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Evolution of data models

80s → early 90s

Overcome expressiveness limitations of the relational model

I Logical data model

I OODB

I Active databases

I Disjunctive databases

I Temporal databases

I Constraint databases

I ...
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Evolution of data models

The 90s on:

Flexibility, easy integration, topology (sometimes)

I Graphs

I XML

I RDF

I JSON

I CSV

I ...
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Classical DB questions on new kind of data

I Data design

I Languages (markup, querying)

I Optimization

I Updates
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Classical questions that gain renewed interest

I Uncertainty

I Distribution

I Ranking

I Query workloads
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New questions on new kind of data

I Access

I Schema extraction

I Trust

I Variety
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In this talk

We talk about Graph DBs, RDF and tabular data (CSV)

Bottomline:

Despite similarities with old DB problems, new applications require:

I understanding the nature of their problems

I refining old/developing new techniques
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Graph Databases
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The need for a standard graph QL in practice

Recognized by major graph DB engines

I Neo4J → Cypher

I Sparksee → Graph algebra

I Oracle → PGQL

I Apache Tinkerpop → Gremlin

Not all of them are declarative
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LDBC GraphQL task force

Formed by researchers/practitioners
(Neo4J, Sparksee, IBM, Oracle, SAP, HP)

Objectives:

1. Define a graph data model: Property graphs (July 2015)

2. Identify features/limitations of existing QLs (December 2015)

3. Identify features needed in a graph QL (ongoing)

4. Design a standard declarative graph QL (2017?)
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A property graph by example

name =“C. Eastwood”

gender =“male”

n1 : Person

title =“The bridges”

of Madison County

n2 : Movie

role =“R. Kincaid”

ref =“IMDb”

e1 : acts in

e2 : directs

title =“Dirty Harry”

n5 : Movie

role =“H. Callahan”

ref =“IMDb”

e5 : acts in

name =“A. Robinson”

gender =“male”

n6 : Person

e6 : acts in
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The property graph data model

Definition (Property graph)

A property graph G is a tuple (V ,E , ρ, λ, σ), where:

1. V is a finite set of nodes

2. E is a finite set of edges

3. ρ : E → (V × V ) is a total function

I ρ(e) = (v1, v2) means that e is of the form v1 → v2

4. λ : (V ∪ E )→ Lab is a total function with Lab a set of labels

I ρ(v) = ` means that ` is the label of node v in G

5. σ : (V ∪ E )× Prop→ Val is a partial function
with Prop a finite set of properties and Val a set of values

I σ(v , p) = s means that s is the value of property p for v in G
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In existing query languages

Basic unit for querying the structure:

I Graph patterns, a.k.a. conjunctive queries

Interpretation:

I “Match” a small graph pattern into a large property graph

I Semantics:
homomorphism, isomorphism, edge-injective homomorphism

I Property graph → Relational table

Example:

I ∃y (x ,directs, y) ∧ (x , acts in, y)

I MATCH (x) -[directs]-> (y) <-[acts in]- (x)
RETURN (x)
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Dealing with paths is fundamental

Queries of the form x
a∗−→ y allowed in Cypher

I Retrieve pairs of nodes linked by a path of a’s

I Example: Friend-of-a-friend relationship

Combined with patterns: patterns with reachability

Reasonable data complexity so far: NLogspace
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RPQs not implemented yet

... but considered to be desirable

Regular Path Query (RPQ): x
L−→ y , for L a regex

I Retrieve pairs of nodes linked by a path in L

I Example:
(
acts in · acts in−)+

Data complexity still reasonable: NLogspace

I For a semantics based on arbitrary paths
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Systems tend to favour a simple paths semantics

Is there a simple path from x to y labeled in (aa)∗?

I NP-complete [Lapaugh & Papadimitriou, 1984]

A simple path semantics already tried/discarded in SPARQL 1.1

I [Losseman & Martens, 2012; Arenas, Conca & Pérez, 2012]
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16



Systems tend to favour a simple paths semantics

Is there a simple path from x to y labeled in (aa)∗?

I NP-complete [Lapaugh & Papadimitriou, 1984]

A simple path semantics already tried/discarded in SPARQL 1.1

I [Losseman & Martens, 2012; Arenas, Conca & Pérez, 2012]
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They also return paths...

Example

MATCH p = (x) -[acts in*0..5]-> (y)
RETURN p, length(p)

A single path, a simple path, all paths, all simple paths?
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Just imagine this combined with RPQs...

...an exponential explosion in the size of the output

I What are the use cases for these functionalities?

I Which paths users are looking for?

I Can they be represented compactly?

I Can they be enumerated with reasonable delay?

From a theoretical point of view:

I Return a single shortest path (complexity in NLogspace)

I Return others, one by one, if needed
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A representation problem

How paths should be represented?

I As a tuple in a table?

I As a graph?

I As a new “path” data type?
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To complicate things more

Existing QLs have an ungrouping operator:

I List set (bag) of nodes that belong to a path

I Path → Relational table

The power of ungrouping:

1. Find a path that visits each node exactly once

2. Find a path that does not repeat values for a given property

3. Find paths that intersect in a node

Theory: Graph QLs for data

I Complexity is astronomical [Barceló, Fontaine & Lin, 2013]

I Tractability conditions are delicate [Libkin & Vrgoč, 2012]
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Type transformations

GRAPHS

TABLES

PATHS

GRAPHS

Patterns

Path queries

Ungrouping

Construct
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What have we learned?

I Real need from graph DBs to have a standard declarative QL

I Design is non-trivial due to efficiency/expressiveness trade-off

I Theory is not so much far away from practice

I It requires a political effort to “close the gap”
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Semantic Web
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Semantic Web

“The Semantic Web is an extension of the current web in which
information is given well-defined meaning, better enabling computers and
people to work in cooperation.”

[Tim Berners-Lee et al. 2001.]

Specific goals:

I Build a description language with standard semantics

I Make semantics machine-processable and understandable

I Incorporate logical infrastructure to reason about resources

W3C proposals: Resource Description Framework (RDF) and SPARQL
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RDF in a nutshell

I RDF is the W3C proposal framework for representing
information in the Web

I Abstract syntax based on directed labeled graph

I Extensible URI-based vocabulary

25



An RDF graph

The Bridges of Madison County Clint Eastwood

starring

directs

Meryl Streep

starring

26



An RDF graph in real life: DBpedia

http://dbpedia.org/resource/The_Bridges_of_Madison_County_(film)

http://dbpedia.org/property/director

http://dbpedia.org/resource/Clint_Eastwood .

http://dbpedia.org/resource/The_Bridges_of_Madison_County_(film)

http://dbpedia.org/property/starring

http://dbpedia.org/resource/Clint_Eastwood .

http://dbpedia.org/resource/The_Bridges_of_Madison_County_(film)

http://dbpedia.org/property/starring

http://dbpedia.org/resource/Meryl_Streep .
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Prefixes simplify the notation

Prefixes can be defined in an RDF graph to simplify notation

I They are defined also using triples

We can include in an RDF graph the following triples:

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

Then <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> can be
replaced by rdf:type
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How are URIs created and assigned?

There is no centralized mechanism

A key component to deal with this issue: owl:sameAs

http://dbpedia.org/resource/Meryl Streep owl:sameAs

http://cs.dbpedia.org/resource/Meryl Streepová .

http://dbpedia.org/resource/Meryl Streep owl:sameAs

http://yago-knowledge.org/resource/Meryl Streep .

http://dbpedia.org/resource/Meryl Streep owl:sameAs

http://data.nytimes.com/32250484050106278413 .

Reasoning capabilities are needed to deal with owl:sameAs
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Querying RDF: SPARQL

I SPARQL is the W3C recommendation query language for
RDF (January 2008)

I Originally it was a graph-matching query language

I SPARQL 1.1 is the new version of this language, its was
released in March 2013
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An example of a SPARQL query

Retrieve all the movies in DBpedia

SELECT ?movie

WHERE

{

?movie rdf:type <http://schema.org/Movie> .

}
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Important problems when querying RDF

I Returning as much information as possible

I Reasoning with ontologies

I Dealing with incomplete information

I Exploiting the graph structure of RDF

I Working with highly distributed data
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Returning as much information as possible

RDF follows an open world assumption

Users may be unaware of the structure of the data

Thus, the possibility of obtaining additional information if possible
is important in this scenario

I In fact, this feature was present from the very beginning in
SPARQL
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An optional operator

Retrieve each movie in DBpedia and its gross if this information is available

SELECT ?movie ?gross

WHERE

{

?movie rdf:type <http://schema.org/Movie> .

OPTIONAL

{

?movie <http://dbpedia.org/property/gross> ?gross .

}

}

34



Part of the answer to the query

?movie ?gross

http://dbpedia.org/resource/Frozen (2013 film) "1.274E9"

http://dbpedia.org/resource/Amazon Souls

35



What is new?

The OPTIONAL operator essentially corresponds to a left-outer join in relational
algebra

But ...

I The fragments of SPARQL that are natural to study are different than for

the case of relational algebra

I The complexity of evaluating these fragments was not known

[Pérez, A. & Gutierrez 2009; Schmidt, Meier & Lausen 2010]

I New notions of safeness are needed to avoid a counterintuitive behavior
[Pérez, A. & Gutierrez 2009]

I New optimization techniques are needed [Pérez, A. & Gutierrez 2009;
Letelier, Pérez, Pichler & Skritek 2013; Pichler & Skritek 2014]
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Openness influences other operators

SELECT ?voice_actor ?film_actor

WHERE

{

{

?voice_actor rdf:type

<http://dbpedia.org/class/yago/AmericanVoiceActors> .

}

UNION

{

?film_actor rdf:type

<http://dbpedia.org/class/yago/AmericanFilmActors> .

}

}
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The answer to the query

?voice actor ?film actor

http://dbpedia.org/

resource/Alec Baldwin

http://dbpedia.org/

resource/Meryl Streep
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Reasoning with ontologies

Reasoning capabilities are needed

I We already mentioned owl:sameAs

I An RDF graph can use RDF Schema (RDFS) to establish
hierarchies of classes and properties

I The Web Ontology Language (OWL) can be used to define
more complex relations between classes and properties
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The use of RDFS vocabulary

The following triples are included in DBpedia:

http://dbpedia.org/class/yago/Professor110480730

rdfs:subClassOf

http://dbpedia.org/class/yago/Academician109759069 .

http://dbpedia.org/class/yago/Academician109759069

rdfs:subClassOf

http://dbpedia.org/class/yago/Educator110045713 .

http://dbpedia.org/ontology/championInDoubleFemale

rdfs:subPropertyOf

http://dbpedia.org/ontology/championInDouble .

http://dbpedia.org/ontology/championInDouble

rdfs:subPropertyOf

http://dbpedia.org/ontology/champion .
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The use of RDFS vocabulary

Some numbers in DBpedia:

I triples with rdfs:subClassOf as predicate are at least 450K

I triples with rdfs:subPropertyOf as predicate are at least 1K

We need reasoning capabilities to deal with:

I rdfs:subClassOf, rdfs:subPropertyOf

I and other elements of RDFS such as rdfs:domain and rdfs:range
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Answering a query with RDFS vocabulary

Retrieve all the educators in DBpedia

SELECT ?educator

WHERE

{

?educator rdf:type

<http://dbpedia.org/class/yago/Educator110045713> .

}
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Answering a query with RDFS vocabulary

The answer to the previous query should be the same as for the following query:

SELECT ?educator

WHERE

{

{ ?educator rdf:type

. }

UNION

{ ?educator rdf:type

<http://dbpedia.org/class/yago/Educator110045713> . }

}
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Open issues about reasoning with ontologies

Two important problems:

I Development of efficient query answering algorithms over large RDF
graphs with RDFS vocabulary

I Identification of fragments of OWL that have good expressive power
and can be efficiently evaluated
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Exploiting the graph structure of RDF

The structure of an RDF graph stores information

It is important to have operators that can deal with this structure

I In particular, navigating an RDF graph is an important functionality

Properties paths in SPARQL allow to express reachability queries
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Navigating RDF graphs

Get starring actors in the same movie:

SELECT ?actor1 ?actor2

WHERE

{

?movie <http://dbpedia.org/property/starring> ?actor1 .

?movie <http://dbpedia.org/property/starring> ?actor2 .

}

46



Navigating RDF graphs

Previous query can be rewritten by using navigation patterns:

The expression in red is called a property path
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Navigating RDF graphs

Get starring actors that are connected:

SELECT ?actor1 ?actor2

WHERE

{

?actor1

(^<http://dbpedia.org/property/starring>/
<http://dbpedia.org/property/starring>)+

?actor2 .

}

Can this query be answered?

I Can it be answered starting from a specific node?
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Open issues in exploiting the graph structure of RDF

Some important problems:

I Development of efficient evaluation algorithms for reachability
queries over large RDF graphs

I Standardization of a query language where paths are first-class
citizens
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Web data is highly distributed

Data can be stored in different repositories

I Different pieces of data have to be collected to answer a query

An important notion to deal with this issue: SPARQL endpoint

I A Web service that accepts a SPARQL query as input, and
returns (part of) the result to the query

SPARQL has an operator SERVICE to query an endpoint
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The SPARQL endpoint of DBpedia
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Querying DBpedia

We want to retrieve the list of American actors in DBpedia
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Querying DBpedia

We want to retrieve the list of American actors in DBpedia
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The answer to the query

. . .
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The SPARQL endpoint of DBLP

We want to retrieve the list of authors in DBLP
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The SPARQL endpoint of DBLP

We want to retrieve the list of authors in DBLP
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The answer to the query

. . .
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We would like to combine the previous results . . .

SELECT ?name

WHERE

{

?actor rdf:type <http://dbpedia.org/class/yago/AmericanActors> .

?actor foaf:name ?name .

SERVICE <http://dblp.l3s.de/d2r/sparql>

{

SELECT ?name

WHERE

{

?paper dc:creator ?author .

?author foaf:name ?name .

}

}

}
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Open issues when dealing with distribution

Some important problems:

I The notion of SPARQL endpoint needs to be formalized

I What queries are accepted?

I How is the time distributed between them?

I Should a pricing model be used?

I What is the protocol to return the answer to a query?

I A more general notion of endpoint should be formalized and studied
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Open issues when dealing with distribution (cont’d)

I Usability needs to be hugely improved

I schema/structure extraction and visualization play a
fundamental role here

I Approaches for discovering relevant data should be studied

I Operators to distribute the execution of queries should be studied in
more depth
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A first issue about the SERVICE operator

SERVICE operators can be nested

SELECT ...

WHERE

{

...

SERVICE <uri1>

{

...

SERVICE <uri2>

}

}
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A second issue about the SERVICE operator

SERVICE can be used not only with a URI but also with a variable
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WHERE

{
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...

}
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A second issue about the SERVICE operator

SERVICE can be used not only with a URI but also with a variable

SELECT ...

WHERE

{

...

SERVICE ?address

{

...

?uri rdf:type <http://local example.org/SparqlEndpoint> .

}

SERVICE ?uri

{

...

}

}
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A second issue about the SERVICE operator

SERVICE can be used not only with a URI but also with a variable

Several specific issues have to be addressed [Buil-Aranda, A. & Corcho 2011]:

I If ?var does not have a value, how SERVICE ?var should be evaluated?

I A notion of safeness is needed

I The situation gets more involved if we also have nested SERVICE operators

I The syntax of SPARQL 1.1 allows SERVICE ?var, but its semantics is
not defined
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What have we learned?

I There are many interesting and challenging questions to be
answered

I Most of these questions can be considered as classical DB
questions

I But answering them require of a combination of classical and
new techniques

I The Semantic Web community has been receptive to our ideas
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Tabular Data (CSV)
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Comma-separated values (CSV) documents

The IBM Fortran compiler supported CSV documents in 1972

The W3C recommendation for CSV documents (tabular data) was
released on December 2015

Why such a recommendation is needed?

I This is just tabular data, what is new?
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The main goals of the W3C recommendation

I Define a schema language for CSV
I For example, it can be used to specify the name and the type

of the elements of each column in a CSV document

I Develop a metadata vocabulary for CSV
I It describes how the data should be interpreted

I Define mechanisms for transforming CSV into RDF, JSON
and XML
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CSV documents can be messy

A use case from http://www.w3.org/TR/csvw-ucr:

The US National Institute of Standards and Technology has run
various conferences on extracting information from text. The ex-
tracted information is submitted in a tab-separated format.

An example document:

...

:e4 type PER

:e4 mention "Bart" D00124 283-286

:e4 mention "JoJo" D00124 145-149 0.9

:e4 per:siblings :e7 D00124 283-286 173-179 274-281

:e4 per:age "10" D00124 180-181 173-179 182-191 0.9

...
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A schema language for CSV

We describe an approach proposed by [Martens, Neven & Vansummeren 2015]

The model for a CSV document:

1 2 3 4 5 6
1 :e4 type PER

2 :e4 mention "Bart" D00124 283-286

3 :e4 mention "JoJo" D00124 145-149 0.9

4 :e4 per:siblings :e7 D00124 283-286 173-179

Every cell has a coordinate (i , j)

I The cell with content "Bart" has coordinate (2, 3)
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Checking conditions on regions

1 2 3 4 5 6
1 :e4 type PER

2 :e4 mention "Bart" D00124 283-286

3 :e4 mention "JoJo" D00124 145-149 0.9

4 :e4 per:siblings :e7 D00124 283-286 173-179
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2 :e4 mention "Bart" D00124 283-286

3 :e4 mention "JoJo" D00124 145-149 0.9

4 :e4 per:siblings :e7 D00124 283-286 173-179

[root]
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1 2 3 4 5 6
1 :e4 type PER

2 :e4 mention "Bart" D00124 283-286

3 :e4 mention "JoJo" D00124 145-149 0.9

4 :e4 per:siblings :e7 D00124 283-286 173-179

[root] · right · right · right · right∗ · down∗ → R
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An annotation language

We describe our proposal in [A., Maturana, Riveros & Vrgoč 2016]

A CSV document is represented as a string

:e4 type PER

:e4 mention "Bart" D00124 283-286

:e4 mention "JoJo" D00124 145-149 0.9

:e4 per:siblings :e7 D00124 283-286 173-179 274-281

:e4 per:age "10" D00124 180-181 173-179 182-191 0.9

is represented as:

: e 4 \t t y p e \t P E R \n : e 4 \t m e n t i o n \t ...
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Annotation of regions

Let w be the string representing a CSV document

The main ingredients of our approach:

I A region of w is a span (i , j) [Fagin, Kimelfeld, Reiss & Vansummeren
2013]

I Regular expression with variables are used to extract spans from w

I Fragments that can be evaluated very efficiently have been identified

I Datalog programs are used to combine the results of the extraction
process and annotate spans [Shen, Doan, Naughton & Ramakrishnan
2007]
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Annotation of regions

Recall that w is the string representation of:

:e4 type PER

:e4 mention "Bart" D00124 283-286

:e4 mention "JoJo" D00124 145-149 0.9

:e4 per:siblings :e7 D00124 283-286 173-179 274-281

:e4 per:age "10" D00124 180-181 173-179 182-191 0.9

Assume that the alphabet of w is Σ and ∆ = (Σ− {\t, \n})

The following Datalog program extracts and annotates all spans in the
first column of w :

w .x\tΣ∗ ∧ x .∆∗ → FC(x)

w .Σ∗\nx\tΣ∗ ∧ x .∆∗ → FC(x)
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Open issues in the area

Many questions need to be answered:

I What is a good schema language for CSV?

I What is a good annotation language for CSV?

I How metadata should be specified for a CSV document?

I What is a good mapping language to specify the transformation of
a CSV document to an RDF graph?

I The same question needs to be answered for JSON and XML
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Final remarks

Do not underestimate the theoretical interest behind new apps:

I Classical DB questions gain new flavors over new data models

I It might involve developing techniques of independent interest

I Some areas are in need of theoretical help

I It requires an effort to understand problems and transfer tools

Many problems are still in need of formalization

I structure extraction, access, trust, ...
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Thank you!
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