 18 / 56



Extending the definition to representation systems

I4

rep(U)

U

rep(V)

I2

I3

V

M

I1

J1

J3

J2

M. Arenas – Data Exchange beyond Complete Data 18 / 56



Universal solutions

What is a good solution in this framework?

M. Arenas – Data Exchange beyond Complete Data 19 / 56



Universal solutions

What is a good solution in this framework?

Definition (APR11)

V is an universal R-solution of U under M if

rep(V) = SolM(rep(U))

M. Arenas – Data Exchange beyond Complete Data 19 / 56



Universal solutions in a figure

I2

rep(U)

U

rep(V)

V

M

I1

J1

J3

J2

I4

I3

M. Arenas – Data Exchange beyond Complete Data 20 / 56



Strong representation systems

Let C be a class of mappings.

M. Arenas – Data Exchange beyond Complete Data 21 / 56



Strong representation systems

Let C be a class of mappings.

Definition (APR11)

R = (W, rep) is a strong representation system for C if for every
M ∈ C and for every U ∈ W , there exists a
V ∈ W :

rep(V) = SolM(rep(U))

M. Arenas – Data Exchange beyond Complete Data 21 / 56



Strong representation systems

Let C be a class of mappings.

Definition (APR11)

R = (W, rep) is a strong representation system for C if for every
M ∈ C from S to T, and for every U ∈ W , there exists a
V ∈ W :

rep(V) = SolM(rep(U))

M. Arenas – Data Exchange beyond Complete Data 21 / 56



Strong representation systems

Let C be a class of mappings.

Definition (APR11)

R = (W, rep) is a strong representation system for C if for every
M ∈ C from S to T, and for every U ∈ W of type S, there exists a
V ∈ W :

rep(V) = SolM(rep(U))

M. Arenas – Data Exchange beyond Complete Data 21 / 56



Strong representation systems

Let C be a class of mappings.

Definition (APR11)

R = (W, rep) is a strong representation system for C if for every
M ∈ C from S to T, and for every U ∈ W of type S, there exists a
V ∈ W of type T:

rep(V) = SolM(rep(U))

M. Arenas – Data Exchange beyond Complete Data 21 / 56



Strong representation systems

Let C be a class of mappings.

Definition (APR11)

R = (W, rep) is a strong representation system for C if for every
M ∈ C from S to T, and for every U ∈ W of type S, there exists a
V ∈ W of type T:

rep(V) = SolM(rep(U))

If R = (W, rep) is a strong representation system, then the
universal solutions for the representatives in W can be represented
in the same system.

M. Arenas – Data Exchange beyond Complete Data 21 / 56



Outline

◮ The need for a more general data exchange framework
◮ Two important scenarios: Incomplete databases and knowledge

bases

◮ Formalism for exchanging representations systems

◮ Applications to incomplete databases

◮ Applications to metadata management

◮ Concluding remarks

M. Arenas – Data Exchange beyond Complete Data 22 / 56



Motivating questions

What is a strong representation system for the class of mappings
specified by st-tgds?

◮ Are instances including nulls enough?

Can the fundamental data exchange problems be solved in
polynomial time in this setting?

◮ Computing (universal) solutions

M. Arenas – Data Exchange beyond Complete Data 23 / 56



Naive instances

We have already considered naive instances: Instances with null values

◮ Example: Universal solutions

A naive instance I has labeled nulls:

R(1, n1)
R(n1, 2)
R(1, n2)

M. Arenas – Data Exchange beyond Complete Data 24 / 56



Naive instances

We have already considered naive instances: Instances with null values

◮ Example: Universal solutions

A naive instance I has labeled nulls:

R(1, n1)
R(n1, 2)
R(1, n2)

The interpretations of I are constructed by replacing nulls by constants:

rep(I) = {K | µ(I) ⊆ K for some valuation µ}

M. Arenas – Data Exchange beyond Complete Data 24 / 56



Are naive instances expressive enough?

Naive instances have been extensively used in data exchange:

Proposition (FKMP03)

Let M = (S,T,Σ), where Σ is a set of st-tgds. Then for every
instance I of S, there exists a naive instance J of T such that:

rep(J ) = SolM(I )

In fact, every universal solution satisfies the property mentioned
above.

M. Arenas – Data Exchange beyond Complete Data 25 / 56



Are naive instances expressive enough?

But naive instances are not expressive enough to deal with
incomplete information in the source instances:

Proposition (APR11)

Naive instances are not a strong representation system for the class
of mappings specified by st-tgds

M. Arenas – Data Exchange beyond Complete Data 26 / 56



Are naive instances expressive enough?

Example

Consider a mapping M specified by:

Manager(x , y) → Reports(x , y)

Manager(x , x) → SelfManager(x)

The canonical universal solution for I = {Manager(n, Peter)} under M:

J = {Reports(n, Peter)}

But J is not a good solution for I.

◮ It cannot represent the fact that if n is given value Peter, then
SelfManager(Peter) should hold in the target.

M. Arenas – Data Exchange beyond Complete Data 27 / 56



Conditional instances

What should be added to naive instances to obtain a strong
representation system?

M. Arenas – Data Exchange beyond Complete Data 28 / 56



Conditional instances

What should be added to naive instances to obtain a strong
representation system?

◮ Answer from database theory: Conditions on the nulls

M. Arenas – Data Exchange beyond Complete Data 28 / 56



Conditional instances

What should be added to naive instances to obtain a strong
representation system?

◮ Answer from database theory: Conditions on the nulls

Conditional instances: Naive instances plus tuple conditions

A tuple condition is a positive Boolean combinations of:

◮ equalities and inequalities between nulls, and between nulls
and constants

M. Arenas – Data Exchange beyond Complete Data 28 / 56



Conditional instances

Example

R(1, n1) n1 = n2

R(n1, n2) n1 6= n2 ∨ n2 = 2

M. Arenas – Data Exchange beyond Complete Data 29 / 56



Conditional instances

Example

R(1, n1) n1 = n2

R(n1, n2) n1 6= n2 ∨ n2 = 2

Semantics:

M. Arenas – Data Exchange beyond Complete Data 29 / 56



Conditional instances

Example

R(1, n1) n1 = n2

R(n1, n2) n1 6= n2 ∨ n2 = 2

Semantics:

µ(n1) = µ(n2) = 2 µ(n1) = µ(n2) = 3 µ(n1) = 2, µ(n2) = 3

M. Arenas – Data Exchange beyond Complete Data 29 / 56



Conditional instances

Example

R(1, n1) n1 = n2

R(n1, n2) n1 6= n2 ∨ n2 = 2

Semantics:

µ(n1) = µ(n2) = 2
R(1, 2)
R(2, 2)

µ(n1) = µ(n2) = 3 µ(n1) = 2, µ(n2) = 3

M. Arenas – Data Exchange beyond Complete Data 29 / 56



Conditional instances

Example

R(1, n1) n1 = n2

R(n1, n2) n1 6= n2 ∨ n2 = 2

Semantics:

µ(n1) = µ(n2) = 2
R(1, 2)
R(2, 2)

µ(n1) = µ(n2) = 3
R(1, 3)

µ(n1) = 2, µ(n2) = 3

M. Arenas – Data Exchange beyond Complete Data 29 / 56



Conditional instances

Example

R(1, n1) n1 = n2

R(n1, n2) n1 6= n2 ∨ n2 = 2

Semantics:

µ(n1) = µ(n2) = 2
R(1, 2)
R(2, 2)

µ(n1) = µ(n2) = 3
R(1, 3)

µ(n1) = 2, µ(n2) = 3

R(2, 3)

M. Arenas – Data Exchange beyond Complete Data 29 / 56



Conditional instances

Example

R(1, n1) n1 = n2

R(n1, n2) n1 6= n2 ∨ n2 = 2

Semantics:

µ(n1) = µ(n2) = 2
R(1, 2)
R(2, 2)

µ(n1) = µ(n2) = 3
R(1, 3)

µ(n1) = 2, µ(n2) = 3

R(2, 3)

Interpretations of a conditional instance I:

rep(I) = {K | µ(I) ⊆ K for some valuation µ}

M. Arenas – Data Exchange beyond Complete Data 29 / 56



Positive conditional instances

Many problems are intractable over conditional instances.

◮ We also consider a restricted class of conditional instances

Positive conditional instances: Conditional instances without
inequalities

M. Arenas – Data Exchange beyond Complete Data 30 / 56



(Positive) conditional instances are enough

Theorem (APR11)

Both conditional instances and positive conditional instances are strong
representation systems for the class of mappings specified by st-tgds.

Example

Consider again the mapping M specified by:

Manager(x , y) → Reports(x , y)

Manager(x , x) → SelfManager(x)

The following is a universal solution for I = {Manager(n, Peter)}

Reports(n, Peter) true
SelfManager(Peter) n = Peter

M. Arenas – Data Exchange beyond Complete Data 31 / 56



Positive conditional instances are exactly the needed

representation system

Theorem (APR11)

All the following are needed to obtain a strong representation system for
the class of mappings specified by st-tgds:

M. Arenas – Data Exchange beyond Complete Data 32 / 56



Positive conditional instances are exactly the needed

representation system

Theorem (APR11)

All the following are needed to obtain a strong representation system for
the class of mappings specified by st-tgds:

◮ equalities between nulls

M. Arenas – Data Exchange beyond Complete Data 32 / 56



Positive conditional instances are exactly the needed

representation system

Theorem (APR11)

All the following are needed to obtain a strong representation system for
the class of mappings specified by st-tgds:

◮ equalities between nulls

◮ There exists a mapping M given by st-tgds and a source naive
instance I such that for every target positive conditional J not
mentioning equalities between nulls: rep(J ) 6= SolM(rep(I))

M. Arenas – Data Exchange beyond Complete Data 32 / 56



Positive conditional instances are exactly the needed

representation system

Theorem (APR11)

All the following are needed to obtain a strong representation system for
the class of mappings specified by st-tgds:

◮ equalities between nulls

◮ There exists a mapping M given by st-tgds and a source naive
instance I such that for every target positive conditional J not
mentioning equalities between nulls: rep(J ) 6= SolM(rep(I))

◮ equalities between constant and nulls

M. Arenas – Data Exchange beyond Complete Data 32 / 56



Positive conditional instances are exactly the needed

representation system

Theorem (APR11)

All the following are needed to obtain a strong representation system for
the class of mappings specified by st-tgds:

◮ equalities between nulls

◮ There exists a mapping M given by st-tgds and a source naive
instance I such that for every target positive conditional J not
mentioning equalities between nulls: rep(J ) 6= SolM(rep(I))

◮ equalities between constant and nulls

◮ conjunctions and disjunctions

M. Arenas – Data Exchange beyond Complete Data 32 / 56



Positive conditional instances are exactly the needed

representation system

Theorem (APR11)

All the following are needed to obtain a strong representation system for
the class of mappings specified by st-tgds:

◮ equalities between nulls

◮ There exists a mapping M given by st-tgds and a source naive
instance I such that for every target positive conditional J not
mentioning equalities between nulls: rep(J ) 6= SolM(rep(I))

◮ equalities between constant and nulls

◮ conjunctions and disjunctions

Conditional instances are enough but not minimal.

M. Arenas – Data Exchange beyond Complete Data 32 / 56



Positive conditional instance can be used in practice!

Let M = (S,T,Σ), where Σ is a set of st-tgds.

M. Arenas – Data Exchange beyond Complete Data 33 / 56



Positive conditional instance can be used in practice!

Let M = (S,T,Σ), where Σ is a set of st-tgds.

Theorem (APR11)

There exists a polynomial time algorithm that, given a positive
conditional instance I over S, computes a positive conditional
instance J over T that is a universal solution for I under M.

M. Arenas – Data Exchange beyond Complete Data 33 / 56



Positive conditional instance can be used in practice!

Let M = (S,T,Σ), where Σ is a set of st-tgds.

Theorem (APR11)

There exists a polynomial time algorithm that, given a positive
conditional instance I over S, computes a positive conditional
instance J over T that is a universal solution for I under M.

Remark

They are also appropriate for query answering in data exchange.

◮ Same polynomial-time cases as in the usual setting

M. Arenas – Data Exchange beyond Complete Data 33 / 56



Outline

◮ The need for a more general data exchange framework
◮ Two important scenarios: Incomplete databases and knowledge

bases

◮ Formalism for exchanging representations systems

◮ Applications to incomplete databases

◮ Applications to metadata management

◮ Concluding remarks

M. Arenas – Data Exchange beyond Complete Data 34 / 56



The composition operator

Definition (FKPT04)

Let M12 be a mapping from S1 to S2, and M23 a mapping from
S2 to S3:

M12 ◦M23 = {(I1, I3) |

∃I2 : (I1, I2) ∈ M12 and (I2, I3) ∈ M23}

M. Arenas – Data Exchange beyond Complete Data 35 / 56



Expressing the composition of mappings

Question

What is the right language for expressing the composition?

◮ st-tgds?

Example (FKPT04)

Consider the mappings M12:

node(x) → ∃y coloring(x , y)

edge(x , y) → edge′(x , y)

and M23:

edge′(x , y) ∧ coloring (x , u) ∧ coloring(y , u) → error (x , y)

coloring (x , y) → color (y)

M. Arenas – Data Exchange beyond Complete Data 36 / 56



SO tgds: The right language for expressing the

composition of mappings

Example (Cont’d)

The following dependency defines the composition:

∃f

[

∀x(node(x) → color (f (x))) ∧

∀x∀y(edge(x , y) ∧ f (x) = f (y) → error (x , y))

]

M. Arenas – Data Exchange beyond Complete Data 37 / 56



SO tgds: The right language for expressing the

composition of mappings

Example (Cont’d)

The following dependency defines the composition:

∃f

[

∀x(node(x) → color (f (x))) ∧

∀x∀y(edge(x , y) ∧ f (x) = f (y) → error (x , y))

]

This example shows the main ingredients of SO tgds:

◮ Predicates including terms: color (f (x))

◮ Equality between terms: f (x) = f (y)

M. Arenas – Data Exchange beyond Complete Data 37 / 56



SO tgds: The right language for expressing the

composition of mappings

SO tgds were introduced in [FKPT04]

◮ They have good properties regarding composition

M. Arenas – Data Exchange beyond Complete Data 38 / 56



SO tgds: The right language for expressing the

composition of mappings

SO tgds were introduced in [FKPT04]

◮ They have good properties regarding composition

Theorem (FKPT04)

If M12 and M23 are specified by SO tgds, then M12 ◦M23 can
be specified by an SO tgd

M. Arenas – Data Exchange beyond Complete Data 38 / 56



SO tgds: The right language for expressing the

composition of mappings

SO tgds were introduced in [FKPT04]

◮ They have good properties regarding composition

Theorem (FKPT04)

If M12 and M23 are specified by SO tgds, then M12 ◦M23 can
be specified by an SO tgd

◮ There exists an exponential time algorithm that computes
such SO tgds

M. Arenas – Data Exchange beyond Complete Data 38 / 56



SO tgds: The right language for expressing the

composition of mappings

Corollary (FKPT04)

The composition of a finite number of mappings, each defined by a
finite set of st-tgds, is defined by an SO tgd

M. Arenas – Data Exchange beyond Complete Data 39 / 56



SO tgds: The right language for expressing the

composition of mappings

Corollary (FKPT04)

The composition of a finite number of mappings, each defined by a
finite set of st-tgds, is defined by an SO tgd

But not only that, SO tgds are exactly the right language:

Theorem (FKPT05)

Every SO tgd defines the composition of a finite number of
mappings, each defined by a finite set of st-tgds.

M. Arenas – Data Exchange beyond Complete Data 39 / 56



The inverse operator

Schema TSchema S

ΣST

M. Arenas – Data Exchange beyond Complete Data 40 / 56



The inverse operator

Schema TSchema S

ΣST

M. Arenas – Data Exchange beyond Complete Data 40 / 56



The inverse operator

Question

What is the semantics of the inverse operator?

This turns out to be a very difficult question.

Several notions of inverse have been considered:

◮ Fagin-inverse [F06]

◮ Quasi-inverse [FKPT07]

◮ Maximum recovery [APR08]

◮ Maximum extended recovery [FKPT09]

◮ C-maximum recovery [APRR09]

M. Arenas – Data Exchange beyond Complete Data 41 / 56



The inverse operator

Question

What is the semantics of the inverse operator?

This turns out to be a very difficult question.

Several notions of inverse have been considered:

◮ Fagin-inverse [F06]

◮ Quasi-inverse [FKPT07]

◮ Maximum recovery [APR08]

◮ Maximum extended recovery [FKPT09]

◮ C-maximum recovery [APRR09]

M. Arenas – Data Exchange beyond Complete Data 41 / 56



Recovery: specifies how to recover sound information

Data may be lost in the exchange through a mapping M

◮ We would like to find a mapping M⋆ that at least recovers
sound data w.r.t. M

◮ M⋆ is called a recovery of M

M. Arenas – Data Exchange beyond Complete Data 42 / 56



Recovery: specifies how to recover sound information

Data may be lost in the exchange through a mapping M

◮ We would like to find a mapping M⋆ that at least recovers
sound data w.r.t. M

◮ M⋆ is called a recovery of M

Example

Consider a mapping M specified by:

emp(x , y , z) ∧ y 6= z → shuttle(x , z)

What mappings are recoveries of M?

M. Arenas – Data Exchange beyond Complete Data 42 / 56



Recovery: specifies how to recover sound information

Data may be lost in the exchange through a mapping M

◮ We would like to find a mapping M⋆ that at least recovers
sound data w.r.t. M

◮ M⋆ is called a recovery of M

Example

Consider a mapping M specified by:

emp(x , y , z) ∧ y 6= z → shuttle(x , z)

What mappings are recoveries of M?

M⋆

1 : shuttle(x , z) → ∃u∃v emp(x , u, v)

M. Arenas – Data Exchange beyond Complete Data 42 / 56



Recovery: specifies how to recover sound information

Data may be lost in the exchange through a mapping M

◮ We would like to find a mapping M⋆ that at least recovers
sound data w.r.t. M

◮ M⋆ is called a recovery of M

Example

Consider a mapping M specified by:

emp(x , y , z) ∧ y 6= z → shuttle(x , z)

What mappings are recoveries of M?

M⋆

1 : shuttle(x , z) → ∃u∃v emp(x , u, v) X

M. Arenas – Data Exchange beyond Complete Data 42 / 56



Recovery: specifies how to recover sound information

Data may be lost in the exchange through a mapping M

◮ We would like to find a mapping M⋆ that at least recovers
sound data w.r.t. M

◮ M⋆ is called a recovery of M

Example

Consider a mapping M specified by:

emp(x , y , z) ∧ y 6= z → shuttle(x , z)

What mappings are recoveries of M?

M⋆

1 : shuttle(x , z) → ∃u∃v emp(x , u, v) X

M⋆

2 : shuttle(x , z) → ∃u emp(x , u, z)

M. Arenas – Data Exchange beyond Complete Data 42 / 56



Recovery: specifies how to recover sound information

Data may be lost in the exchange through a mapping M

◮ We would like to find a mapping M⋆ that at least recovers
sound data w.r.t. M

◮ M⋆ is called a recovery of M

Example

Consider a mapping M specified by:

emp(x , y , z) ∧ y 6= z → shuttle(x , z)

What mappings are recoveries of M?

M⋆

1 : shuttle(x , z) → ∃u∃v emp(x , u, v) X

M⋆

2 : shuttle(x , z) → ∃u emp(x , u, z) X

M. Arenas – Data Exchange beyond Complete Data 42 / 56



Recovery: specifies how to recover sound information

Data may be lost in the exchange through a mapping M

◮ We would like to find a mapping M⋆ that at least recovers
sound data w.r.t. M

◮ M⋆ is called a recovery of M

Example

Consider a mapping M specified by:

emp(x , y , z) ∧ y 6= z → shuttle(x , z)

What mappings are recoveries of M?

M⋆

1 : shuttle(x , z) → ∃u∃v emp(x , u, v) X

M⋆

2 : shuttle(x , z) → ∃u emp(x , u, z) X
M⋆

3 : shuttle(x , z) → ∃u emp(x , z, u)

M. Arenas – Data Exchange beyond Complete Data 42 / 56



Recovery: specifies how to recover sound information

Data may be lost in the exchange through a mapping M

◮ We would like to find a mapping M⋆ that at least recovers
sound data w.r.t. M

◮ M⋆ is called a recovery of M

Example

Consider a mapping M specified by:

emp(x , y , z) ∧ y 6= z → shuttle(x , z)

What mappings are recoveries of M?

M⋆

1 : shuttle(x , z) → ∃u∃v emp(x , u, v) X

M⋆

2 : shuttle(x , z) → ∃u emp(x , u, z) X
M⋆

3 : shuttle(x , z) → ∃u emp(x , z, u) ×

M. Arenas – Data Exchange beyond Complete Data 42 / 56



Maximum recovery: The most informative recovery

Example

Consider again mapping M specified by:

emp(x , y , z) ∧ y 6= z → shuttle(x , z)

These mappings are recoveries of M:

M⋆

1 : shuttle(x , z) → ∃u∃v emp(x , u, v)
M⋆

2 : shuttle(x , z) → ∃u emp(x , u, z)

M. Arenas – Data Exchange beyond Complete Data 43 / 56



Maximum recovery: The most informative recovery

Example

Consider again mapping M specified by:

emp(x , y , z) ∧ y 6= z → shuttle(x , z)

These mappings are recoveries of M:

M⋆

1 : shuttle(x , z) → ∃u∃v emp(x , u, v)
M⋆

2 : shuttle(x , z) → ∃u emp(x , u, z)

Intuitively: M⋆

2 is better than M⋆

1

M. Arenas – Data Exchange beyond Complete Data 43 / 56



Maximum recovery: The most informative recovery

Example

Consider again mapping M specified by:

emp(x , y , z) ∧ y 6= z → shuttle(x , z)

These mappings are recoveries of M:

M⋆

1 : shuttle(x , z) → ∃u∃v emp(x , u, v)
M⋆

2 : shuttle(x , z) → ∃u emp(x , u, z)
M⋆

4 : shuttle(x , z) → ∃u emp(x , u, z) ∧ u 6= z

Intuitively: M⋆

2 is better than M⋆

1

M. Arenas – Data Exchange beyond Complete Data 43 / 56



Maximum recovery: The most informative recovery

Example

Consider again mapping M specified by:

emp(x , y , z) ∧ y 6= z → shuttle(x , z)

These mappings are recoveries of M:

M⋆

1 : shuttle(x , z) → ∃u∃v emp(x , u, v)
M⋆

2 : shuttle(x , z) → ∃u emp(x , u, z)
M⋆

4 : shuttle(x , z) → ∃u emp(x , u, z) ∧ u 6= z

Intuitively: M⋆

2 is better than M⋆

1

M⋆

4 is better than M⋆

2 and M⋆

1

M. Arenas – Data Exchange beyond Complete Data 43 / 56



Maximum recovery: The most informative recovery

Example

Consider again mapping M specified by:

emp(x , y , z) ∧ y 6= z → shuttle(x , z)

These mappings are recoveries of M:

M⋆

1 : shuttle(x , z) → ∃u∃v emp(x , u, v)
M⋆

2 : shuttle(x , z) → ∃u emp(x , u, z)
M⋆

4 : shuttle(x , z) → ∃u emp(x , u, z) ∧ u 6= z

Intuitively: M⋆

2 is better than M⋆

1

M⋆

4 is better than M⋆

2 and M⋆

1

We would like to find a recovery of M that is better than any
other recovery: Maximum recovery

M. Arenas – Data Exchange beyond Complete Data 43 / 56



The notion of recovery: Formalization

Definition (APR08)

Let M be a mapping from S1 to S2 and M⋆ a mapping from S2

to S1. Then M⋆ is a recovery of M if:

for every instance I of S1: (I , I ) ∈ M ◦M⋆

M. Arenas – Data Exchange beyond Complete Data 44 / 56



The notion of recovery: Formalization

Definition (APR08)

Let M be a mapping from S1 to S2 and M⋆ a mapping from S2

to S1. Then M⋆ is a recovery of M if:

for every instance I of S1: (I , I ) ∈ M ◦M⋆

Example

Consider again mapping M specified by:

emp(x , y , z) ∧ y 6= z → shuttle(x , z)

This mapping is not a recovery of M:

M⋆

3: shuttle(x , z) → ∃u emp(x , z , u)

M. Arenas – Data Exchange beyond Complete Data 44 / 56



The notion of recovery: Formalization

Example (Cont’d)

On the other hand, these mappings are recoveries of M:

M⋆

1: shuttle(x , z) → ∃u∃v emp(x , u, v)
M⋆

2: shuttle(x , z) → ∃u emp(x , u, z)
M⋆

4: shuttle(x , z) → ∃u emp(x , u, z) ∧ u 6= z

M. Arenas – Data Exchange beyond Complete Data 45 / 56



The notion of maximum recovery

M

I

M. Arenas – Data Exchange beyond Complete Data 46 / 56



The notion of maximum recovery

M

M⋆

1

I

M. Arenas – Data Exchange beyond Complete Data 46 / 56



The notion of maximum recovery

M⋆

2

M

M⋆

1

I

M. Arenas – Data Exchange beyond Complete Data 46 / 56



The notion of maximum recovery

M⋆

2

M

M⋆

1

I
M⋆

3

M. Arenas – Data Exchange beyond Complete Data 46 / 56



The notion of maximum recovery

M⋆

2

M

M⋆

1

I
M⋆

3

Definition (APR08)

M⋆ is a maximum recovery of M if:

◮ M⋆ is a recovery of M

◮ for every recovery M′ of M: M◦M⋆ ⊆ M◦M′

M. Arenas – Data Exchange beyond Complete Data 46 / 56



On the existence of maximum recoveries

Theorem (APR08)

Every mapping specified by a finite set of st-tgds has a maximum
recovery.

M. Arenas – Data Exchange beyond Complete Data 47 / 56



On the existence of maximum recoveries

Theorem (APR08)

Every mapping specified by a finite set of st-tgds has a maximum
recovery.

But this does not hold if one also considers naive instances in the
source.

◮ Maximum extended recovery was introduced to overcome this
limitation

M. Arenas – Data Exchange beyond Complete Data 47 / 56



We need to combine the operators

Can we combine the composition and inverse operators?

◮ Is there a good language for both operators?

M. Arenas – Data Exchange beyond Complete Data 48 / 56



We need to combine the operators

Can we combine the composition and inverse operators?

◮ Is there a good language for both operators?

Bad news:

Theorem (APR11)

There exists a mapping specified by an SO tgd that does not have
a maximum recovery.

M. Arenas – Data Exchange beyond Complete Data 48 / 56



We need to combine the operators

Even worse:

◮ Previous mapping has neither a Fagin-inverse nor a
quasi-inverse nor a C-maximum recovery (CQ ⊆ C)

◮ Semantics of maximum extended recovery is appropriate for
st-tgds.

M. Arenas – Data Exchange beyond Complete Data 49 / 56



We need to combine the operators

Even worse:

◮ Previous mapping has neither a Fagin-inverse nor a
quasi-inverse nor a C-maximum recovery (CQ ⊆ C)

◮ Semantics of maximum extended recovery is appropriate for
st-tgds.

Do we need yet another notion of inverse?

M. Arenas – Data Exchange beyond Complete Data 49 / 56



We need to combine the operators

Even worse:

◮ Previous mapping has neither a Fagin-inverse nor a
quasi-inverse nor a C-maximum recovery (CQ ⊆ C)

◮ Semantics of maximum extended recovery is appropriate for
st-tgds.

Do we need yet another notion of inverse?

◮ No, we need to revisit the semantics of mappings

M. Arenas – Data Exchange beyond Complete Data 49 / 56



What went wrong?

Key observation: A target instance of a mapping can be the source
instance of another mapping.

◮ Sources instances may contain null values

M. Arenas – Data Exchange beyond Complete Data 50 / 56



What went wrong?

Key observation: A target instance of a mapping can be the source
instance of another mapping.

◮ Sources instances may contain null values

Theorem (APR11)

Positive conditional instances are a strong representation system
for the class of mappings specified by SO tgds.

M. Arenas – Data Exchange beyond Complete Data 50 / 56



A solution to the problem

Theorem (APR11)

If (usual) instances are replaced by positive conditional instances:

◮ SO tgds are still the right language for the composition of
mappings given by st-tgds

◮ Every mapping specified by an SO tgd admits a maximum
recovery

M. Arenas – Data Exchange beyond Complete Data 51 / 56



Outline

◮ The need for a more general data exchange framework
◮ Two important scenarios: Incomplete databases and knowledge

bases

◮ Formalism for exchanging representations systems

◮ Applications to incomplete databases

◮ Applications to metadata management

◮ Concluding remarks

M. Arenas – Data Exchange beyond Complete Data 52 / 56



We can exchange more than complete data

We propose a general formalism to exchange representation
systems

◮ Applications to incomplete instances

◮ Applications to metadata management

◮ Applications to knowledge bases

M. Arenas – Data Exchange beyond Complete Data 53 / 56



We can exchange more than complete data

We propose a general formalism to exchange representation
systems

◮ Applications to incomplete instances

◮ Applications to metadata management

◮ Applications to knowledge bases

Next step: Apply our general setting to the Semantic Web

◮ Semantic Web data has nulls (blank nodes)

◮ Semantic Web specifications have rules (RDFS, OWL)

M. Arenas – Data Exchange beyond Complete Data 53 / 56



Thank you!

M. Arenas – Data Exchange beyond Complete Data 54 / 56



Bibliography

[FKMP03] R. Fagin, P. G. Kolaitis, R. J. Miller, L. Popa. Data Exchange:
Semantics and Query Answering. ICDT 2003: 207-224

[FKPT04] R. Fagin, P. G. Kolaitis, L. Popa, W.-C. Tan. Composing Schema
Mappings: Second-Order Dependencies to the Rescue. PODS
2004: 83-94

[FKPT05] R. Fagin, P. G. Kolaitis, L. Popa, W.-C. Tan. Composing schema
mappings: Second-order dependencies to the rescue. TODS 30(4):
994-1055, 2005

[F06] R. Fagin. Inverting schema mappings. PODS 2006: 50-59

M. Arenas – Data Exchange beyond Complete Data 55 / 56



Bibliography

[FKPT07] R. Fagin, P. G. Kolaitis, L. Popa, W.-C. Tan. Quasi-inverses of
schema mappings. PODS 2007: 123-132

[FKPT09] R. Fagin, P. G. Kolaitis, L. Popa, W.-C. Tan. Reverse data ex-
change: coping with nulls. PODS 2009: 23-32

[APR08] M. Arenas, J. Pérez, C. Riveros. The recovery of a schema map-
ping: bringing exchanged data back. PODS 2008: 13-22

[APRR09] M. Arenas, J. Pérez, J. Reutter, C. Riveros. Inverting Schema
Mappings: Bridging the Gap between Theory and Practice. PVLDB
2(1): 1018-1029, 2009

[APR11] M. Arenas, J. Pérez, J. Reutter. Data Exchange beyond Complete
Data. PODS 2011: 83-94

M. Arenas – Data Exchange beyond Complete Data 56 / 56


