
13

Expressive Languages for Querying the Semantic Web

MARCELO ARENAS, Pontificia Universidad Católica de Chile & IMFD, Chile

GEORG GOTTLOB, University of Oxford, UK

ANDREAS PIERIS, University of Edinburgh, UK

The problem of querying RDF data is a central issue for the development of the Semantic Web. The query lan-

guage SPARQL has become the standard language for querying RDF since its W3C standardization in 2008.

However, the 2008 version of this language missed some important functionalities: reasoning capabilities to

deal with RDFS and OWL vocabularies, navigational capabilities to exploit the graph structure of RDF data,

and a general form of recursion much needed to express some natural queries. To overcome these limitations,

a new version of SPARQL, called SPARQL 1.1, was released in 2013, which includes entailment regimes for

RDFS and OWL vocabularies, and a mechanism to express navigation patterns through regular expressions.

Unfortunately, there are a number of useful navigation patterns that cannot be expressed in SPARQL 1.1, and

the language lacks a general mechanism to express recursive queries. To the best of our knowledge, no effi-

cient RDF query language that combines the above functionalities is known. It is the aim of this work to fill this

gap. To this end, we focus on a core fragment of the OWL 2 QL profile of OWL 2 and show that every SPARQL

query enriched with the above features can be naturally translated into a query expressed in a language that

is based on an extension of Datalog, which allows for value invention and stratified negation. However, the

query evaluation problem for this language is highly intractable, which is not surprising since it is expressive

enough to encode some inherently hard queries. We identify a natural fragment of it, and we show it to be

tractable and powerful enough to define SPARQL queries enhanced with the desired functionalities.

CCS Concepts: • Information systems → Structured Query Language;

Additional Key Words and Phrases: Semantic web, RDF, SPARQL, query answering, Datalog-based languages

ACM Reference format:

Marcelo Arenas, Georg Gottlob, and Andreas Pieris. 2018. Expressive Languages for Querying the Semantic

Web. ACM Trans. Database Syst. 43, 3, Article 13 (November 2018), 45 pages.

https://doi.org/10.1145/3238304

1 INTRODUCTION

The Resource Description Framework (RDF) is the W3C recommendation data model to represent
information about World Wide Web resources. An atomic piece of data in RDF is a Uniform Resource

The work of M. Arenas was partially funded by the Fondecyt grant 1161473 and the Instituto Milenio Fundamentos de

los Datos. The work of G. Gottlob and A. Pieris was funded by the EPSRC Programme Grant “VADA: Value Added Data

Systems – Principles and Architecture” EP/M025268/.

Authors’ addresses: M. Arenas, Pontificia Universidad Católica de Chile & IMFD, Avenue Vicuña Mackenna 4860, Santiago,

Chile; email: marenas@ing.puc.cl; G. Gottlob, University of Oxford, Wolfson Building, Parks Road, Oxford, OX1 3QD, UK;

email: georg.gottlob@cs.ox.ac.uk; A. Pieris, University of Edinburgh, Informatics Forum, Crichton Street, Edinburgh, EH8

9AB, UK; email: apieris@inf.ed.ac.uk.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Association for Computing Machinery.

0362-5915/2018/11-ART13 $15.00

https://doi.org/10.1145/3238304

ACM Transactions on Database Systems, Vol. 43, No. 3, Article 13. Publication date: November 2018.

https://doi.org/10.1145/3238304
mailto:permissions@acm.org
https://doi.org/10.1145/3238304

13:2 M. Arenas et al.

Identifier (URI). In the RDF data model, URIs are organized as RDF graphs, that is, labeled directed
graphs where node labels and edge labels are URIs. As with any data model designed to model
information, the natural problem of querying RDF data has been widely studied. Since its release
in 1998, several designs and implementations of RDF query languages have been proposed [21]. In
2004, a first public working draft of a language, called SPARQL, was released by the W3C, which
is in fact a graph-matching query language. Since then, SPARQL has been adopted as the standard
language for querying the Semantic Web, and in 2008 it became a W3C recommendation.1

One of the distinctive features of Semantic Web data is the existence of vocabularies with pre-
defined semantics: the RDF Schema (RDFS)2 and the Web Ontology Language (OWL)3, which can be
used to derive logical conclusions from RDF graphs. Moreover, it has been recognized that naviga-
tional capabilities are of fundamental importance for data models with an explicit graph structure
such as RDF [2, 5, 7, 20, 35], and, more generally, it is well-accepted that a general form of recur-
sion is a central feature for a graph query language [7, 29, 39]. Therefore, it would be desirable
to have an RDF query language equipped with reasoning capabilities to deal with the RDFS and
OWL vocabularies, as well as a general mechanism to express recursive queries. Unfortunately, the
2008 version of SPARQL missed the above crucial functionalities. To overcome these limitations,
a new version, called SPARQL 1.1 [25], was released in 2013, which includes entailment regimes
for RDFS and OWL vocabularies, and a mechanism to express navigation patterns through regular
expressions. However, it has already been observed that there exist some very natural queries that
require a more general form of recursion and cannot be expressed in SPARQL 1.1 [29, 39].

1.1 Research Challenge

To the best of our knowledge, before the conference papers [4, 23], on which the present article is
based, no RDF query language that combines all the above functionalities was known. This work
aims at bridging the gap between RDF query languages and the desired functionalities, that is,
reasoning capabilities and a general mechanism to express recursive queries. In particular, our
ultimate goal is to propose an expressive query language that supports these features, and which
can also be evaluated efficiently. Interestingly, Datalog with stratified negation [1, 17] has been
shown to be expressive enough to represent every SPARQL query [2, 3, 5, 36, 40]. Thus, it has been
used as a natural platform for SPARQL extensions with richer navigation capabilities and recursion
mechanisms [29, 39]. Moreover, some extensions of Datalog with existential quantification in rule-
heads are appropriate to encode some inferencing mechanisms in OWL [13].

From the above discussion, we can conclude that Datalog and some of its extensions (in partic-
ular, the members of the Datalog± family of knowledge representation and query languages [14])
appear to be suitable for our purposes. However, for the language obtained by extending Datalog
with existential quantification, the query evaluation problem is undecidable (this is implicit in [8]).
In fact, the undecidability holds even in the case of data complexity, i.e., when the input query is
fixed, and only the extensional database (or the RDF graph) is considered as part of the input [13]. It
is thus a very important and challenging task to single out an expressive RDF query language that

(1) is based on Datalog, which enables a modular rule-based style of writing queries;
(2) is expressive enough for being useful in real Semantic Web applications, and in particular

to support reasoning and navigational capabilities, as well as a general form of recursion;
(3) ensures the decidability of the query evaluation problem; and

1http://www.w3.org/TR/rdf-sparql-query.
2http://www.w3.org/TR/rdf-schema.
3http://www.w3.org/TR/owl-features/.

ACM Transactions on Database Systems, Vol. 43, No. 3, Article 13. Publication date: November 2018.

http://www.w3.org/TR/rdf-sparql-query
http://www.w3.org/TR/rdf-schema
http://www.w3.org/TR/owl-features/

Expressive Languages for Querying the Semantic Web 13:3

(4) has good complexity properties in the case the input query is fixed—this is of fundamental
importance, as a low data complexity is considered to be a key condition for a query
language to be useful in practice.

1.2 Triple Query Language

A first attempt to design a Datalog-based RDF query language that fulfills the above desiderata,
focusing on the profile OWL 2 QL of OWL 2, was made in [4]. The proposed language, called
TriQ-Lite,4 is based on Datalog∃,¬s,⊥, that is, Datalog extended with existential quantification in
rule-heads, stratified negation, and negative constraints expressed by using the symbol ⊥ (false)
in rule-heads. Unfortunately, TriQ-Lite suffers from a serious drawback, which may revoke its
advantage as an expressive RDF query language, namely, it is not a plain language. We call a
rule-based query language plain if it allows the user to express a query as a single program in
a simple non-composite syntax. An example of a plain query language is Datalog itself, where
the user simply needs to define a single Datalog program that captures the intended query. The
property of plainness provides conceptual simplicity, which is considered to be a key condition
for a query language to be useful in practice. Although TriQ-Lite is based on an extension of
Datalog, the way its syntax and semantics are defined significantly deviates from the standard way
of defining Datalog-like languages, and thus does not inherit the plainness of Datalog. TriQ-Lite

is a composite language, where the user is forced to split the query program into several programs
Π1, . . . ,Πn so that each Πi can be expressed by the fragment of Datalog∃,¬s,⊥ underlying TriQ-Lite,
while each pair (Πi ,Πi+1) is bridged via a set Qi of conjunctive queries. In view of the conceptual
weakness of TriQ-Lite discussed above, the new version of it, dubbed TriQ-Lite 1.0, was introduced
in [23]. TriQ-Lite 1.0, which is the main focus of this journal article, is a plain language based on
Datalog∃,¬s,⊥ that fulfills all the crucial desiderata discussed above.

1.3 Summary of Contributions

Our contributions can be summarized as follows:

(1) We introduce in Section 4 the language TriQ 1.0, which is a plain query language based

on Datalog∃,¬s,⊥. We show that this language is expressive enough for encoding some
useful but costly queries; e.g., whether a graph contains a clique of size k > 0. We then
proceed to show that the query evaluation problem for TriQ 1.0 is ExpTime-complete in
data complexity.

(2) We show that TriQ 1.0 is expressive enough to deal with SPARQL queries over a relevant
fragment of the OWL vocabulary. More precisely, we focus in Section 5 on a profile of
OWL, called OWL 2 QL, that is designed to be used in applications where query answer-
ing is the most important reasoning task. In particular, we consider a fragment of OWL
2 QL that contains its core functionalities, called OWL 2 QL core. This fragment corre-
sponds to the well-established description logic DL-LiteR [16], which is essentially the
logical underpinning of OWL 2 QL. Then we prove that every SPARQL query under the
entailment regime for OWL 2 QL core, which is inherited from the entailment regime for
OWL 2 QL [22, 28], can be translated into a TriQ 1.0 query. Moreover, we show in Sec-
tion 5 that the use of TriQ 1.0 allows us to formulate SPARQL queries in a simpler way, as
a more natural entailment regime described in that section can be easily defined by using
this query language.

4This language is the lite version of a highly expressive language called TriQ , which stands for triple query language, also

introduced in [4].

ACM Transactions on Database Systems, Vol. 43, No. 3, Article 13. Publication date: November 2018.

13:4 M. Arenas et al.

(3) Given the high data complexity of the query evaluation problem for TriQ 1.0, we inves-
tigate in Section 6 whether the results proved in Section 5 can also be obtained for a
tractable sublanguage of this query language. More precisely, we identify a natural re-
striction on TriQ 1.0 queries that gives rise to a language, called TriQ-Lite 1.0, with the
desired properties. In particular, we prove that the query evaluation problem for this lan-
guage is PTime-complete in data complexity. We also show in Section 6 that TriQ-Lite 1.0
is a (nearly) maximal tractable sublanguage of TriQ 1.0 in the sense that the mildest re-
laxation of the condition posed on TriQ 1.0 (in order to obtain TriQ-Lite 1.0) that one can
think of, leads to a language for which the query evaluation problem is ExpTime-hard in
data complexity.

(4) A key advantage of TriQ-Lite 1.0 is the fact that, whenever the user wants to pose a new
query over an RDF graph, (s)he does not need to modify the part of the query program that
encodes the OWL 2 QL ontology. In Section 7, we show that this favorable behavior cannot
be achieved if we consider Datalog¬s,⊥. In particular, we introduce a novel notion of ex-
pressiveness that allows us to collect the queries that can be answered via a fixed program,
and we show that TriQ-Lite 1.0 is more expressive than Datalog¬s,⊥ under this notion.

The organization of the article is described in the summary of our contributions. Note that in
Section 2 we give a series of examples that motivate our query languages, the notation used in the
article is introduced in Section 3, and some concluding remarks are given in Section 8.

2 MOTIVATING SCENARIOS AND QUERIES

The goal of this section is to expose some of the difficulties and limitations encountered when
querying RDF data with SPARQL, which motivated us to design an RDF query language based on
Datalog. To this end, assume that G1 is an RDF graph consisting of

(dbUllman, is_author_of, “The Complete Book”),

(dbUllman, name, “Jeffrey Ullman”).

The first triple indicates that the object with URI dbUllman is one of the authors of the book “The
Complete Book,” while the second triple indicates that the name of dbUllman is “Jeffrey Ullman.”
To retrieve the list of authors occurring in G1, we can use the following SPARQL query:

SELECT ?X

WHERE {
?Y is_author_of ?Z . (1)

?Y name ?X }.

Note that variables start with the symbol ? in this query. Moreover, the expression ?Y is_
author_of ?Z represents a triple pattern that is used to retrieve the pairs (a,b) of elements from
G1, which are stored in the variables ?Y and ?Z , such that a is an author of b. In the same way,
the expression ?Y name ?X also represents a triple pattern that is used to retrieve the pairs (a, c)
of elements from G1, which are stored in the variables ?Y and ?X , such that c is the name of a.
Finally, the symbol . (dot) is used as a separator of the triple patterns, whose results have to be
joined when computing the answer to the query, and SELECT ?X indicates that we are interested
in the values stored in the variable ?X .

ACM Transactions on Database Systems, Vol. 43, No. 3, Article 13. Publication date: November 2018.

Expressive Languages for Querying the Semantic Web 13:5

In the query language proposed in this article, we assume that a predicate triple(·, ·, ·) is used to
store the triples of an RDF graph. Thus, query (1) can be formulated in our language as follows:

triple(?Y , is_author_of, ?Z), triple(?Y , name, ?X) → query(?X). (2)

The possibility of returning an RDF graph as the answer to a SPARQL query is considered as a
fundamental feature [25, 37]. For this reason, one can use the CONSTRUCT operator in order to
produce an RDF graph as the output of a query. For example, the following query constructs an
RDF graph consisting of triples (a, name_author,b), where a is the name of an author of b:

CONSTRUCT { ?X name_author ?Z }
WHERE {

?Y is_author_of ?Z .

?Y name ?X }.

The expression ?X name_author ?Z represents a triple pattern specifying which RDF triples are
to be included in the output. Hence, the result of evaluating this query over G1 is the RDF graph

(“Jeffrey Ullman”, name_author, “The Complete Book”).

In our language, the user is not forced to learn about a new operator in order to produce an RDF
graph as output. (S)he can simply replace in (2) the predicate query(·) by the predicate triple(·, ·, ·)
in order to produce an RDF graph:

triple(?Y , is_author_of, ?Z), triple(?Y , name, ?X) → triple(?X , name_author, ?Z). (3)

Note that the CONSTRUCT operator in SPARQL is not recursive; to evaluate a query contain-
ing this operator, first the body of the query has to be evaluated to produce assignments for the
variables, and then these assignments are used in the template of the CONSTRUCT operator to
produce an RDF graph. In the same way, the rule (3) may appear recursive but a resulting tuple
triple(a, name_author,b) of this rule cannot be used in the body of (3) to produce new tuples, given
that triple(a, name_author,b) cannot be matched against any of the tuples in the body of (3).

The use of the operator CONSTRUCT in SPARQL allows one to have compositionality; the
output of a query can be used as the input of another query. This is a fundamental property, which
plays a crucial role when adding a recursion mechanism to SPARQL [38]. Notice that our language
inherits the compositionality of Datalog, so that a recursion mechanism can be easily introduced
without needing additional syntactic constructs.

Assume now that G2 is an RDF graph extending G1 with the following triples:

(dbAho, is_coauthor_of, dbUllman),

(dbAho, name, “Alfred Aho”).

The query language SPARQL allows the use of blank nodes in the CONSTRUCT operator to include
some anonymous resources in an RDF graph. For example, a blank node is used in the following
query to indicate that if a is a co-author of b, then there must be some publication c such that a
and b are both authors of c .

CONSTRUCT { ?X is_author_of _:B . ?Y is_author_of _:B }
WHERE { ?X is_coauthor_of ?Y }. (4)

In the above query, _:B is a blank node, while ?X is_author_of _:B and ?Y is_author_of _:B specify
the triples to be constructed for every possible match of the variables ?X and ?Y . The semantics

ACM Transactions on Database Systems, Vol. 43, No. 3, Article 13. Publication date: November 2018.

13:6 M. Arenas et al.

of SPARQL imposes the restriction that a fresh blank node has to be used for each match of the
variables ?X and ?Y . Although this constraint is natural in this case, this is yet another feature
of SPARQL that the user needs to remember when formulating a query. In our case, we do not
need to add extra notation for the creation of anonymous resources, as our query language allows
existential quantification in the head of the rules:

triple(?X , is_coauthor_of, ?Y) →
∃?Z triple(?X , is_author_of, ?Z), triple(?Y , is_author_of, ?Z).

Moreover, our query language can be used to lift the restriction that blank nodes are used only
locally. For example, our query language can be used to anonymize the subjects of the triples in
an RDF graph, by replacing every URI in the subject position of a triple by a blank node:

triple(?X , ?Y , ?Z) → subj(?X),

subj(?X) → ∃?Y bn(?X , ?Y),

triple(?X , ?Y , ?Z), bn(?X , ?U) → output(?U , ?Y , ?Z).

The first rule is used to store in the predicate subj(·) the URIs mentioned in the subject of the
triples of an RDF graph. The second rule creates a blank node for every URI in the predicate subj(·),
which is stored in the predicate bn(·, ·). Finally, the third rule replaces in the predicate triple(·, ·, ·)
every URI in the subject position by its associated blank node, producing an RDF graph in the
predicate output(·, ·, ·). The ability to anonymize the subjects of an RDF graph is a useful feature
as it can allow publishing data without leaking sensitive information. It is important to note that
such a query cannot be expressed by using the local semantics of blank nodes in the CONSTRUCT
operator of SPARQL, as the same blank node identifying a specific resource in an RDF graph has
to be used every time this resource is considered in the result of the query.

Query (4) encodes some prior knowledge about the co-authorship relation. This type of knowl-
edge can be explicitly encoded in an RDF graph by using the RDFS and OWL vocabularies. As an
example of this, assume that G3 is an RDF graph extending G2 with the following triples:

(r1, rdf:type, owl:Restriction), (r2, rdf:type, owl:Restriction),

(r1, owl:onProperty, is_coauthor_of), (r2, owl:onProperty, is_author_of), (5)

(r1, owl:someValuesFrom, owl:Thing), (r2, owl:someValuesFrom, owl:Thing),

(r1, rdfs:subClassOf, r2).

In G3, the URIs with prefix rdfs: are part of the RDFS vocabulary, while the URIs with prefix owl:
are part of the OWL vocabulary. The first three triples of G3 define r1 as the class of URIs a for
which there exists a URI b such that (a, is_coauthor_of,b) holds, while the following three triples
of this graph define r2 as the class of URIs a for which there exists a URI b such that the triple
(a, is_author_of,b) holds. Finally, the last triple of G3 indicates that r1 is a subclass of r2.

The above set of triples states that for every two elementsa andb such that (a, is_coauthor_of,b)
holds, it must be the case that a is an author of some publication. Thus, if we want to retrieve the
list of authors mentioned in G3, then we expect to find dbAho in this list. However, the answer to
the SPARQL query (1) overG3 does not include this URI, and we are forced to encode the semantics
of the RDFS and OWL vocabularies in the query. In fact, even if we try to obtain the right answer
by using SPARQL 1.1 under the entailment regimes for these vocabularies, we are forced by the

ACM Transactions on Database Systems, Vol. 43, No. 3, Article 13. Publication date: November 2018.

Expressive Languages for Querying the Semantic Web 13:7

restrictions of the language [22] to use a query of the form

SELECT ?X

WHERE {
?Y name ?X .

?Y rdf : type ?Z .

?Z rdf:type owl:Restriction .

?Z owl:onProperty is_author_of .

?Z owl:someValuesFrom owl:Thing }.

This query is obtained from (1) by replacing the expression ?Y is_author_of ?Z by the last four
triples above, which explicitly state that we are looking for the objects that are authors of some
publication (i.e., the objects of type r2). It is apparent that the resulting query is quite complex. In
our query language such complications can be avoided by using rules encoding the semantics of
the RDFS and OWL vocabularies. For example, the following rule specifies the semantics of the
owl:onProperty primitive of OWL:

triple(?X , rdf : type, ?Y),

triple(?Y , rdf:type, owl:Restriction),

triple(?Y , owl:onProperty, ?Z),

triple(?Y , owl:someValuesFrom, ?U) → ∃?W triple(?X , ?Z , ?W).

Notice that a fixed set of rules is used to encode the semantics of the RDFS and OWL vocabularies.
If such rules are available as a library, then the user just has to include them in order to answer
queries, without needing to have prior knowledge about the semantics and inference rules for the
respective vocabulary. For example, if these rules have been included, then to retrieve the list of
authors mentioned in G3 we can use query (1) again, as initially expected.

Consider now the fact that it is very common in the Web to have several URIs for the same object.
For example, the following are URIs of Jeffrey Ullman in DBpedia (the RDF version of Wikipedia)
and the semantic knowledge base YAGO:

http://dbpedia.org/resource/Jeffrey_Ullman,

http://yago-knowledge.org/resource/Jeffrey_Ullman,

respectively. To alleviate the issue of having pieces of information about the same object that use
distinct URIs for it, the OWL vocabulary includes the primitive owl:sameAs to indicate that two
URIs represent the same element. For example, this primitive is used in the following RDF graph
G4 to indicate that dbUllman and yagoUllman are URIs for the same object:

(dbUllman, is_author_of, “The Complete Book”),

(dbUllman, owl:sameAs, yagoUllman),

(yagoUllman, name, “Jeffrey Ullman”).

Assume now that we want to retrieve the list of authors mentioned in G4. If we try to use again
the SPARQL query (1), then we obtain the empty answer as the semantics of owl:sameAs is not

ACM Transactions on Database Systems, Vol. 43, No. 3, Article 13. Publication date: November 2018.

13:8 M. Arenas et al.

taken into consideration. To solve this problem, one has to use the following query:

SELECT ?X

WHERE {
{ ?Y is_author_of ?Z .

?Y name ?X }
UNION (6)

{ ?Y is_author_of ?Z .

?Y owl:sameAs ?W .

?W name ?X }
}.

In this query, the operator UNION is used to obtain the union of the results of two queries, and the
query occurring after this operator is used to encode the semantics of the owl:sameAs primitive.
Therefore, as in the previous example, the user is forced to encode the semantics of the OWL
vocabulary in the SPARQL query. Moreover, as the reader may has already noticed, the situation
gets worse if we combine the triples in the graphs G3 and G4. Fortunately, all these problems can
be easily solved in our framework by just incorporating a fixed set of rules encoding the semantics
of the primitive owl:sameAs, which includes rules like the following:

triple(?X , owl:sameAs, ?Y), triple(?Y , owl:sameAs, ?Z) → triple(?X , owl:sameAs, ?Z),

triple(?X1, owl:sameAs, ?X2), triple(?Y1, owl:sameAs, ?Y2),

triple(?X1, ?U , ?Y1) → triple(?X2, ?U , ?Y2).

If this fixed set of rules has been included, then to retrieve the list of authors mentioned in G4 we
can just use query (1) again.

As a final example, consider the following scenario from [29]:

In the above RDF graph, we have some transport services between cities. For example, the
triples (TheAirline, partOf, transportService), (A311, partOf,TheAirline), (Oxford,A311, London)
indicate that TheAirline is a transport service, A311 is a specific service provided by TheAirline,
and A311 goes from Oxford to London, respectively. In this case, we would like to pose a query
retrieving the pairs a, b of cities such that there is a way to travel from a to b. As shown in [29, 39],
such a query cannot be expressed with the navigation mechanism of SPARQL 1.1, as it requires

ACM Transactions on Database Systems, Vol. 43, No. 3, Article 13. Publication date: November 2018.

Expressive Languages for Querying the Semantic Web 13:9

navigating simultaneously in two different directions: the path of transport services froma tob can
be of arbitrary length, and the paths necessary to check that we are connecting cities by transport
services could also be of arbitrary length. For instance, in the RDF graph depicted in the figure, to
check whether we can go from Oxford to Valladolid we need to follow a path of length three, and
to check that A311 is a transport service we need to follow a path of length two to reach the node
transportService. Notice that such paths could be of arbitrary length, as it could be necessary to
use more than three transport services to go from Oxford to Valladolid, and the path from A311
to transportService could include some additional triples such as (TheAirline, partOf, busService)
to indicate that TheAirline is a bus service, and likewise for BA201 and R502. On the other hand,
the general recursion mechanism of the query language proposed in this article can be easily used
to express this query. More specifically, we first use the following rules to collect all the transport
services in an RDF graph:

triple(?X , partOf, transportService) → ts(?X),

triple(?X , partOf, ?Y), ts(?Y) → ts(?X).

Then, the following rules collect all the pairs of connected cities:

ts(?T), triple(?X , ?T , ?Y) → query(?X , ?Y),

ts(?T), triple(?X , ?T , ?Z), query(?Z , ?Y) → query(?X , ?Y).

3 DEFINITIONS AND BACKGROUND

Assume there are pairwise disjoint infinite countable sets U, B, V. The elements of U are called URIs,
the elements of B are called blank nodes, and the elements of V are called variables and are assumed
to start with the symbol ?. The sets U and B are used when defining both RDF graphs and relational
databases, and we also refer to them as constants and (labeled) nulls, respectively. Henceforth, for
brevity, given two integers n,m such that n ≥ m, we write [m,n] for the set {m,m + 1, . . . ,n}.

3.1 RDF and the Query Language SPARQL

A triple (s,p,o) ∈ U × U × U is called an RDF triple. In this tuple, s is the subject, p is the predicate,
and o is the object. An RDF graph is a finite set of RDF triples.5 SPARQL is essentially a graph-
matching query language. Roughly speaking, a SPARQL query is a complex RDF graph pattern that
may include RDF triples with variables, conjunctions, disjunctions, optional parts, and constraints
over the values of the variables. The evaluation of a SPARQL query P against an RDF graph G is
done by matching P againstG in order to obtain a set of bindings for the variables in P . The formal
syntax and semantics of SPARQL follow.

Syntax of SPARQL Graph Patterns. We adopt the algebraic formalization of SPARQL proposed
in [34], using binary operators AND, UNION, OPT, and FILTER. We start by defining the notion
of SPARQL built-in condition, which is used in filter expressions. Formally,

(1) If ?X , ?Y ∈ V and c ∈ U, then ?X = c , ?X = ?Y and bound(?X) are (atomic) built-in
conditions.

(2) If R1 and R2 are built-in conditions, then (¬R1), (R1 ∨ R2) and (R1 ∧ R2) are built-in
conditions.

5RDF triples can also include literals and blank nodes. The former represent actual values, such as integers, real number,

and dates, while the latter represent anonymous objects. Given the way these elements are treated in SPARQL [27], we do

not include them in RDF graphs as our results can be established even if these elements are explicitly considered.

ACM Transactions on Database Systems, Vol. 43, No. 3, Article 13. Publication date: November 2018.

13:10 M. Arenas et al.

Then the set of (SPARQL) graph patterns is defined recursively as follows:

(1) A set {t1, . . . , tn }, where every ti ∈ (U ∪ B ∪ V) × (U ∪ B ∪ V) × (U ∪ B ∪ V) (1 ≤ i ≤ n),
is a graph pattern (called a basic graph pattern).

(2) If P1 and P2 are graph patterns, then (P1 AND P2), (P1 UNION P2), (P1 OPT P2) are graph
patterns.

(3) If P is a graph pattern and R is a SPARQL built-in condition, then (P FILTER R) is a graph
pattern.

(4) If P is a graph pattern and W is a finite set of variables, then (SELECT W P) is a graph
pattern.

From now on, given a graph pattern P , we define var(P) as the set of variables occurring in P , and
likewise for var(R) for a built-in condition R. Moreover, we assume that for every graph pattern
(P FILTER R), it holds that var(R) ⊆ var(P). Finally, we usually omit curly brackets in singleton
basic graph patterns, i.e., we replace {t } by t , where t ∈ (U ∪ B ∪ V) × (U ∪ B ∪ V) × (U ∪ B ∪ V).

Semantics of SPARQL Graph Patterns. To define the semantics of SPARQL, we need to introduce
some extra terminology. A mapping μ is a partial function μ : V→ U. Abusing notation, for a basic
graph pattern P = {t1, . . . , tn }, we denote by μ (P) the basic graph pattern obtained by replacing
the variables occurring in P according to μ. The domain of μ, denoted by dom(μ), is the subset of
V where μ is defined. Two mappings μ1 and μ2 are compatible, denoted by μ1 ∼ μ2, when for all
?X ∈ dom(μ1) ∩ dom(μ2), it is the case that μ1 (?X) = μ2 (?X), i.e., when μ1 ∪ μ2 is also a mapping.
Intuitively, μ1 and μ2 are compatible if μ1 can be extended with μ2 to obtain a new mapping, and vice
versa. We use the symbol μ∅ to represent the mapping with empty domain (which is compatible
with any other mapping). Moreover, given a mapping μ and a set of variablesW , the restriction of

μ toW , denoted by μ |W , is a mapping such that dom(μ |W) = (dom(μ) ∩W) and μ |W (?X) = μ (?X)
for every ?X ∈ (dom(μ) ∩W). Finally, given a function h : B→ U, we denote by h(P) the basic
graph pattern obtained from P by replacing the blank nodes occurring in P according to h.

To define the semantics of graph patterns, we first need to introduce the notion of satisfaction
of a built-in condition by a mapping, and then we need to introduce some operators for mappings.
More precisely, given a mapping μ and a built-in condition R, we say that μ satisfies R, denoted by
μ |= R, if one of the following holds:

(1) R is bound(?X) and ?X ∈ dom(μ).
(2) R is ?X = c , ?X ∈ dom(μ) and μ (?X) = c .
(3) R is ?X = ?Y , ?X , ?Y ∈ dom(μ) and μ (?X) = μ (?Y).
(4) R is (¬R1), R1 is a built-in condition, and it is not the case that μ |= R1.
(5) R is (R1 ∨ R2), R1 and R2 are built-in conditions, and μ |= R1 or μ |= R2.
(6) R is (R1 ∧ R2), R1 and R2 are built-in conditions, and μ |= R1 and μ |= R2.

Moreover, given sets Ω1 and Ω2 of mappings, the join of, the union of, the difference between, and
the left outer join between Ω1 and Ω2 are defined as follows:

Ω1 � Ω2 = {μ1 ∪ μ2 | μ1 ∈ Ω1, μ2 ∈ Ω2 and μ1 ∼ μ2},
Ω1 ∪ Ω2 = {μ | μ ∈ Ω1 or μ ∈ Ω2},
Ω1 \ Ω2 = {μ ∈ Ω1 | for every μ ′ ∈ Ω2 : μ � μ ′},

Ω1 Ω2 = (Ω1 � Ω2) ∪ (Ω1 \ Ω2).

We are now ready to define the semantics of graph patterns as a function �·�G , which takes a
pattern expression and returns a set of mappings. The evaluation of a graph pattern P over an RDF
graph G, denoted by �P�G , is recursively defined as follows:

ACM Transactions on Database Systems, Vol. 43, No. 3, Article 13. Publication date: November 2018.

Expressive Languages for Querying the Semantic Web 13:11

(1) If P is a basic graph pattern, then �P�G = {μ | dom(μ) = var(P) and there exists h : B→
U such that μ (h(P)) ⊆ G}.

(2) If P is (P1 AND P2), then �P�G = �P1�G � �P2�G .
(3) If P is (P1 UNION P2), then �P�G = �P1�G ∪ �P2�G .
(4) If P is (P1 OPT P2), then �P�G = �P1�G �P2�G .
(5) If P is (P1 FILTER R), then �P�G = {μ | μ ∈ �P1�G and μ |= R}.
(6) If P if (SELECT W P1), then �P�G = {μ |W | μ ∈ �P1�G }.

3.2 Relational Databases and Datalog∃,¬s,⊥ Queries

A term t is a constant (t ∈ U), labeled null (t ∈ B), or variable (t ∈ V). An atom has the form
p (t1, . . . , tn), where p is an n-ary predicate, and t1, . . . , tn are terms. A position p[i] identifies the
i-th attribute of a predicate p. We denote the arity of p by arity(p). For an atom a, we denote by
dom(a) and var(a) the sets of its terms and its variables, respectively; these notations extend to
sets of atoms. We refer to the predicate of an atom a by pred(a). An instance I is a (possibly infinite)
set of atoms p (t), where t is a tuple of constants and labeled nulls. A database D is a finite instance
where only constants occur; we refer to the constants in D as dom(D).

One of the most prominent languages for querying relational data is Datalog, which actually
adds recursion to the relational algebra. The query languages that we are going to propose in
this work are based on an extension of Datalog, and in particular on Datalog∃,¬s,⊥, that is, the
extension of Datalog with existentially quantified variables (∃), stratified negation (¬s), and the
truth constant false (⊥). The formal syntax and semantics of Datalog∃,¬s,⊥ follow.

Syntax of Datalog∃,¬s,⊥. We start by introducing the syntax of Datalog∃,¬, that is, the extension

of Datalog with existential quantification in the head, and negation in the body. A Datalog∃,¬ rule
ρ is an expression of the form6

a1, . . . ,an ,¬b1, . . . ,¬bm → ∃?Y1 . . . ∃?Yk c,

where

(1) n ≥ 1 andm,k ≥ 0;
(2) every ai (1 ≤ i ≤ n) and bi (1 ≤ i ≤ m) is an atom with terms from (U ∪ V);
(3) var({b1, . . . ,bm }) ⊆ var({a1, . . . ,an });
(4) {?Y1, . . . , ?Yk } ∩ var({a1, . . . ,an , b1, . . . ,bm }) = ∅; and
(5) c is an atom with terms from (U ∪ {?Y1, . . . , ?Yk } ∪ var({a1, . . . ,an })).

The set {a1, . . . ,an } is denoted by body+ (ρ), while {b1, . . .,bm } is denoted by body− (ρ). The body of

ρ, denoted by body(ρ), is defined as (body+ (ρ) ∪ body− (ρ)). The atom c is the head of ρ, denoted

by head(ρ). A Datalog∃,¬ program Π is a finite set of Datalog∃,¬ rules. Let sch(X), where X is
either a program or a set of atoms, be the set of predicates occurring in X . A stratification of Π is
a function μ : sch(Π) → [0, �] such that, for each ρ ∈ Π with p = pred(head(ρ)): (1) μ (p) ≥ μ (p ′),
for each p ′ ∈ sch(body+ (ρ)); and (2) μ (p) > μ (p ′), for each p ′ ∈ sch(body− (ρ)). For each i ∈ [0, �],
let Πi = {ρ | ρ ∈ Π and μ (p) = i}. We say that Π is stratified if there exists a stratification of Π. A
constraint ν is an assertion of the form

a1, . . . ,an → ⊥,
where n ≥ 1 and every ai (1 ≤ i ≤ n) is an atom with terms from U ∪ V. The body of ν , denoted

body(ν), is the set {a1, . . . ,an }. A Datalog∃,¬,⊥ program Π is a finite set of Datalog∃,¬ rules and

6For the sake of brevity, in the rest of the article we may write rules with more than one atom in the head. This is not a

problem as such rules can be transformed into an equivalent set of rules with just one head-atom; see, e.g., [15].

ACM Transactions on Database Systems, Vol. 43, No. 3, Article 13. Publication date: November 2018.

13:12 M. Arenas et al.

constraints. We denote by ex(Π) the set of Datalog∃,¬ rules in Π; in other words, ex(Π) is ob-
tained from Π by dropping the constraints. We say that Π is stratified if ex(Π) is stratified. A
stratified Datalog∃,¬,⊥ query Q is a pair (Π,p), where Π is a stratified Datalog∃,¬,⊥ program,

and p ∈ sch(Π) does not occur in the body of a rule of Π. For brevity, we write Datalog∃,¬s,⊥

for stratified Datalog∃,¬,⊥ programs and queries. Moreover, a supra-index can be removed from

Datalog∃,¬s,⊥ to indicate that the corresponding feature is disallowed. For example, in a Datalog¬s

program neither existentially quantified variables in the heads of rules nor constraints are allowed.

Semantics of Datalog∃,¬s,⊥. The semantics of Datalog∃,¬s,⊥ are defined via the well-known chase
procedure. Before defining the chase procedure, we need to recall some auxiliary definitions. A
homomorphism from a set of atomsX to a set of atomsX ′ is a partial functionh : U ∪ B ∪ V→ U ∪
B ∪ V such that (1) t ∈ U impliesh(t) ∈ U, and (2)p (t1, . . . , tn) ∈ X impliesp (h(t1), . . . ,h(tn)) ∈ X ′.
A Datalog∃ rule ρ (i.e., a Datalog∃,¬ rule without negated atoms) is applicable to an instance I if
there exists a homomorphism h such that h(body(ρ)) ⊆ I . The result of applying ρ to I in this
case is an instance I ′ = I ∪ h′(head(ρ)), where h′ is a homomorphism such that h′(?X) = h(?X)
if ?X ∈ var(body(ρ)) ∩ var(head(ρ)), and h′(?Y) is a fresh labeled null not occurring in I if ?Y ∈
var(head(ρ)) \ var(body(ρ)). For such an application of ρ to I we write I

〈
ρ,h
〉
I ′; in fact, I

〈
ρ,h
〉
I ′

defines a single chase step.
The chase algorithm takes as input a database D and a Datalog∃ program Π, and performs

an exhaustive application of the rules of Π starting from D, which leads to a (possibly infinite)
instance denoted chase(D,Π). A chase sequence of a database D and a Datalog∃ program Π is
a sequence of chase steps Ii

〈
ρi ,hi

〉
Ii+1, where i ≥ 0, I0 = D and ρi ∈ Π. The chase of D and Π,

denoted chase(D,Π), is defined as follows.

—A finite chase of D and Π is a finite chase sequence Ii
〈
ρi ,hi

〉
Ii+1, where i ∈ [0,m − 1], and

there is no ρ ∈ Π that is applicable to Im ; let chase(D,Π) = Im .
—An infinite chase sequence Ii

〈
ρi ,hi

〉
Ii+1, where i ≥ 0, is fair if whenever a rule ρ ∈ Π

is applicable to Ii with homomorphism h, then there exists h′ ⊇ h and k > i such that
h′(head(ρ)) ⊆ Ik . An infinite chase of D and Π is a fair infinite chase sequence Ii

〈
ρi ,hi

〉
Ii+1,

where i ≥ 0; let chase(D,Π) =
⋃∞

i=0 Ii .

We are now ready to define the semantics of Datalog∃,¬s,⊥. A crucial notion is the indefinite

grounding of a Datalog∃,¬ program Π. A subset of B is partitioned into infinite sets of nulls Bρ,?Z ,
one for every ρ ∈ Π and every existentially quantified variable ?Z occurring in ρ. An indefinite

instance of a rule ρ is obtained from ρ by replacing every variable of var(body(ρ)) by an element
of U ∪ B, and every existentially quantified variable ?Z by an element of Bρ,?Z . The indefinite

grounding of Π, denoted ground(Π), is the set of all its indefinite instances. Given an instance I , let
ΠI be the program {body+ (ρ) → head(ρ) | ρ ∈ ground(Π) and (body− (ρ) ∩ I) = ∅}. Notice that
the rules of ΠI may contain nulls from B. Therefore, we cannot directly use the chase algorithm
as defined above with such rules. The reason is because the chase is defined for Datalog∃ rules
that can mention only constants of U and variables of V. Nevertheless, the chase algorithm can
be naturally generalized to such rules by simply treating the null values from B in the same way

as the constants from U. Consider now a database D and a Datalog∃,¬s,⊥ program Π that admits
a stratification μ : sch(Π) → [0, �]. Recall that ex(Π) is the program consisting of the Datalog∃,¬

rules in Π. Therefore, ex(Π)i = {ρ | ρ ∈ ex(Π) and μ (pred(head(ρ))) = i}. We inductively define
the sets S0, . . . , S� as follows:

S0 = chase(D, ex(Π)0) and Si = chase(Si−1, (ex(Π)i)Si−1).

ACM Transactions on Database Systems, Vol. 43, No. 3, Article 13. Publication date: November 2018.

Expressive Languages for Querying the Semantic Web 13:13

If there is a constraint ν ∈ Π for which there exists a homomorphism h such that h(body(ν)) ⊆ S� ,
then D is inconsistent w.r.t. Π; otherwise, D is consistent w.r.t. Π. The semantics Π(D) of Π over
D is defined as � if D is inconsistent w.r.t. Π; otherwise, Π(D) is defined as the (possibly infinite)
instance S� . Note that � is a special symbol used to indicate that there is an inconsistency.

Consider a Datalog∃,¬s,⊥ queryQ = (Π,p), where p is an n-ary predicate, and a database D. The
evaluation of Q over D is defined as

Q (D) =
⎧⎪⎪⎨
⎪⎪
⎩

� if Π(D) = �,

{(t1, . . . , tn) ∈ Un | p (t1, . . . , tn) ∈ Π(D)} if Π(D) � �.

As is customary when studying the complexity of the evaluation problem for a query language,
we consider its associated decision problem:

Problem: Eval

Input: A database D, a Datalog∃,¬s,⊥ query Q , and a tuple of constants t.
Question: Does Q (D) � � imply t ∈ Q (D)?

Let us clarify that this general formulation refers to the combined complexity of the problem.
In this work, we focus our attention on the data complexity of this problem, i.e., the complexity
of the problem Eval(Q), when the query Q is fixed, and only the database D and the tuple t form
the input. We adopt the convention that when we talk about the data complexity of a problem like
Eval (i.e., the class of problems Eval(Q)), we say that it is complete for a complexity class C if
each of the problems Eval(Q) is in C, and there exists one problem Eval(Q) that is C-hard.

4 TRIPLE QUERY LANGUAGE

Recall that the main goal of this work is to define a query language with reasoning capabilities to
deal with RDFS and OWL vocabularies, navigational capabilities to exploit the graph structure of
RDF data, and a general form of recursion much needed to express some natural and useful queries.

To this end, we introduce a query language that is based on Datalog∃,¬s,⊥ and incorporates all the

above functionalities. It is well known that Eval for Datalog∃,¬s,⊥ queries is undecidable. This

already holds for Datalog∃ [8, 13], and thus several decidability paradigms have been proposed in
the literature. Two of the most expressive decidable languages, which are of special interest for

our work, are weakly-guarded Datalog∃ [13] and weakly-frontier-guarded Datalog∃ [6]. Our query

language, dubbed TriQ 1.0, extends weakly-frontier-guarded Datalog∃ with stratified negation and
constraints. Before introducing TriQ 1.0, let us recall the key idea of weak(-frontier)-guardedness.

4.1 Weakly(-Frontier)-Guarded Datalog∃

The main principle underlying weakly-guarded Datalog∃ can be informally described as follows:
all the harmful body variables, i.e., variables that may be bound by the program to labeled nulls,
jointly appear in a body atom. The notion of weak-guardedness is a relaxation of guardedness,
which requires all the body variables (harmless or harmful) to jointly appear in a body atom; hence

the name weakly-guarded. Weakly-frontier-guarded Datalog∃ extends weakly-guarded Datalog∃

by requiring only the dangerous body variables, i.e., harmful variables that are also propagated
to the rule-head, to jointly appear in a body atom. The body variables that are propagated to the
rule-head are also known as the frontier of the rule, and hence the name weakly-frontier-guarded.
Before giving the formal definitions, we first need to recall some auxiliary terminology.

ACM Transactions on Database Systems, Vol. 43, No. 3, Article 13. Publication date: November 2018.

13:14 M. Arenas et al.

Given a set of predicates X , the set of positions of X , denoted pos(X), is the set {p[i] | p ∈
sch(X) and i ∈ [1, arity(p)]}. Given a Datalog∃ program Π, the set of affected positions of sch(Π),
denoted by affected(Π), is inductively defined as follows:

(1) if there exists ρ ∈ Π such that an existentially quantified variable occurs at position π ,
then π ∈ affected(Π); and

(2) if there exists ρ ∈ Π and a variable ?V that occurs in body(ρ) only at positions of
affected(Π), and ?V appears in head(ρ) at position π , then π ∈ affected(Π).

Let nonaffected(Π) be the set (pos(Π) \ affected(Π)) of non-affected positions of sch(Π).

Example 4.1. Consider the Datalog∃ program Π:

ρ1 = p (?X , ?Y), s (?Y , ?Z) → ∃?W t (?Y , ?X , ?W),

ρ2 = t (?X , ?Y , ?Z) → ∃?W p (?W , ?Z),

ρ3 = t (?X , ?Y , ?Z) → s (?X , ?Y).

Because of the existentially quantified variables, t[3] and p[1] belong to affected(Π). Since the
variable ?X occurs in body(ρ1) at the affected position p[1], and also at position t[2] in head(ρ1),
we conclude that t[2] ∈ affected(Π). Similarly,p[2] and s[2] are affected positions of sch(Π). Notice
that, although ?Y occurs in the body of the first rule at the affected position p[2], and also at
position t[1] in the head of the rule, t[1] is not affected since ?Y occurs also at position s[1] �
affected(Π).

Having the notion of the (non-)affected position of a schema in place, we can classify the body

variables of a rule into harmless, harmful and dangerous variables as follows. Let Π be a Datalog∃

program. Fix a rule ρ ∈ Π and a variable ?V ∈ var(body(ρ)). Then

—?V is Π-harmless if at least one occurrence of it appears in body(ρ) at a position of
nonaffected(Π);

—?V is Π-harmful if it is not Π-harmless;
—?V is Π-dangerous if it is Π-harmful and appears in head(ρ).

Let harmless(ρ,Π), harmful(ρ,Π), and dangerous(ρ,Π) be the set of body variables of ρ that are
Π-harmless, Π-harmful and Π-dangerous, respectively.

A Datalog∃ program Π is weakly-frontier-guarded (weakly-guarded, respectively) if, for each
ρ ∈ Π, there exists an atom a ∈ body(ρ), called a guard, such that dangerous(ρ,Π) ⊆ var(a)
(harmful(ρ,Π) ⊆ var(a), respectively). In other words, the body atom a contains (or guards) all
the Π-dangerous (Π-harmful, respectively) body variables of ρ. It is not difficult to verify that the
program Π in Example 4.1 is weakly-frontier-guarded but not weakly-guarded. A weakly(-frontier)-

guarded Datalog∃ query is a Datalog∃ query (Π,p) such that Π is weakly(-frontier)-guarded.

4.2 The Query Language TriQ 1.0

We proceed to introduce our main language called TriQ 1.0, which extends weakly-frontier-

guarded Datalog∃ with stratified negation and constraints. To introduce negation though, we need

to revisit the notion of weak-frontier-guardedness. Given a Datalog∃,¬s program Π, we write Π+

for the program obtained from Π by dropping all the negative atoms. A Datalog∃,¬s,⊥ program Π is
called weakly-frontier-guarded if ex(Π)+ is weakly-frontier-guarded, i.e., we simply need to check
whether the program obtained from Π after eliminating the negative atoms and the constraints is

weakly-frontier-guarded; weakly-guarded Datalog∃,¬s,⊥ is defined analogously.

Definition 4.2. A TriQ 1.0 query is a Datalog∃,¬s,⊥ query that is weakly-frontier-guarded.

ACM Transactions on Database Systems, Vol. 43, No. 3, Article 13. Publication date: November 2018.

Expressive Languages for Querying the Semantic Web 13:15

A natural question at this point is how expressive TriQ 1.0 is. Interestingly, as we show in the
following example, this language can encode some very useful but costly queries; e.g., whether a
graph contains a clique of size k .

Example 4.3. Consider an undirected graphG = (V ,E), and an integer k > 0. Assume that |V | =
n, where n > 0. The graph G and the integer k can be naturally encoded in a database D. More
precisely, the database D is defined as

{node0 (v) | v ∈ V } ∪ {edge0 (v,w) | (v,w) ∈ E} ∪ {succ0 (0, 1), . . . , succ0 (k − 1,k)}.

Our goal is to construct a TriQ 1.0 query Q = (Π, yes), where yes() is a 0-ary predicate, such that
G contains a k-clique iffQ (D) � ∅. The program Π is defined as the union of the two subprograms
Πaux and Πclique . Πaux is used to compute some auxiliary relations that are needed when checking
whether G contains a k-clique, while Πclique checks for the existence of a k-clique.

The Program Πaux

Πaux contains two rules to define the usual linear order on the domain of succ0:

succ0 (?X , ?Y) → less0 (?X , ?Y),

succ0 (?X , ?Y), less0 (?Y , ?Z) → less0 (?X , ?Z).

It also contains rules that define the minimum and maximum elements of this linear order:

less0 (?X , ?Y) → not_max(?X),

less0 (?X , ?Y) → not_min(?Y),

less0 (?X , ?Y),¬not_min(?X) → zero0 (?X),

less0 (?Y , ?X),¬not_max(?X) → max0 (?X).

Finally, Πaux contains the following rules that they simply copy the atoms of D, and the atoms
generated by Πaux , into a new schema that will be used by Πclique:

node0 (?X) → node(?X),

edge0 (?X , ?Y) → edge(?X , ?Y),

succ0 (?X , ?Y) → succ(?X , ?Y),

less0 (?X , ?Y) → less(?X , ?Y),

zero0 (?X) → zero(?X),

max0 (?X) → max(?X).

The Program Πclique

Let us first give the key idea underlying Πclique . Intuitively, Πclique constructs a tree of mappings
(rooted at some dummy mapping), where a mapping at level i ∈ [1,k] actually maps the set of
integers [1, i] to the vertices of G. Each mapping μ at level i < k has n child-mappings, one for
each node of G. The child-mapping μ ′ of μ (for a node v) simply extends μ by mapping (i + 1) to
v . The k-th level of the tree contains all the possible nk mappings μ : [1,k]→ V . It is then easy to
check whether there exists a mapping that maps [1,k] to a clique of G.

Now we define Πclique . In this program, apart from the predicates node(·), edge(·, ·), succ(·, ·),
less(·, ·), zero(·), and max(·, ·), generated by Πaux , we also have the following:

(1) ism(μ, i): μ is a mapping at level i of the tree;
(2) map(μ, i,v): μ (i) = v ;

ACM Transactions on Database Systems, Vol. 43, No. 3, Article 13. Publication date: November 2018.

13:16 M. Arenas et al.

(3) next(μ,v, μ ′): μ ′ is obtained from μ by mapping (i + 1) tov (assuming that μ is a mapping
at level i); and

(4) noclique(μ): μ does not map to a clique.

The program Πclique consists of the following rules:

zero(?X) → ∃?Y ism(?Y , ?X),

ism(?X , ?Y), succ(?Y , ?Z), node(?W) →
∃?U next(?X , ?W , ?U), ism(?U , ?Z),map(?U , ?Z , ?W),

next(?X , ?Y , ?Z),map(?X , ?U , ?V) → map(?Z , ?U , ?V),

less(?X , ?Y),map(?Z , ?X , ?W),map(?Z , ?Y , ?U),¬edge(?W , ?U) → noclique(?Z),

less(?X , ?Y),map(?Z , ?X , ?W),map(?Z , ?Y , ?W) → noclique(?Z),

ism(?X , ?Y),max(?Y),¬noclique(?X) → yes().

Notice that the purpose of the fifth rule is to avoid the use of the same node more than once in a
clique (which can happen if G contains self-loops).

4.3 The Complexity of TriQ 1.0

The above example shows that the query evaluation problem for TriQ 1.0 is intractable in data
complexity. In fact, we show that:

Theorem 4.4. Eval for TriQ 1.0 is ExpTime-complete in data complexity.

Proof. Eval for weakly-guarded Datalog∃ is ExpTime-hard in data complexity [13], which im-
mediately implies the desired lower bound. Let us now proceed with the upper bound. Consider
a database D and a (fixed) TriQ 1.0 query Q = (Π,p). We construct in constant time the query
Q ′ = (ex(Π) ∪ Π⊥,p), where

Π⊥ = {a1, . . . ,an → p (�, . . . ,�) | a1, . . . ,an → ⊥ ∈ Π},

with�being a special constant not inD or Π. It is clear thatQ (D) � � iff (�, . . . ,�) � Q ′(D). More-

over, if Q (D) � �, then t ∈ Q (D) iff t ∈ Q ′(D), for every t ∈ Uarity(p) . Therefore, for an arbitrary
tuple t ∈ Uarity(p) ,

Q (D) � � implies t ∈ Q (D) iff (�, . . . ,�) � Q ′(D) implies t ∈ Q ′(D).

By construction,Q ′ is a weakly-frontier-guarded Datalog∃,¬s query. Thus, to establish the desired

upper bound, it suffices to show that query evaluation for weakly-frontier-guarded Datalog∃,¬s is

in ExpTime in data complexity. The latter can be reduced to Eval for weakly-guarded Datalog∃,¬s

via a database-independent reduction; implicit in [24]. Therefore, it suffices to show that query

evaluation for weakly-guarded Datalog∃,¬s is in ExpTime in data complexity. This can be shown

by exploiting a recent complexity result for guarded Datalog∃,¬s [26].

A guarded Datalog∃,¬s query is a Datalog∃,¬s query (Π,p) such that Π is guarded, i.e., for each
rule ρ ∈ Π, there exists an atom a ∈ body+ (ρ) such that var(body(ρ)) ⊆ var(a). It is implicit in [26]

that Eval for guarded Datalog∃,¬s is feasible in double-exponential time in the arity of the under-
lying schema, in exponential time in the size of the given query program, and in polynomial time
in the size of the given database.7 Having this result in place, to establish the desired upper bound it

7In fact, the work [26] considers guarded Datalog∃,¬, where the (non-stratified) negation is interpreted according to the

well-founded semantics, which generalizes guarded Datalog∃,¬s .

ACM Transactions on Database Systems, Vol. 43, No. 3, Article 13. Publication date: November 2018.

Expressive Languages for Querying the Semantic Web 13:17

suffices to reduce Eval for weakly-guarded Datalog∃,¬s to Eval for guarded Datalog∃,¬s in polyno-
mial time, without increasing the arity of the underlying schema. This can be done by instantiating
the harmless variables occurring in a rule of the given query with constants occurring in the given

database. More precisely, given a database D and a weakly-guarded Datalog∃,¬s query Q = (Π,p),
we construct the guarded Datalog∃,¬s query Q ′ = (Π′,p), where Π′ =

⋃
ρ ∈Π inst(ρ) and inst(ρ) is

the set of rules obtained after replacing the ex(Π)+-harmless variables occurring in ρ with con-
stants of dom(D) in all the possible ways. It is clear that Q (D) = Q ′(D), while |Π′ | is polynomial

in the size of dom(D). We conclude that Eval for weakly-guarded Datalog∃,¬s is in ExpTime in
data complexity, and the claim follows. �

4.4 The Expressive Power of TriQ 1.0

An important issue for a query language is to understand its expressive power, a topic common
to database theory. Roughly, by the expressive power of a query language we refer to the set of
all queries expressible in that language. In formal terms, a query Q defines a function fQ that
maps each input database D (over a certain schema) to a set of answers fQ (D) ⊆ dom(D)n , where
n ≥ 0 is the arity of Q . The expressive power of a query language L is the set of functions fQ for
all queries Q expressible in L by some query expression (or program); this syntactic expression
is usually identified with the semantic query that it defines, and, by abuse of terminology, simply
called query.

In this context, a crucial task is to determine the absolute expressive power of a query language
L. This is done by showing that L is able to express exactly the queries whose evaluation is in a
complexity class C, and we write L = C. The evaluation of an n-ary query Q is the problem of
deciding, given a database D and a tuple t ∈ dom(D)n , whether t ∈ fQ (D). It holds that

Theorem 4.5. TriQ 1.0 = ExpTime.

Proof. We need to show that (i) the evaluation complexity of a TriQ 1.0 query is in ExpTime,
and (ii) for every query Q whose evaluation is in C, there exists a TriQ 1.0 query Q ′ such that
fQ (D) = fQ ′ (D), for every database D. The former follows from the fact that Eval for TriQ 1.0 is
in ExpTime in data complexity (Theorem 4.4), while the latter follows from [24], where the same

result is shown for weakly-guarded Datalog∃,¬s . �

At this point, let us clarify that there is a crucial difference between the fact that Eval for a
query language L is C-hard in data complexity, and the fact that L = C. The former simply says
that there exists a query Q expressible in L for which the evaluation problem is C-hard. The lat-
ter says that Q expresses all queries whose evaluation is in C (including all the C-hard queries).

Clearly, the above result implies that TriQ 1.0 and weakly-guarded Datalog∃,¬s are equally ex-
pressive query languages. However, the fact that TriQ 1.0 is based on the more refined notion of
weak-frontier-guardedness, allows us to write more intuitive and succinct queries than weakly-

guarded Datalog∃,¬s .

5 FROM SPARQL OVER OWL 2 QL TO TriQ 1.0

The first version of the Web ontology language OWL was released in 2004 [30]. The second version
of this language, which is called OWL 2, was released in 2012 [41]. OWL 2 includes three profiles
that can be implemented more efficiently [31]. One of these profiles, called OWL 2 QL, is based on
the description logic DL-LiteR [16] and designed to be used in applications where query answering
is the most important reasoning task. As the main goal of our article is to design a query language
that naturally embeds the fundamental features for querying RDF, we focus on OWL 2 QL, identify
a core fragment of it, called OWL 2 QL core, which corresponds to DL-LiteR , and show that every

ACM Transactions on Database Systems, Vol. 43, No. 3, Article 13. Publication date: November 2018.

13:18 M. Arenas et al.

SPARQL query under the OWL 2 QL core direct semantics entailment regime, which is inherited
from the OWL 2 direct semantics entailment regime [22, 28], can be naturally translated into a
TriQ 1.0 query.8 Furthermore, a second goal of this section is to show that the use of TriQ 1.0
allows us to formulate SPARQL queries in a simpler way, as a more natural notion of entailment
can be easily encoded by using this query language.

For the sake of presentation, we first omit the direct semantics entailment regime, and explain
in Section 5.1 how a SPARQL query can be translated into a Datalog¬s query. It is important to
clarify that it is known that SPARQL can be translated into Datalog¬s [2, 3, 5, 18, 36, 40], if one
focuses on RDF graphs with RDFS vocabulary extended with a special symbol to represent the
null value (and with a built-in predicate to check for this symbol). Thus, the goal of Section 5.1 is
not to prove that SPARQL can be embedded into Datalog¬s , but instead to propose a translation
that uses such a special symbol for the null value in a fairly limited way (in fact, we only use this
symbol to compute that final answer to the query), and which can be easily extended to deal not
only with the RDFS vocabulary but also with the vocabulary used in OWL 2 QL core ontologies. In
fact, we extend this translation in Section 5.2 and show that every SPARQL query under the OWL
2 QL core direct semantics entailment regime can be transformed into a TriQ 1.0 query. Moreover,
we show in Section 5.3 that a more natural notion of entailment, which is obtained by removing a
restriction from the regime proposed in [22], can also be encoded in TriQ 1.0.

5.1 Translating SPARQL into Datalog¬s

In this section, we explain via some illustrative examples how a SPARQL query can be translated
into a Datalog¬s query. As it is already known that SPARQL can be translated into Datalog¬s , we
do not provide the details of the translation, but rather mention what is needed to fix the notation
used in the rest of the article. The complete translation can be found in Appendix A.

From now on, given an RDF graph G, we define

τdb (G) = {triple(a,b, c) | (a,b, c) ∈ G},

i.e., the instance of the relational schema {triple(·, ·, ·)} naturally associated with G.

Example 5.1. We give a series of graph patterns, where their structural complexity is progres-
sively increased, and explain how they are encoded in Datalog¬s .

—We first consider the graph pattern

P1 = (?X , name, ?Y),

where name is a constant, that asks for the list of pairs (a,b) of elements from an RDF graph
G such thatb is the name of a inG. This graph pattern can be easily represented as a Datalog
program over τdb (G):

triple(?X , name, ?Y) → queryP1
(?X , ?Y).

The predicate queryP1
(·, ·) is used to store the answer to the graph pattern P1.

—Now consider the graph pattern

P2 = (?X , name, _:B),

where _:B is a blank node. This time we are asking for the list of elements in an RDF graph
G that have a name (the blank node _:B is used in P2 to indicate that ?X has a name, but

8Let us clarify that we focus on OWL 2 QL core, instead of the full formalism of OWL 2 QL, for technical clarity. However,

our approach is generic enough to deal with all the constructs of OWL 2 QL.

ACM Transactions on Database Systems, Vol. 43, No. 3, Article 13. Publication date: November 2018.

Expressive Languages for Querying the Semantic Web 13:19

that we are not interested in retrieving it). As in the previous case, this graph pattern can
be easily represented as a Datalog program over τdb (G):

triple(?X , name, ?Y) → queryP2
(?X). (7)

Given that blank nodes are used as existential variables in basic graph patterns, ?Y is used
in the previous rule to represent blank node _:B. However, this time we do not include the
variable ?Y in the head of the rule as we are not interested in retrieving names.

—As a third example, consider the graph pattern

P3 = (?X , name, ?Y)︸������������︷︷������������︸
P 1

3

OPT (?X , phone, ?Z)︸��������������︷︷��������������︸
P 2

3

,

where phone is a constant. For every constant a in an RDF graph G, this graph pattern is
asking for the name and phone number of a, if the information about the phone number
of a is available in G, and otherwise it is only asking for the name of a. The basic graph
patterns P1

3 and P2
3 are represented via the rules

triple(?X , name, ?Y) → queryP 1
3
(?X , ?Y), (8)

triple(?X , phone, ?Z) → queryP 2
3
(?X , ?Z). (9)

Predicates queryP 1
3
(·, ·) and queryP 2

3
(·, ·) are used in the representation of graph pattern

P3 in Datalog¬s . More precisely, we first construct a set of rules for the cases where the
information about phone numbers is available:

queryP 1
3
(?X , ?Y), queryP 2

3
(?X , ?Z) → queryP3

(?X , ?Y , ?Z), (10)

queryP 1
3
(?X , ?Y), queryP 2

3
(?X , ?Z) → compatibleP3

(?X). (11)

As for the previous graph patterns, we use a predicate queryP3
(·, ·, ·) to store the answers

to the query. But in this case, we also include a predicate compatibleP3
(·), which stores the

individuals with phone numbers. This predicate is used in the definition of the third rule
utilized to represent P3, which takes care of the individuals without phone numbers:

queryP 1
3
(?X , ?Y),¬compatibleP3

(?X) → query{3}
P3

(?X , ?Y). (12)

The predicate query{3}
P3

(·, ·) is used to store the answer, which has a supra-index {3} to in-

dicate that the third argument in the answer to P3 is missing (which is the phone number).
—As a final example, consider the graph pattern

P4 = ((?X , name, ?Y) OPT (?X , phone, ?Z))︸���︷︷���︸
P 1

4

AND (?Z , phone_company, ?W)︸�����������������������������︷︷�����������������������������︸
P 2

4

,

where phone_company is a constant used to indicate that a phone number is associated
with a phone company. In this case, we first consider a set of Datalog¬s rules that define the

answer to the sub-pattern P1
4 , which is stored in predicates queryP 1

4
(·, ·, ·) and query{3}

P 1
4

(·, ·),
and to the sub-pattern P2

4 , which is stored in predicate queryP 2
4
(·, ·). We have already seen

what these rules look like, and thus we skip their definition. Having the above predicates
in place, we now use two rules to define the answer to P4. The first rule considers the case
of the individuals with phone numbers:

queryP 1
4
(?X , ?Y , ?Z), queryP 2

4
(?Z , ?W) → queryP4

(?X , ?Y , ?Z , ?W).

ACM Transactions on Database Systems, Vol. 43, No. 3, Article 13. Publication date: November 2018.

13:20 M. Arenas et al.

Moreover, the second rule used to define the answers to P4 considers the case of the indi-
viduals without phone numbers, where a join is not needed:

query{3}
P 1

4

(?X , ?Y), queryP 2
4
(?Z , ?W) → queryP4

(?X , ?Y , ?Z , ?W). (13)

Although query P4 is a valid SPARQL query, it can be difficult to interpret because if a person
has no phone number, then she gets all the phone companies associated to her. The rules
used to translate P4 make this phenomenon very clear: the two predicates in the body of
rule (13) do not have any variables in common, so every pair of values assigned to variables
?X , ?Y is combined with every pair of values assigned to variables ?Z , ?W .

This completes our example.

The approach shown in Example 5.1 can be generalized to represent any graph pattern P .
Our goal is to construct a Datalog¬s query Pdat = (Π, answerP), where Π is the union of three
subprograms:

(1) τbgp (P) encodes the basic graph patterns occurring in P .
(2) τopr (P) represents the non-basic graph patterns occurring in P ; in fact, these rules are used

to encode the semantics of the SPARQL operators appearing in P .
(3) τout (P) computes the output predicate answerP .

Example 5.1 gives a good idea of how the programs τbgp (P) and τopr (P) are defined (their pre-
cise definitions can be found in Appendix A). For the definition of τout (P), there is one issue that
needs to be resolved. Assume that P3 is the graph pattern in Example 5.1. In this case, we expect

queryP3
(·, ·, ·) to be the output predicate. However, the predicate query{3}

P3
(·, ·) is also used to collect

some answers; more specifically, query{3}
P3

(?X , ?Y) is used to collect the answers to the query where

?Z is not assigned a value. To deal with this issue, the following rules are included in τopr (P3):

queryP3
(?X , ?Y , ?Z) → answerP3 (?X , ?Y , ?Z),

query{3}
P3

(?X , ?Y) → answerP3 (?X , ?Y ,�),

where � is a special constant used to represent the fact that some positions in a tuple have not
been assigned values. Thus, answerP3 (·, ·, ·) is the only output predicate in this example (the precise
definition of τout (P) can be found in Appendix A).

Having the above three programs in place, we are now ready to define the Datalog¬s query that
represents the graph pattern P . In particular, we define

Pdat = (τbgp (P) ∪ τopr (P) ∪ τout (P), answerP).

Notice that Pdat is a non-recursive Datalog¬s query of exponential size. Is it possible to represent
a graph pattern P as a non-recursive Datalog¬s query of polynomial size? This is an interesting
question that goes beyond the scope of this work.

In order to state the correctness of our translation, we need to define one last notion. Let P be a
graph pattern, G an RDF graph, and t = (t1, . . . , tn) a tuple constants that belongs to Pdat (τdb (G)).
By construction, in the set of rules τout (P) there is an atom answerP (?X1, . . . , ?Xn) that contains
only variables (and not the constant �). We define a mapping μt,P corresponding to t given P by
taking dom(μt,P) = {?Xi | i ∈ [1,n] and ti � �} and, for every i ∈ [1,n], ti � � implies μt,P (?Xi) =
ti . We then define the set of mappings corresponding to the answers of Pdat given τdb (G):

�Pdat,τdb (G)� = {μt,P | t ∈ Pdat (τdb (G))}.
With this notation in place, we are ready to state that our translation is correct, which can be easily
shown by induction on the structure of P .

ACM Transactions on Database Systems, Vol. 43, No. 3, Article 13. Publication date: November 2018.

Expressive Languages for Querying the Semantic Web 13:21

Theorem 5.2. For every graph pattern P and RDF graphG, it holds that �P�G = �(Pdat,τdb (G))�.

5.2 SPARQL Entailment Regime and TriQ 1.0

As pointed out in Section 1, several functionalities were added to SPARQL 1.1 [25] to overcome
some of the limitations of the first version of this language. In particular, SPARQL 1.1 includes an
entailment regime to deal with RDFS and OWL vocabularies [22, 28]. In this section, we show how
this functionality can be encoded by using TriQ 1.0 if we focus on a specific ontology language.

Storing Ontologies in RDF. We start by defining a fragment of OWL 2 QL that includes the main
features of the description logic DL-LiteR [16], on which the profile OWL 2 QL is based. The
vocabulary Σ of an OWL 2 QL core ontology is a finite set of unary and binary predicates, called
classes and properties, respectively. A basic property over Σ is either p or p−, where p is a property
in Σ, while a basic class over Σ is either a or ∃r , where a is a class in Σ and r is a basic property over
Σ. To represent an OWL 2 QL core ontology over a vocabulary Σ, we first include the following
triples to indicate what the classes and properties in Σ are:

—For every class a in Σ, we include the triple

(a, rdf:type, owl:Class).

Notice that this triple uses the URIs rdf:type and owl:Class, and indicates that a, which is
also a URI, is of type class.

—For every property p in Σ, we include the following triples, where p, p−, ∃p, and ∃p− are
considered as URIs (constants), and they are assumed to be pairwise distinct:

(p, rdf:type, owl:ObjectProperty) (p−, rdf:type, owl:ObjectProperty)

indicating that p and p− are properties,

(p, owl:inverseOf ,p−) (p−, owl:inverseOf,p)

indicating that p− is the inverse of p and vice versa,

(∃p, rdf:type, owl:Restriction) (∃p−, rdf:type, owl:Restriction),

(∃p, owl:onProperty,p) (∃p−, owl:onProperty,p−),

(∃p, owl:someValueFrom, owl:Thing) (∃p−, owl:someValueFrom, owl:Thing)

indicating that ∃p and ∃p− are restrictions of p and p−, respectively, and finally

(∃p, rdf:type, owl:Class) (∃p−, rdf:type, owl:Class)

indicating that ∃p and ∃p− are classes.

We now indicate how OWL 2 QL core ontologies are stored as RDF graphs, following the stan-
dard syntax to represent OWL 2 ontologies as RDF triples [33]. By using the functional-style syntax
of OWL [32], we can have the following axioms in an OWL 2 QL core ontology:

—SubClassOf(b1,b2): a basic class b1 is a sub-class of a basic class b2.
—SubObjectProperty(r1, r2): r1 is a subproperty of r2, where r1, r2 are basic properties.
—DisjointClasses(b1,b2): basic classes b1 and b2 are disjoint.
—DisjointObjectProperties(r1, r2): basic properties r1 and r2 are disjoint.
—ClassAssertion(b,a): a constant a belongs to a basic class b.
—ObjectPropertyAssertion(p,a1,a2): a constant a1 is related to a constant a2 via a property p.

ACM Transactions on Database Systems, Vol. 43, No. 3, Article 13. Publication date: November 2018.

13:22 M. Arenas et al.

Table 1. Representation of OWL 2 QL Core Axioms as RDF Triples

OWL 2 QL core Axiom RDF Triple

SubClassOf(b1,b2) (b1, rdfs:subClassOf,b2)
SubObjectPropertyOf(r1, r2) (r1, rdfs:subPropertyOf, r2)
DisjointClasses(b1,b2) (b1, owl:disjointWith,b2)
DisjointObjectProperties(r1, r2) (r1, owl:propertyDisjointWith, r2)
ClassAssertion(b,a) (a, rdf:type,b)
ObjectPropertyAssertion(p,a1,a2) (a1,p,a2)

Moreover, by following the mapping defined in [33], we have that the above axioms are stored
as RDF triples as shown in Table 1. We say that an RDF graph G represents an OWL 2 QL core
ontology if there is an OWL 2 QL core ontology O such that its representation as RDF generatesG.

OWL 2 QL Core Direct Semantics Entailment Regime. We proceed to show how a graph pattern
is evaluated under the OWL 2 QL core direct semantics entailment regime, which is based on the
definition of a direct semantics entailment regime for SPARQL 1.1 given in [22]. To compute the
answer to a graph pattern, this regime is first applied at the level of basic graph patterns, and then
the results of this step are combined using the standard semantics for the SPARQL operators [28].
Thus, we only need to define the OWL 2 QL core direct semantics entailment regime for basic
graph patterns. Consider a basic graph pattern P . Under the OWL 2 QL core direct semantics
entailment regime, the evaluation of P over an RDF graph G adopts an active domain semantics,
that is, it uses the notion of entailment in OWL 2 QL core (which corresponds to the notion of
entailment in DL-LiteR) but allowing the variables and blank nodes in P to take only values from
G. For example, assume that we are given an RDF graph G consisting of

(dog, rdf:type, animal) (animal, rdfs:subClassOf,∃eats), (14)

which indicate that dog is an animal, and every animal eats something. Moreover, assume that we
want to retrieve the list of elements of G that eat something. The natural way to formulate this
query is by using a graph pattern of the form (?X , eats, _:B), where _:B is a blank node. However,
the answer to this query is empty under the OWL 2 direct semantics entailment regime, as there
are no elements a,b inG that can be assigned to ?X and _:B in such a way that the triple (a, eats,b)
is implied by the axioms in G. In other words, the answer to (?X , eats, _:B) is empty under the
active domain semantics adopted in SPARQL 1.1. To obtain a correct answer in this case, we can
consider the graph pattern (?X , rdf:type,∃eats), as the triples in G can be used to infer the triple
(dog, rdf:type,∃eats), from which the correct answer dog is obtained.

LetG be an RDF graph representing an OWL 2 QL core ontology. Given t ∈ U × U × U, we write
G |= t to indicate that t is implied by G as defined in [22, 31], which in turn is based on the notion
of entailment for DL-LiteR [16]. Moreover, given a basic graph pattern P , the evaluation of P over
G under the OWL 2 QL core direct semantics entailment regime, denoted by �P�U

G
, is defined as

{μ | dom(μ) = var(P) and there exists h : B→ U such that for every t ∈ μ (h(P)): G |= t}. (15)

Notice that U in �P�U
G

indicates that every variable and blank node in P has to be assigned a
constant, as U is the range of functionsh and μ in the previous definition. Moreover, the evaluation
of a graph pattern P over an RDF graph G under the OWL 2 QL core direct semantics entailment
regime, denoted by �P�U

G
, is recursively defined as the usual semantics for graph patterns (which

is given in Section 3) but replacing the rule for evaluating basic graph patterns by rule (15).

ACM Transactions on Database Systems, Vol. 43, No. 3, Article 13. Publication date: November 2018.

Expressive Languages for Querying the Semantic Web 13:23

In what follows, we define a fixed Datalog∃,¬s,⊥ program τowl2ql_core that is used to encode the

semantics �·�U
G

. In this program, we first include a Datalog rule to store in a unary predicate C all
the URIs from the graph (recall that we assume that an RDF graph does not contain blank nodes):

triple(?X , ?Y , ?Z) → C(?X),C(?Y),C(?Z). (16)

Then we define some Datalog rules that store the different elements in the ontology:

triple(?X , rdf:type, ?Y) → type(?X , ?Y),

triple(?X , rdfs:subPropertyOf, ?Y) → sp(?X , ?Y),

triple(?X , owl:inverseOf , ?Y) → inv(?X , ?Y),

triple(?X , rdf:type, owl:Restriction),

triple(?X , owl:onProperty, ?Y),

triple(?X , owl:someValueFrom, owl:Thing) → restriction(?X , ?Y),

triple(?X , rdfs:subClassOf, ?Y) → sc(?X , ?Y),

triple(?X , owl:disjointWith, ?Y) → disj(?X , ?Y),

triple(?X , owl:propertyDisjointWith, ?Y) → disj_property(?X , ?Y),

triple(?X , ?Y , ?Z) → triple1 (?X , ?Y , ?Z).

If we have the triples (a, rdf:type,b) and (b, rdfs:subClassOf,∃r) in an OWL 2 QL core ontology,

then the Datalog∃,¬s,⊥ program τowl2ql_core will create a triple of the form (a, r , z), where z is a
null value. If (a, r , z) is stored in the relation triple, then by using rule (16) we will conclude that
C(z) holds, violating the intended interpretation of predicate C. To solve this problem, we in-
clude the Datalog rule triple(?X , ?Y , ?Z) → triple1 (?X , ?Y , ?Z) to produce a copy of the predicate
triple(·, ·, ·) in the predicate triple1 (·, ·, ·). In this way, the new values are added to triple1 (·, ·, ·),
that is, we do not modify the predicate triple(·, ·, ·) but instead both triple1 (a, rdf:type,b) and
triple1 (b, rdfs:subClassOf,∃r) hold, from which we conclude that triple1 (a, r , z) also holds. More-
over, we include

sp(?X1, ?X2), inv(?Y1, ?X1), inv(?Y2, ?X2) → sp(?Y1, ?Y2),

type(?X , owl:ObjectProperty) → sp(?X , ?X),

sp(?X , ?Y), sp(?Y , ?Z) → sp(?X , ?Z)

to reason about properties. The first rule states that if p is a sub-property of q, then p− is a sub-
property of q−. The other rules state that sub-property is reflexive and transitive. We also include

sp(?X1, ?X2), restriction(?Y1, ?X1), restriction(?Y2, ?X2) → sc(?Y1, ?Y2),

type(?X , owl:Class) → sc(?X , ?X),

sc(?X , ?Y), sc(?Y , ?Z) → sc(?X , ?Z).

The first rule states that ifp is a sub-property of q, then ∃p is a sub-class of ∃q. The other rules state
that sub-class is reflexive and transitive. We include the following to reason about disjointness:

disj(?X1, ?X2), sc(?Y1, ?X1), sc(?Y2, ?X2) → disj(?Y1, ?Y2),

disj_property(?X1, ?X2), sp(?Y1, ?X1), sp(?Y2, ?X2) → disj_property(?Y1, ?Y2).

ACM Transactions on Database Systems, Vol. 43, No. 3, Article 13. Publication date: November 2018.

13:24 M. Arenas et al.

Finally, we include the following rules to reason about membership assertions:

triple1 (?X , ?U , ?Y), sp(?U , ?V) → triple1 (?X , ?V , ?Y),

triple1 (?X , ?U , ?Y), inv(?U , ?V) → triple1 (?Y , ?V , ?X),

type(?X , ?Y), restriction(?Y , ?U) → ∃?Z triple1 (?X , ?U , ?Z),

type(?X , ?Y) → triple1 (?X , rdf:type, ?Y),

type(?X , ?Y), sc(?Y , ?Z) → type(?X , ?Z),

triple1 (?X , ?U , ?Y), restriction(?Z , ?U) → type(?X , ?Z),

type(?X , ?Y), type(?X , ?Z), disj(?Y , ?Z) → ⊥,
triple1 (?X , ?U , ?Y), triple1 (?X , ?V , ?Y),

disj_property(?U , ?V) → ⊥.

Given a graph pattern P and an RDF graphG, to compute �P�U
G

we need to include τowl2ql_core in the
Datalog¬s query Pdat defined in Section 5.1. More precisely, we need to add to the program of Pdat

the program τowl2ql_core, but taking into consideration the active domain semantics in the entail-
ment regime just defined. For example, assume that P is the basic graph pattern (?X , eats, _:B) and
G is the RDF graph in (14) storing information about animals. Then τbgp (P) is the following rule:

triple(?X , eats, ?Y) → queryP (?X). (17)

In order to combine this rule with τowl2ql_core, we first need to consider the fact that all the triples
inferred by using the axioms inG are stored in the predicate triple1 (·, ·, ·). Thus, we need to replace
triple(·, ·, ·) by triple1 (·, ·, ·) in (17). We also need to enforce the constraint that every variable and
blank node in P can only take a value from G, which is done by including the predicate C:

triple1 (?X , eats, ?Y),C(?X),C(?Y) → queryP (?X). (18)

Thus, given a graph pattern P , let τU
bgp

(P) be the set of rules obtained from τbgp (P) by first

replacing triple by triple1 in every rule of τbgp (P), and then adding C(?X) in the body of every
resulting rule ρ if ?X occurs in ρ. Finally, we define

PU
dat = (τowl2ql_core ∪ τU

bgp (P) ∪ τopr (P) ∪ τout (P), answerP).

Then it is possible to prove that

Theorem 5.3. For every graph pattern P and RDF graph G that represents an OWL 2 QL core

ontology, �P�U
G
= �(PU

dat
,τdb (G))�.

Interestingly, after a careful analysis of the syntax of the query PU
dat

, we observe that

Corollary 5.4. For every graph pattern P , PU
dat

is a TriQ 1.0 query.

Before we proceed further, we would like to stress the fact that the program τowl2ql_core, which

is responsible for encoding the semantics �·�U
G

for basic graph patterns, is fixed and does not de-
pend on the given graph pattern P . This implies that, for a new graph pattern P ′, we only need to
compute the programs τU

bgp
(P ′), τopr (P ′), and τout (P

′) without altering τowl2ql_core. This is quite ben-

eficial since, whenever the user wants to pose a new query, (s)he can use τowl2ql_core as a black box.

ACM Transactions on Database Systems, Vol. 43, No. 3, Article 13. Publication date: November 2018.

Expressive Languages for Querying the Semantic Web 13:25

5.3 Removing the Active Domain Restriction

Consider the basic graph pattern

Q = {(?X , eats, _:B), (_:B, rdf:type, plant_material)},
which asks for the lists of animals that eat some plant material, and assume thatG is an RDF graph.
Under the active domain semantics, a is an answer to Q over G if we can replace the blank node
_:B by a specific plant material b such that G implies (?X , eats,b). But what happens if such a
concrete witness cannot be found in G, and we can only infer that a is an answer to Q by using
the axioms in the ontology? For example, this could happen if G stores information only about
herbivores, so it includes the axiom (∃eats−, rdfs:subClassOf, plant_material). In this case, Q has
to be replaced by a basic graph pattern of the form

{(?X , rdf:type,∃eats), (∃eats−, rdfs:subClassOf, plant_material)}
in order to obtain the correct answers. And even worse, what happens if the query has to be
distributed over several RDF graphs, which is a very common scenario in the Web. Then the user
is forced to use a graph pattern of the form

{(?X , eats, _:B), (_:B, rdf:type, plant_material)} UNION

{(?X , rdf:type,∃eats), (∃eats−, rdfs:subClassOf, plant_material)},
in which some inferences have to be encoded. All these issues can be solved if we do not force _:B
to take values only in G, as this allows us to use the initial basic graph pattern Q . This gives rise
to the semantics �P�All

G that is defined exactly as �P�U
G

, but considering every basic graph pattern
as a conjunctive query, and treating blank nodes as existential variables that are not forced to take
only values in G (they can take values in the interpretations of G).

At this point, one may be tempted to think that the semantics �·�All can be directly defined
by transforming every basic graph pattern into a conjunctive query, which has to be evaluated
over a DL ontology. In fact, this approach works well with our initial query Q , which can be
transformed into the conjunctive query ∃Y (eats(X ,Y) ∧ plant_material(Y)). However, there are
simple queries for which this approach does not work. For instance, consider the basic graph
pattern (?X , rdfs:subClassOf,∃eats). Given that ?X is used to store class names, this pattern cannot
be transformed into a conjunctive query in order to define its semantics; instead, we need to replace
?X by every class name C , and then verify whether the inclusion C � ∃eats is implied by the
DL ontology in order to define its semantics. Thus, the goal of this section is to show that the

more natural semantics �·�All can be easily defined by using Datalog∃,¬s,⊥, without the need to
differentiate between variables that are used to store individuals, classes, or properties.

Given a basic graph pattern P , let τAll
bgp

(P) be the rule obtained from τU
bgp

(P) by removing every

atom of the form C(?X) such that ?X � var(P) (that is, every atom C(?X) such that ?X is a variable
associated to a blank node occurring in P). For example, assume that P is the basic graph pattern
(?X , eats, _:B). Then τU

bgp
(P) is the rule (18), and thus τAll

bgp
(P) is the rule

triple1 (?X , eats, ?Y),C(?X) → queryP (?X).

Moreover, given a graph pattern P , define τAll
bgp

(P) as the Datalog program consisting of the rules

τAll
bgp

(Pi) for every basic graph pattern Pi occurring in P . Finally, we define

PAll
dat = (τowl2ql_core ∪ τAll

bgp (P) ∪ τopr (P) ∪ τout (P), answerP).

With this simple modification of PU
dat

, we can formally define the semantics �·�All.

ACM Transactions on Database Systems, Vol. 43, No. 3, Article 13. Publication date: November 2018.

13:26 M. Arenas et al.

Definition 5.5. Given a graph pattern P and an RDF graph G, define �P�All
G as �(PAll

dat
,τdb (G))�.

We conclude by pointing out that PAll
dat

is a TriQ 1.0 query, for every graph pattern P . Thus, this
query language is expressive enough to represent the OWL 2 core direct semantics entailment
regime, even if the active domain restriction is not imposed.

6 A TRACTABLE QUERY LANGUAGE

TriQ 1.0 forms a natural language that embeds the fundamental features for querying RDF, as
shown in Section 5. Unfortunately, Theorem 4.4 shows that this language is highly intractable in
data complexity. The goal of this section is to identify a core sub-language of TriQ 1.0, dubbed
TriQ-Lite 1.0, that is powerful enough for expressing every SPARQL query under the entailment
regime for OWL 2 QL core, and ensures the tractability of query evaluation in data complexity.

6.1 The Query Language TriQ-Lite 1.0

After a careful analysis of the program ex(Π), where Π is the query program of PU
dat

(or even PAll
dat

)
for an arbitrary graph pattern P , we observe that it enjoys an interesting property regarding the
ex(Π)+-dangerous variables: for each rule ρ ∈ ex(Π), its dangerous variables are isolated in a single
atom of body+ (ρ), and they can interact with the rest of the rule-body only via ex(Π)+-harmless
variables. Another key observation is that the involved negation, apart from being stratified, is also
grounded, i.e., it is used in front of predicates that can store only constants, but not nulls. Inspired
by the above observations, we introduce a syntactic condition, called wardedness, that allows us
to define TriQ-Lite 1.0, the sub-language of TriQ 1.0 that we are looking for.

A Datalog∃ program Π is warded if, for each rule ρ ∈ Π, either dangerous(ρ,Π) = ∅, or there
exists an atom a ∈ body(ρ), called a ward and denoted by ward(ρ), such that

(1) dangerous(ρ,Π) ⊆ var(a), and
(2) (var(a) ∩ var(body(ρ) \ {a})) ⊆ harmless(ρ,Π).

Notice that the key difference between weakly-frontier-guarded Datalog∃ and warded Datalog∃

is the additional condition (2) in the definition of wardedness, which simply states that the guard
can only share Π-harmless variables with the rest of the body. The body of a rule occurring in a

warded Datalog∃ program Π can be graphically illustrated (via its hypergraph) as:

where the shaded part consists of Π-harmless variables, while the dashed area represents an arbi-

trary hypergraph. We can now define warded Datalog∃,¬s,⊥ in the natural way. More precisely, a

Datalog∃,¬s,⊥ program Π is warded if the program ex(Π)+ is warded, i.e., if the Datalog∃ program
obtained from Π after eliminating the negative atoms and the constraints is warded.

Before introducing TriQ-Lite 1.0, which is based on warded Datalog∃,¬s,⊥, we need the addi-

tional notion of grounded negation. A program Π is called Datalog∃,¬sg,⊥ program (“sg” stands for

ACM Transactions on Database Systems, Vol. 43, No. 3, Article 13. Publication date: November 2018.

Expressive Languages for Querying the Semantic Web 13:27

stratified and grounded) if, for each rule ρ ∈ Π, atom p (t1, . . . , tn) ∈ body− (ρ), and i ∈ [1,n], either
ti ∈ U or ti ∈ harmless(ρ, ex(Π)+). We are now ready to introduce TriQ-Lite 1.0.

Definition 6.1. A TriQ-Lite 1.0 query is a Datalog∃,¬sg,⊥ query that is warded.

TriQ-Lite 1.0 is powerful enough to express every SPARQL query under the entailment regime
for OWL 2 QL core. In particular, it can be easily verified that, for every graph pattern P , both PU

dat

and PAll
dat

are TriQ-Lite 1.0 queries. This fact, together with Theorem 5.3, implies that:

Corollary 6.2. Every graph pattern under the OWL 2 QL core direct semantics entailment regime

(with or without the active domain restriction) can be expressed as a TriQ-Lite 1.0 query.

At this point, one may be tempted to think that TriQ-Lite 1.0, and, in particular, the notion of
wardedness, is ad-hoc and not well-justified. More precisely, in view of the fact that tractable sub-

languages of weakly-frontier-guarded Datalog∃ already exist (details are given below), the next
critical question comes up:

(1) Can we use a known tractable sub-language of weakly-frontier-guarded Datalog∃ to de-

fine TriQ-Lite 1.0? In other words, do we really need warded Datalog∃?

Furthermore, even if wardedness is essential for capturing SPARQL queries under the OWL 2 QL
core direct semantics entailment regime, the next question comes up:

(2) Is warded Datalog∃ the best we can achieve? In other words, is there an obvious way to
relax the wardedness condition without losing tractability?

The rest of this section is devoted to giving answers to the above questions. We show, via a
model-theoretic argument, that a language based on one of the most expressive tractable sub-

languages of weakly-frontier-guarded Datalog∃ would not be powerful enough for our purposes,

and thus, warded Datalog∃ is essential (Section 6.2). We then proceed to establish that evaluation
of TriQ-Lite 1.0 queries is tractable in data complexity (Section 6.3). Finally, we show that the

mildest relaxation of warded Datalog∃ that one can think of, that is, at most one occurrence of
exactly one harmful variable that occurs in the ward can appear also outside the ward, leads to an
intractable language; more precisely, to an ExpTime-hard language (Section 6.4). This is a strong

indication that there is no obvious way to extend warded Datalog∃ without losing tractability in
data complexity.

6.2 Model-Theoretic Justification of Wardedness

A well-known tractable sub-language of weakly-frontier-guarded Datalog∃ is frontier-guarded

Datalog∃ [6], where the guard must contain all the body variables that appear in the rule-head (and
not only the dangerous body variables). A crucial limitation of this language is the fact that it is not
able to compute the transitive closure of a binary relation. This has recently motivated the defini-
tion of a refined language, called nearly frontier-guarded Datalog∃, which allows for non-frontier-

guarded rules as long as their body variables are harmless [24]. Formally, a Datalog∃ program Π is
nearly frontier-guarded if, for each ρ ∈ Π, ρ is frontier-guarded or var(body(ρ)) = harmless(ρ,Π).
Although nearly frontier-guarded Datalog∃ is not widely known, it is considerably more expres-

sive than frontier-guarded Datalog∃, while it remains tractable. Actually, it is currently the most

expressive tractable sub-language of weakly-frontier-guarded Datalog∃.
We proceed to show that a query language based on nearly frontier-guarded Datalog∃ is not

a good candidate for our purposes. But let us first clarify what we mean by saying a Datalog∃

language is a “good candidate.” In the sequel, we call an OWL 2 QL core ontology positive if it does
not contain axioms of the form DisjointClasses(b1,b2) and DisjointObjectProperties(r1, r2).

ACM Transactions on Database Systems, Vol. 43, No. 3, Article 13. Publication date: November 2018.

13:28 M. Arenas et al.

Definition 6.3. A Datalog∃ language L is a good candidate if there exists an L program Π such
that, for every basic graph pattern P , and every RDF graphG that represents a positive OWL 2 QL
core ontology, �P�All

G = �(QΠ,τdb (G))�, where QΠ = (Π ∪ τAll
bgp

(P) ∪ τout (P), answerP).9

It is important to clarify that in the above definition we ask for a program Π in L that does the
job for every P and every G since, as discussed in Section 5, it is vital to keep the program that

encodes the semantics �·�All
G fixed. We would also like to stress that a Datalog∃ language L is a

good candidate even if the query QΠ does not fall in L. The adoption of such a liberal definition
allows us to keep independent the notion of the good candidate from the specific encodings of
the programs τAll

bgp
(P) and τout (P). In other words, it would be conceptually misleading to classify

a Datalog∃ language as a “bad candidate” only because the program (Π ∪ τAll
bgp

(P) ∪ τout (P)) does

not syntactically fall in L, as there might be different encodings of τAll
bgp

(P) and τout (P) such that

(Π ∪ τAll
bgp

(P) ∪ τout (P)) is an L program. To sum up, Definition 6.3 states that a Datalog∃ language

L is a good candidate if we are able to encode the semantics �·�All
G via a fixed L program. Then:

Proposition 6.4. Nearly frontier-guarded Datalog∃ is not a good candidate.

With the aim of showing that nearly frontier-guarded Datalog∃ is not a good candidate, we
isolate a model-theoretic property, called unbounded ground-connection property, that is essential

for a Datalog∃ language in order to be a good candidate. Roughly, a language L has this property
if it allows us to connect, via a fixed program, an invented null value with an unbounded number
of constants occurring in the underlying database. Given an instance I , the ground connection of a
null z ∈ (dom(I) ∩ B), denoted gc(z, I), is defined as the set of constants

{c ∈ U | there exists a ∈ I such that {c, z} ⊆ dom(a)},

i.e., all the constants that jointly appear with z in an atom of I . For a Datalog∃ program Π, and a
family of databases (Dn)n>0, we define the function

mgc(n) = max
z∈(dom(Π(Dn))∩B)

{|gc(z,Π(Dn)) |};

if (dom(Π(Dn)) ∩ B) = ∅, then mgc(n) = 0. We say that a Datalog∃ language L has the unbounded

ground-connection property (UGCP) if there exists a program Π in L, and a family of databases

(Dn)n>0, such that mgc(n) � O (1). The next lemma shows that the UGCP is essential for a Datalog∃

language in order to be a good candidate.

Lemma 6.5. If a Datalog∃ language L is a good candidate, then L has the UGCP.

Proof. Let On , where n > 0, be the positive OWL 2 QL core ontology consisting of

ClassAssertion(a0, c), SubClassOf(a0,∃p), SubClassOf(∃p−,a1),

SubClassOf(a1,a2), . . . , SubClassOf(an−1,an),

and let Gn be the RDF graph obtained after translating On into RDF. Let also Pn , where n > 0, be
the basic graph pattern

{(_:B, rdf:type,a1), . . . , (_:B, rdf:type,an)},

9Notice that if we go beyond basic graph patterns and positive ontologies, then a Datalog∃ language is trivially not a good

candidate since the features ¬sg and ⊥ are not available. Moreover, τopr (P) is empty, and this is the reason why it is not

included in the definition of QΠ .

ACM Transactions on Database Systems, Vol. 43, No. 3, Article 13. Publication date: November 2018.

Expressive Languages for Querying the Semantic Web 13:29

where _:B is a blank node, which simply asks whether there exists an object that belongs to the
classes a1, . . . ,an . Since, by hypothesis, L is a good candidate, there exists an L program Π such
that �Pn�All

Gn
= �(QΠ,τdb (Gn))�, where n > 0 and QΠ = (Π ∪ τAll

bgp
(Pn) ∪ τout (Pn), answerPn

). The

latter implies that Π(τdb (Gn)) contains the atoms

triple(z, rdf:type,a1), . . . , triple(z, rdf:type,an),

where z ∈ (dom(Π(τdb (Gn))) ∩ B). Observe that |gc(z,Π(τdb (Gn))) | = n, which implies that, for
the program Π, and the family of databases (τdb (Gn))n>0, mgc(n) � O (1). Thus, L has the
UGCP. �

Having Lemma 6.5 in place, to establish Proposition 6.4 it remains to show that:

Lemma 6.6. Nearly frontier-guarded Datalog∃ does not have the UGCP.

Proof. Let Π be a nearly frontier-guarded Datalog∃ program, and (Dn)n>0 a family of databases.
Assume that Π(Dn) =

⋃
i≥0 Ii , where Ii

〈
ρi ,hi

〉
Ii+1 is a chase sequence of Dn and Π; notice that,

since Π is a Datalog∃ program, Π(Dn) = chase(Dn ,Π). By construction, for each null z in Π(Dn),
there exists kz > 0 such that z � dom(Ikz

) and z ∈ dom(Ikz+1). Let Ikz+1 \ Ikz
= {p (t1, . . . , tm)},

i.e., p (t1, . . . , tm) is the atom in which z was invented. We claim that |gc(z,Π(Dn)) | ≤ m +CΠ ,
where CΠ is the number of constants in Π. Toward a contradiction, assume that |gc(z,Π(Dn)) | >
m +CΠ . This implies that there exists i > kz , and a constant c ∈ dom(Dn) that does not occur in
p (t1, . . . , tm) or in Π, such that {c, z} ⊆ dom(a), where Ii+1 \ Ii = {a}. In simple words, during the
chase step Ii

〈
ρi ,hi

〉
Ii+1 the rule ρi puts together in a the constant c and the null z. It is easy to ver-

ify that this can only be done via a non-frontier-guarded rule of Π since, after the application of a
frontier-guarded rule ρ, z can jointly appear in the generated atom with constants in p (t1, . . . , tm)
and head(ρ). Therefore, ρi is a non-frontier-guarded rule. But this implies that hi (body(ρi)) con-
tains only constants since the body variables of ρ are Π-harmless, and thus, z � dom(a). This con-
tradicts the fact that {c, z} ⊆ dom(a), and thus, |gc(z,Π(Dn)) | ≤ m +CΠ . Hence, mgc(n) ∈ O (1),

which in turn implies that nearly frontier-guarded Datalog∃ does not have the UGCP. �

6.3 The Complexity of TriQ-Lite 1.0

Interestingly, TriQ-Lite 1.0 queries can be evaluated in polynomial time in the size of the database.

Theorem 6.7. Eval for TriQ-Lite 1.0 is PTime-complete in data complexity.

It is easy to verify that every Datalog program is a warded Datalog∃,¬sg,⊥ program. More pre-
cisely, given a Datalog program Π, since affected(Π) = ∅, we conclude that for every rule ρ ∈ Π,
dangerous(ρ,Π) = ∅, which in turn implies that Π is trivially warded. Therefore, every Datalog
query is a TriQ-Lite 1.0 query. This allows us to deduce the lower bound in Theorem 6.7, as the
query evaluation problem for Datalog is PTime-hard in data complexity (see, e.g., [19]). The rest
of this subsection is devoted to establishing the membership of our problem in PTime.

Consider a database D and a (fixed) TriQ-Lite 1.0 query Q = (Π,p). As discussed in the proof of

Theorem 4.4, for an arbitrary tuple t ∈ Uarity(p) ,

Q (D) � � implies t ∈ Q (D) iff (�, . . . ,�) � Q ′(D) implies t ∈ Q ′(D),

where Q ′ = (ex(Π) ∪ Π⊥,p), and Π⊥ is defined as the Datalog program

{a1, . . . ,an → p (�, . . . ,�) | a1, . . . ,an → ⊥ ∈ Π},

with� being a constant not in D or Π. By construction, Q ′ is a warded Datalog∃,¬sg query. There-
fore, to establish the desired upper bound, it suffices to show that:

ACM Transactions on Database Systems, Vol. 43, No. 3, Article 13. Publication date: November 2018.

13:30 M. Arenas et al.

Proposition 6.8. Eval for warded Datalog∃,¬sg is in PTime in data complexity.

Consider an instance of Eval for warded Datalog∃,¬sg , i.e., a database D, a warded Datalog∃,¬sg

query Q = (Π,p), and a tuple of constants t. Our goal is to show that the problem of deciding
whether t ∈ Q (D) is feasible in polynomial time inD. Notice that we focus on the problem whether
t ∈ Q (D), without checking if Q (D) � �, since Q (D) � � holds trivially due to the absence of
constraints. The algorithm for checking whether t ∈ Q (D) consists of the following two steps.

Step 1 - Eliminate Negation. We construct a databaseD+ ⊇ D and eliminate the negation from
the given query Q = (Π,p) to produce Q+ = (Π+,p) such that Q (D) = Q+ (D+). Since the negation
in Π is stratified and grounded, Π+ can be computed from Π in the standard way by replacing each
negative atom ¬s (t) with a positive atom s̄ (t), where the relation s̄ in D+ stores the complement
of s with respect to the ground semantics of Π over D, that is, the instance

Π(D)↓ = {a ∈ Π(D) | dom(a) ⊂ U},

which collects all the atoms of Π(D) with constants only. We proceed to formalize the above infor-
mal construction. Let σ : sch(Π) → [0, �] be a stratification of Π, and let Π0, . . . ,Π� be the partition
of Π induced byσ . We denote by (Πi)+, where i ∈ [1, �], the program obtained from Πi by replacing
each negative atom ¬s (t) with the positive atom s̄ (t). Let sch− (Πi) be the set of predicates occur-
ring in Πi in at least one negative atom. We inductively define D�

�
and Π�

�
as follows: D�

0 = D and

Π�
0 = Π0; and for i ∈ [1, �], let D�

i = (D�
i−1 ∪Ci−1), where

Ci−1 =

⎧⎪⎪⎨
⎪⎪
⎩
s̄ (t)

�������

s ∈ sch− (Πi),
t ∈ (dom(D))arity(p),
s (t) � Π�

i−1 (D�
i−1)↓

⎫⎪⎪⎬
⎪⎪
⎭
,

and Π�
i = Π�

i−1 ∪ (Πi)+. Let D+ = D�
�

and Π+ = Π�
�

.

Step 2 - Scan the Ground Semantics. We simply check whether the atom p (t) belongs to the
ground semantics of Π+ over D+. Formally, if p (t) ∈ Π+ (D+)↓, then accept; otherwise, reject.

It is not difficult to verify that the above algorithm is correct. In fact, by construction, Q (D) =
Q+ (D+), which in turn implies that t ∈ Q (D) iff the algorithm accepts. However, at this point, it is
not clear whether the above algorithm runs in polynomial time. This depends on the complexity
of computing the ground semantics of a program over a database. Observe that during the com-

putation of the algorithm, we are always interested in the ground semantics of a warded Datalog∃

program (without negation) over a database. Moreover, it is easy to verify that, if the ground se-

mantics of a warded Datalog∃ over a database D can be computed in polynomial time in D, then
the above algorithm runs in polynomial time in D. Consequently, to establish Proposition 6.8, it
suffices to show the following crucial technical lemma:

Lemma 6.9. Consider a database D, and a warded Datalog∃ program Π. The instance Π(D)↓ can

be constructed in polynomial time in D.

It is easy to see that the size of Π(D)↓ is polynomial in the size of D. More precisely, |Π(D)↓| ≤
|sch(Π) | · |dom(D) |arity(Π) , that is, the maximum number of ground atoms that can be formed using
predicates of sch(Π) and constants of dom(D). Hence, to establish our claim, it suffices to show

that the problem of deciding whether a ground atomp (t), wherep ∈ sch(Π) and t ∈ dom(D)arity(p) ,
belongs to Π(D) is feasible in polynomial time in D. The rest of this subsection is devoted to
establishing this rather involved result.

ACM Transactions on Database Systems, Vol. 43, No. 3, Article 13. Publication date: November 2018.

Expressive Languages for Querying the Semantic Web 13:31

Fig. 1. Proof and proof-tree from Example 6.10.

A crucial notion in our analysis is the so-called proof-tree of p (t) with respect to D and Π,
introduced in [15].10 Such a proof-tree (if it exists) can be conceived as a tree-like representation
of the proof of p (t) with respect to D and Π, that is, the part of Π(D) which entails p (t). Before we
proceed further, let us illustrate the notion of the proof-tree via a simple example.

Example 6.10. Consider the warded Datalog∃ program Π:

ρ1 = s (?X , ?Y , ?Z) → ∃?W s (?X , ?Z , ?W),

ρ2 = s (?X , ?Y , ?Z), s (?Y , ?Z , ?W) → q(?X , ?Y),

ρ3 = t (?X) → ∃?Z p (?X , ?Z),

ρ4 = p (?X , ?Y),q(?X , ?Z) → r (?X , ?Y , ?Z),

ρ5 = r (?X , ?Y , ?Z) → p (?X , ?Z),

the database D = {s (a,a,a), t (a)}, and the ground atom p (a,a). A proof and a proof-tree of p (a,a)
with respect to D and Π are given in Figure 1(a) and (b), respectively. Observe that a proof of
p (a,a) with respect to D and Π encodes which rules must be applied during the construction of
chase(D,Π) in order to entail p (a,a). A proof-tree is a tree-like representation of such a proof.

It is clear that p (t) ∈ Π(D) iff p (t) has a proof with respect to D and Π. Now, having a proof of
p (t) with respect to D and Π, we can construct a proof-tree of p (t) by, roughly speaking, reversing
the edges and unfolding the obtained graph into a tree by repeating some of the nodes. On the
other hand, having a proof-tree of p (t), we can construct a proof of p (t) by reversing the edges
and collapsing some of the nodes. Therefore, p (t) ∈ Π(D) iff p (t) has a proof-tree with respect to
D and Π. Thus, our problem is equivalent to the problem of deciding whether a proof-tree of p (t)
with respect to D and Π exists. We solve the latter problem via a recursive alternating algorithm
that constructs a proof-tree P of p (t) with respect to D and Π (if it exists) by building the branches
of P in parallel universal computations. We proceed to formalize the above informal discussion.

For technical clarity, in the rest of this section, we focus on rules with at most one occurrence
of an existentially quantified variable. This does not affect the generality of our proof since every

warded Datalog∃ program Π can be transformed into a warded Datalog∃ program Π′, where each
rule contains at most one occurrence of an existentially quantified variable, that preserves all the
ground atoms that can be inferred from Π. More precisely, given a rule ρ

a1, . . . ,an → ∃?Y1 . . . ∃?Yk c,

10Notice that in [15] the term resolution proof-scheme is adopted. However, for the sake of readability, we prefer to use

the more compact term proof-tree.

ACM Transactions on Database Systems, Vol. 43, No. 3, Article 13. Publication date: November 2018.

13:32 M. Arenas et al.

with X = var(body(ρ)) ∩ var(head(ρ)), we define N(ρ) as the set of rules

a1, . . . ,an → ∃?Y1 p
ρ
1 (X, ?Y1),

p
ρ
1 (X, ?Y1) → ∃?Y2 p

ρ
2 (X, ?Y1, ?Y2),

...

p
ρ

k−1
(X, ?Y1, . . . , ?Yk−1) → ∃?Yk p

ρ

k
(X, ?Y1, . . . , ?Yk),

p
ρ

k
(X, ?Y1, . . . , ?Yk) → c,

where p
ρ
1 , . . . ,p

ρ

k
are auxiliary predicates not occurring in Π. The program Π′ is defined as⋃

ρ ∈Π N(ρ). It is easy to verify that, if Π is warded, then also Π′ is warded. Moreover, Π(D)↓ =
Π′(D)↓, for every database D. Given a rule ρ, let π∃ (ρ) be the position at which the existentially
quantified variable occurs in ρ; π∃ (ρ) = ε if there is no existentially quantified variable in ρ.

Let us now recall the key notion of the proof-tree. To this end, we need to introduce some

auxiliary notation and terminology. Given a Datalog∃ rule ρ and an atom a = p (t1, . . . , tn), we say
that ρ is compatible with a, written ρ � a, if the following two conditions hold: (i) there exists a
homomorphism h such that h(head(ρ)) = a, and (ii) for each i ∈ [1, arity(p)], if ti ∈ U or ti occurs
more than once in a, then π∃ (ρ) � p[i]. Observe that the homomorphism that maps head(ρ) to a is
unique, and we refer to it by hρ,a . Given a set of termsT and a set of predicatesX , let base(T ,X) be

the set of atoms {p (t) | p ∈ X and t ∈ T arity(p) }, i.e., the atoms that can be formed using terms from
T and predicates from X . We are now ready to recall the definition of the proof-tree of a ground
atom with respect to a database and a program [15].

Definition 6.11. Consider a databaseD, a Datalog∃ program Π, and an atomp (t) withp ∈ sch(Π)
and t ∈ dom(D)arity(p) . Let P = (N ,E, λN , λE) be a labeled rooted tree, where N is the node set, E
is the edge set, λN : N → base(dom(D) ∪ B, sch(Π)), and λE : E → Π. P is a proof-tree of p (t) with
respect to D and Π if the following hold:

(1) If v is the root node of P , then λN (v) = p (t).
(2) For each v ∈ N with child nodes u1, . . . ,un , there exists ρ ∈ Π such that

(a) for each i ∈ [1,n], λE ((v,ui)) = ρ,
(b) ρ � λN (v), and
(c) there exists a bijective function f : body(ρ) → {u1, . . . ,un } such that, for each a ∈

body(ρ), λN (f (a)) = γ (a), where

γ = hρ,λN (v) ∪ {?V → t |?V ∈ var(body(ρ) \ head(ρ)) and t ∈ (dom(D) ∪ B)}.

(3) Let BP =
⋃

v ∈N {z ∈ B | z ∈ dom(λN (v))}. For a null z ∈ BP , we define the set of its critical

edges as follows:

critical(z) =
⎧⎪⎪⎨
⎪⎪
⎩
e = (v,u) ∈ E

�������

z ∈ (dom(λN (v)) ∩ B),
π∃ (λE (e)) � ε,
z appears in λN (v) at position π∃ (λE (e))

⎫⎪⎪⎬
⎪⎪
⎭
.

For each z ∈ BP , and pairs (v,u), (v ′,u ′) ∈ critical(z), it holds that λN (v) = λN (v ′).
(4) For each leaf node v ∈ N , λN (v) ∈ D.

Let us clarify that the above definition is slightly different than the one in [15]. However, the
two definitions are equivalent in the sense that an atom a has a proof-tree (adopting the definition
in [15]) with respect to a database D and a program Π iff a has a proof-tree (adopting Defini-
tion 6.11) with respect to D and Π. The next lemma is implicit in [15].

ACM Transactions on Database Systems, Vol. 43, No. 3, Article 13. Publication date: November 2018.

Expressive Languages for Querying the Semantic Web 13:33

Lemma 6.12. Consider a database D, a Datalog∃ program Π, and an atom p (t) with p ∈ sch(Π)
and t ∈ dom(D)ar ity (p) . Then p (t) ∈ Π(D) iff p (t) has a proof-tree with respect to D and Π.

The above lemma shows that our problem is equivalent to the problem of deciding whether p (t)
has a proof-tree with respect to D and Π. For technical clarity, we normalize even further the rules
occurring in a warded Datalog∃ program Π so that every rule is head-grounded, i.e., each term in
the head is either a constant or a harmless variable, or semi-body-grounded, i.e., there exists at most
one body atom that contains a harmful variable. Consider a rule ρ ∈ Π of the form

s0 (X,Y,Z), s1 (Z,W), . . . , sn (Z,W) → ∃U t (X,Y′,Z′,W′,U),

where n ≥ 1, X,Y,Z,W are pairwise disjoint, dangerous(ρ,Π) = X, Y′ ⊆ Y, Z′ ⊆ Z, and W′ ⊆ W.
Clearly, due to wardedness, Z and W′ are Π-harmless variables. Let N(ρ) be the set of rules

s1 (Z,W), . . . , sn (Z,W) → tρ (Z,W′), (19)

s0 (X,Y,Z), tρ (Z,W′) → ∃U t (X,Y′,Z′,W′,U), (20)

where tρ is an auxiliary predicate not occurring in sch(Π). Let Π′ = Π1 ∪
⋃

ρ ∈Π\Π1
N(ρ), where Π1

is the set of rules of Π with one body atom only. It is clear that each variable in the head of (19)
is Π′-harmless, while in the body of (20) only the atom s0 (X,Y,Z) contains Π′-harmful variables.
Moreover, Π(D)↓ = Π′(D)↓, for every database D. We are now ready to present our alternating
algorithm ProofTree. Let us first give a high-level description of it.

A High-Level Description of ProofTree

The algorithm ProofTree accepts as input a database D, a warded Datalog∃ program Π, and an
atom p (t), where t is a tuple of constants of dom(D). As explained above, Π can be normalized in
such a way that each rule is head-grounded or semi-body-grounded. Henceforth, we assume that
Π is in normal form, and we write Πh and Πb for the head-grounded and the semi-body-grounded
rules of Π, respectively. ProofTree starts from p (t) and applies resolution steps until the database
D is reached. It consists of the following steps:

—If p (t) ∈ D, then accept; otherwise, a rule ρ ∈ Πh such that ρ � p (t) is guessed. After re-
solving p (t) with ρ we get the set of atoms γ (body(ρ)), where γ extends hρ,p (t) by mapping
the variables in the body but not in the head of ρ to (dom(D) ∪ B).

—The set γ (body(ρ)) is partitioned into {S1, . . . , Sn } in such a way that, for each null z
occurring in γ (body(ρ)), there exists exactly one i ∈ [1,n] such that Si contains z, and there
is no partition of γ (body(ρ)) with n + 1 elements that satisfies the latter condition, i.e.,
each element of {S1, . . . , Sn } is ⊆-minimal. The intention underlying the above partitioning
step is to keep together, in a parallel universal computation of the alternating algorithm,
the nulls that appear in γ (body(ρ)), until the atom in which they are invented is known.
This is vital for ensuring the compatibility of the various branches that are built in parallel
computations.

—Universally select each set S ∈ {S1, . . . , Sn } and prove it. In fact, if S consists of a single
atom p ′(t′), where t′ is a tuple of constants, then we recursively call ProofTree(D,Π,p ′(t′));
otherwise, we proceed as follows.

—For each atom a ∈ S , a rule ρa ∈ Πb is guessed such that ρa � a, and the set of atoms
γa (body(ρa)), where γa extends hρa,a by mapping the variables that appear in the body

but not in the head of ρa to (dom(D) ∪ B), is obtained.
—The set

⋃
a∈S γa (body(ρa)) is partitioned as above, and each component of the partition is

proved in a parallel universal computation as done for {S1, . . . , Sn }.

ACM Transactions on Database Systems, Vol. 43, No. 3, Article 13. Publication date: November 2018.

13:34 M. Arenas et al.

During the execution of the above procedure, the first time that a null z is lost after resolving an
atom a (that contains z) with a rule ρ ∈ Π, which means that z is associated with the existentially
quantified variable in head(ρ), we store hρ,a (head(ρ)) as the atom where z is invented. It is vital
to ensure that the atoms where z is invented in parallel computations are precisely hρ,a (head(ρ)).
This is achieved by carrying the atom hρ,a (head(ρ)) together with the component that contains z.

The Formal Definition of ProofTree

Before formalizing the above algorithm, we need to introduce an additional auxiliary notion.
Consider a set of atoms S such that dom(S) ⊂ (U ∪ B), and a set N ⊆ (dom(S) ∩ B). A partition
{S1, . . . , Sn } of S is called [N]-linking if, for each z ∈ (dom(S) ∩ B) \ N , there exists exactly one i ∈
[1,n] such that z ∈ dom(Si). Moreover, {S1, . . . , Sn } is called [N]-optimal if (i) it is [N]-linking, and
(ii) for every i ∈ [1,n] and a ∈ Si , the partition {S1, . . . , Si−1, Si \ {a}, Si+1, . . . , Sn , {a}} of S is not
[N]-linking. Consider, for example, the set S = {p (c, z1),p (z1, z2),p (z2, z3),p (z3, z4)}, where c ∈ U

and z1, z2, z3, z4 ∈ B, and let N = {z2, z3, z4}. The partition {{p (c, z1),p (z1, z2)}, {p (z2, z3),p (z3, z4)}}
is [N]-linking since z1 ∈ (dom(S) ∩ B) \ N occurs in exactly one component. However, it is not
[N]-optimal since the partition {{p (c, z1),p (z1, z2)}, {p (z2, z3)}, {p (z3, z4)}} is still [N]-linking. In
fact, the latter partition is [N]-optimal since, once we split the component {p (c, z1),p (z1, z2)}, the
obtained partition is not [N]-linking. We are now ready to formalize our alternating algorithm.

ProofTree(D,Π,p (t)) consists of the following steps:

(1) If p (t) ∈ D, then accept.
(2) Guess a rule ρ ∈ Πh such that ρ � p (t); if there is no such rule, then reject.
(3) Guess a mapping μ : var(body(ρ)) \ var(head(ρ)) → (dom(D) ∪ B), and let γ =

hρ,p (t) ∪ μ.
(4) Let {S1, . . . , Sn } be the [∅]-optimal partition of γ (body(ρ)).
(5) Universally select S ∈ {S1, . . . , Sn } and do the following:

(a) if S = {p ′(t′)} and dom(p ′(t′)) ⊆ dom(D), then call ProofTree(D,Π,p ′(t′));
(b) if (dom(S) ∩ B) � ∅, then go to (6).

(6) RS := {(z, ε) | z ∈ (dom(S) ∩ B)}.
(7) For each a ∈ S do the following:

(a) Guess a rule ρa ∈ Πb such that ρa � a; if there is no such rule, then reject.
(b) Assume that z ∈ (dom(a) ∩ B) occurs ina at position π∃ (ρa), and (z,x) ∈ RS . Ifx = ε ,

then RS := (RS \ {(z, ε)}) ∪ {(z,a)}; otherwise, if x � a, then reject.
(c) Guess μa : var(body(ρa)) \ var(head(ρa)) → (dom(D) ∪ B) such that dom(γa (body

(ρa) \ {ward(ρa)})) ⊆ dom(D), where γa = hρa,a ∪ μa .

(8) S+ :=
⋃

a∈S γa (body(ρa)).
(9) N := {z ∈ (dom(S+) ∩ B) | (z,x) ∈ RS and x � ε }.

(10) Let {S+1 , . . . , S+n } be the [N]-optimal partition of S+.
(11) F := {z ∈ B | z ∈ dom(S+) \ dom(S)}.
(12) For each i ∈ [1,n], let RS+i

= {(z,x) ∈ RS | z ∈ (dom(S+i) ∩ B) \ F } ∪ {(z, ε) | z ∈
(dom(S+i) ∩ F)}.

(13) Universally select S ∈ {S+1 , . . . , S+n } and do the following:
(a) If S = {p ′(t′)} and dom(p ′(t′)) ⊆ dom(D), then call ProofTree(D,Π,p ′(t′)).
(b) If (dom(S) ∩ B) � ∅, then go to (7).

The correctness of the above algorithm follows by construction

Lemma 6.13. Consider a database D, a warded Datalog∃ program Π, and an atom p (t) with p ∈
sch(Π) and t ∈ dom(D)arity(p) . The following are equivalent:

ACM Transactions on Database Systems, Vol. 43, No. 3, Article 13. Publication date: November 2018.

Expressive Languages for Querying the Semantic Web 13:35

(1) ProofTree(D,Π,p (t)) accepts.

(2) p (t) has a proof-tree with respect to D and Π.

Recall that our goal is to show that the problem of deciding whetherp (t) belongs to Π(D) is feasi-
ble in polynomial time in D. By Lemma 6.12 and Lemma 6.13, p (t) ∈ Π(D) iff ProofTree(D,Π,p (t))
accepts. It is well-known that alternating logarithmic space coincides with polynomial time. There-
fore, it suffices to show the following:

Lemma 6.14. Consider a database D, a warded Datalog∃ program Π, and an atom p (t) with p ∈
sch(Π) and t ∈ dom(D)arity(p) . If Π is fixed, then ProofTree(D,Π,p (t)) usesO (log(|dom(D) |)) space

at each step of its computation.

Proof. We first show that the size of a component of an [N]-optimal partition computed
during the execution of ProofTree(D,Π,p (t)) is at most maxρ ∈Π{|body(ρ) |}. This is done by
induction on the number of partitioning steps that are being applied during a universal com-
putation of ProofTree. It is clear that the first partitioning step is actually step (4), where the
[∅]-optimal partition {S1, . . . , Sn } of a set of atoms γ (body(ρ)), where ρ ∈ Π and γ is a mapping
var(body(ρ)) → (dom(D) ∪ B), is computed. Observe that, for each i ∈ [1,n], |Si | ≤ |body(ρ) |,
and the claim follows. Consider now a component S ′ obtained during the i-th partitioning step, for
i > 1. Observe that in this case, S ′ is actually obtained during step (10) of the algorithm, where the
[N]-optimal partition of a set of atoms S+ =

⋃
a∈S γa (body(ρa)), where S is a component obtained

during the (i − 1)-th partitioning step, ρa ∈ Π, γa is a mapping var(body(ρa)) → (dom(D) ∪ B),
and N ⊆ (dom(S+) ∩ B), is computed. We claim that |S ′ | ≤ |S |, which in turn implies that
|S ′ | ≤ maxρ ∈Π{|body(ρ) |} since, by induction hypothesis, |S | ≤ maxρ ∈Π{|body(ρ) |}. By construc-

tion, ρa ∈ Πb , i.e., is a semi-body-grounded rule of Π. This implies that, for each a ∈ S , only one

atom a� of γa (body(ρa)) may contain nulls, while all the other atoms contain only constants.
Assuming that S = {a1, . . . ,am }, it is easy to verify that the largest component that we can have
in the [N]-optimal partition of S+ is {a�1 , . . . ,a�m }, while all the other components consist of a
single atom. Thus, |S ′ | ≤ |S |.

Having a bound on the size of a set of atoms that belongs to an [N]-optimal partition computed
during the execution of ProofTree(D,Π,p (t)), it is not difficult to bound the space needed at each
step of its computation. In the worst case, we need to remember (maxρ ∈Π{|body(ρ) |})2 due to
step (8), where the set S+ is computed. It is not difficult to see that the space needed to represent
an atom depends polynomially on Π, and is logarithmic in |dom(D) |. The same holds for a pair of
the form (z,x), where z is a null and x is either ε or an atom. Therefore, assuming that Π is fixed,
ProofTree(D,Π,p (t)) uses O (log(|dom(D) |)) space at each step of its computation. �

6.4 Complexity-Theoretic Justification of Wardedness

We conclude this section by justifying the design choices made in the definition of wardedness.

To this end, we show that the mildest relaxation of warded Datalog∃ that one can think of leads
to an inherently intractable language; in fact, to an ExpTime-hard language. This is a strong in-

dication that there is no obvious way to extend warded Datalog∃ without losing tractability in
data complexity. Recall that the key idea underlying wardedness is to collect all the dangerous
body variables in a single body atom, the so-called ward, while this atom can share only harmless
variables with the rest of the rule-body. In other words, the ward can interact with the rest of the
rule-body only via harmless variables. The mildest relaxation of wardedness that one can propose
is as follows: allow at most one occurrence of exactly one harmful variable ?V that occurs in the
ward to appear outside the ward in an atom of the form p (t1, . . . , ti−1, ?V , ti+1, . . . , tn), where each

ti is either a constant or a harmless variable; in this case, we say that the warded Datalog∃ program

ACM Transactions on Database Systems, Vol. 43, No. 3, Article 13. Publication date: November 2018.

13:36 M. Arenas et al.

is with minimal interaction. Formally, a warded Datalog∃ program Π is with minimal interaction

if, for each rule ρ ∈ Π, where a ∈ body(ρ) is the ward, the following hold:

(1) | (var(a) ∩ var(body(ρ) \ {a})) \ harmless(ρ,Π)︸���︷︷���︸
B

| ≤ 1;

(2) if B = {?V }, then there exists at most one occurrence of ?V in (body(ρ) \ {a}); and
(3) if ?V occurs in b ∈ (body(ρ) \ {a}), then var(b) \ {?V } ⊆ harmless(ρ,Π).

It is possible to show that query evaluation for warded Datalog∃ with minimal interaction is
ExpTime-hard. This is done by simulating the behavior of an alternating Turing machine that uses
linear space. Before we proceed further, let us recall the basics on alternating Turing machines.

An alternating Turing machine is a tuple M = (S,Λ,δ , s0), where S = S∀ � S∃ � {sa } � {sr } is a
finite set of states partitioned into universal states, existential states, an accepting state, and a
rejecting state, Λ is the tape alphabet, δ ⊆ (S × Λ) × (S × Λ × {−1,+1}) is the transition relation,
and s0 ∈ S is the initial state. We assume that Λ contains a special blank symbol �. The symbols
−1 and +1 denote the cursor directions left and right, respectively. A computation tree for M is a
tree labeled by configurations, i.e., tape content, cursor position, and internal state, of M such that

(1) if nodev is labeled by an existential configuration, thenv has one child, labeled by one of
the possible successor configurations;

(2) ifv is labeled by a universal configuration, thenv has one child for each possible successor
configuration;

(3) the root is labeled by the initial configuration; and
(4) all leaves are labeled by accepting or rejecting configurations.

A computation tree is accepting if it is finite and all leaves are labeled by accepting configurations.
We are now ready to show that

Theorem 6.15. Eval for warded Datalog∃ with minimal interaction is ExpTime-hard in data

complexity.

Proof. The proof is by simulating the behavior of an alternating Turing machine M on input I
that uses linear space. We assume, w.l.o.g., thatM is well-behaved and never tries to read beyond its
tape boundaries, and usesn = |I | tape cells. We also assume that each configuration has exactly two
successor configurations. Our goal is to construct in polynomial time a database DM that depends
on M , and a warded Datalog∃ query Q = (Π, accept(·)) with minimal interaction that does not
depend on M , such that M accepts on input I iff Q (DM) = {(ι)}, where ι is a special constant the
represents the initial configuration of M .

The Predicates. We first describe the predicates that we are going to use in the definition of Π.
These predicates, together with their semantic meaning, are as follows:

—config(?V): ?V is a configuration;
—succ(?V , ?V1, ?V2): ?V1 and V2 are successor configurations of ?V ;
—follows(?V , ?V ′): ?V ′ is a successor configuration of ?V ;
—state(?S, ?V): in configuration ?V the state is ?S ;
—previous-state(?S, ?V): the state of the predecessor configuration of ?V is ?S ;
—cursor(?C, ?V): in configuration ?V the cursor points to the cell ?C;
—symbol(?A, ?C, ?V): in configuration ?V the cell ?C contains the symbol ?A;
—state-cursor-symbol(?S, ?C, ?A, ?V): in configuration ?V the state is ?S , and the cursor points

to the cell ?C that contains the symbol ?A;

ACM Transactions on Database Systems, Vol. 43, No. 3, Article 13. Publication date: November 2018.

Expressive Languages for Querying the Semantic Web 13:37

—next-cell(?C, ?C ′): cell ?C ′ follows cell ?C on the tape;
—neq(?C, ?C ′): ?C and ?C ′ are different cells;
—next-symbol(?C, ?A, ?V): in a successor configuration of ?V the cell ?C contains ?A;
—exists(?S): state ?S is existential;
—forall(?S): state ?S is universal;
—accept(?V): ?V is an accepting configuration;
—previous-accept(?V): the predecessor configuration of ?V is an accepting configuration;
—sibling-accept(?V): the sibling configuration of ?V , that is, the one that has the same pre-

decessor as ?V , is an accepting configuration;
—both-siblings-accept(?V): both ?V and its sibling configuration are accepting

configurations;
—transition(S,A, S1,A1,M1, S2,A2,M2): encodes δ (S,A) = ((S1,A1,M1), (S2,A2,M2)).

Notice that the above set of predicates does not depend on M .

The Database. We now define the database DM , which actually describes the initial configuration
of M , and also stores the transition function of M . We use constants to identify the cells and states
of M . In particular, we use the constant ci for the i-th cell of the tape, and the constant s for the
state s of M ; recall that s0 represents the initial state of M . Moreover, we use the constant ι for
identifying the initial configuration of M . DM is defined as the database

{config(ι), state(s0, ι), cursor(c1, ι)}
∪ {symbol(αi , ci , ι) | i ∈ [1,n] and αi is the i-th symbol of the input string}
∪ {next-cell(ci , ci+1) | i ∈ [1,n − 1]}
∪ {neq(ci , c j) | i, j ∈ [1,n] and i � j}
∪ {exists(s) | s ∈ S∃} ∪ {forall(s) | s ∈ S∀}
∪ {transition(s,α , s1,α1,m1, s2,α2,m2) | (s,α) → ((s1,α1,m1), (s2,α2,m2)) ∈ δ }.

Notice that DM depends on M , and can be constructed in polynomial time.

The Program. We are now ready to define the fixed warded Datalog∃ program Π with minimal
interaction. We start with the rule that generates the configurations of M :

config(?V) → ∃?V1∃?V2 succ(?V , ?V1, ?V2),

config(?V1), config(?V2),

follows(?V , ?V1), follows(?V , ?V2).

We also add rules that encode the transition function of M . For example, the transitions that move
the cursor to the left in the first successor configuration, and to the right in the second successor
configuration are encoded as follows:

transition(?S, ?A, ?S1, ?A1,−1, ?S2, ?A2,+1),

succ(?V , ?V1, ?V2), state-cursor-symbol(?S, ?C, ?A, ?V),

next-cell(?C1, ?C), next-cell(?C, ?C2) →
state(?S1, ?V1), state(?S2, ?V2),

symbol(?A1, ?C, ?V1), symbol(?A2, ?C, ?V2),

cursor(?C1, ?V1), cursor(?C2, ?V2).

ACM Transactions on Database Systems, Vol. 43, No. 3, Article 13. Publication date: November 2018.

13:38 M. Arenas et al.

Similar rules are used to encode all the possible moves of the cursor in the successor configurations.
The auxiliary predicate state-cursor-symbol(·, ·, ·, ·), which allows us to write the above rule as a
warded rule with minimal interaction, is defined via the rules

state(?S, ?V), cursor(?C, ?V) → state-cursor(?S, ?C, ?V),

state-cursor(?S, ?C, ?V), symbol(?A, ?C, ?V) → state-cursor-symbol(?S, ?C, ?A, ?V).

It should not be forgotten that the cells that are not involved in the transition must keep their old
values, which is encoded by the following rules:

transition(?S, ?A, ?S1, ?A1,−1, ?S2, ?A2,+1),

state-cursor-symbol(?S, ?C, ?A, ?V), neq(?C, ?C ′), symbol(?C ′, ?A′, ?V) →
next-symbol(?C ′, ?A′, ?V)

and

follows(?V , ?V ′), next-symbol(?C, ?A, ?V) → symbol(?C, ?A, ?V ′).

Finally, we define when a configuration is accepting, which in turn will be used to conclude
whether ι is accepting. This can be achieved by the following rules:

state(sa , ?V) → accept(?V),

follows(?V , ?V ′), state(?S, ?V) → previous-state(?S, ?V ′),

succ(?V , ?V1, ?V2), accept(?V2) → sibling-accept(?V1),

succ(?V , ?V1, ?V2), accept(?V1) → sibling-accept(?V2),

accept(?V), sibling-accept(?V) → both-siblings-accept(?V),

previous-state(?S, ?V), exists(?S), accept(?V) → previous-accept(?V),

previous-state(?S, ?V), forall(?S), both-siblings-accept(?V) → previous-accept(?V),

follows(?V , ?V ′), previous-accept(?V ′) → accept(?V).

This concludes the construction of the program Π.

Clearly, Π does not depend on M . Observe that, for each rule ρ introduced above, the Π-harmful
variables that occur in ρ are the variables ?V , ?V1, ?V2. It is then easy to verify that Π is indeed
a warded Datalog∃ program with minimal interaction. Moreover, by construction, M accepts on
input I iff Q (DM) = {(ι)}, and the claim follows. �

7 PROGRAM EXPRESSIVE POWER

As already discussed in Section 4.4, an important issue for a query language is to understand its
expressive power, and, in particular, its expressiveness relative to other central and well-studied
query languages; such a key language is Datalog. It is a common practice in database theory to
study the expressiveness of a newly introduced query languageL relative to Datalog, which in turn
gives some insights about the kind of queries that can be expressed in L. The goal of this section

is to perform such a relative expressive power analysis for warded Datalog∃ and TriQ-Lite 1.0.
By using the results of Section 6.2, it is easy to show that Datalog is not a good candidate for

our purposes. Indeed, given a Datalog program Π, the instance Π(D) does not contain a null value,
for every database D, which immediately implies that Datalog does not have the UGCP. Thus, by
Lemma 6.5, Datalog is not a good candidate. On the other hand, the fact that PAll

dat
is a TriQ-Lite 1.0

query, for every graph pattern P , implies that warded Datalog∃ is a good candidate. This suggests

that warded Datalog∃ is more expressive than plain Datalog. However, according to the classical

ACM Transactions on Database Systems, Vol. 43, No. 3, Article 13. Publication date: November 2018.

Expressive Languages for Querying the Semantic Web 13:39

notion of expressive power, the languages in question are equally expressive. It can be shown that,

for every warded Datalog∃ queryQ1, we can construct a Datalog queryQ2 such thatQ1 andQ2 are
equivalent, i.e., Q1 (D) = Q2 (D), for every database D; the converse is trivial since a Datalog query

is, by definition, a warded Datalog∃ query. Therefore, to formally show that warded Datalog∃ is
more expressive than Datalog, we need to adopt a refined notion of expressive power, which allows
us to classify query languages according to their expressive power on a finer scale.

By Definition 6.3, a Datalog∃ language L is a good candidate if we can encode the semantics

�·�All
G via a fixed L program. Thus, intuitively speaking, the key advantage of warded Datalog∃

against Datalog is the fact that we can express more via a single program. This led us to introduce

the refined notion of program expressive power. Consider a Datalog∃ language L, and a Datalog∃

program Π. The program expressive power of Π relative to L, denoted Pep
L
[Π], is defined as the

set of triples (D,Λ, t), where D is a database, Λ is a set of Datalog rules of the form a1, . . . ,an →
p (?X1, . . . , ?Xn) with p being an n-ary predicate that does not appear in Π or in the body of a rule
of Λ, and t ∈ Un , such that the query Q = (Π ∪ Λ,p) falls in L, and t ∈ Q (D); the rules of Λ act as
the output rules of the queryQ . In simple words, Pep

L
[Π] collects the tuples t that can be inferred

from a databaseD via an L queryQ , where Π is the query program ofQ excluding the output rules.

Now, for a Datalog∃ language L, it is natural to define its program expressive power as the set

Pep[L] = {Pep
L
[Π] | Π is an L program}.

Roughly, Pep[L] is a family of sets of triples, where each of its members encodes the program
expressive power of an L program relative to L. Given two languages L1 and L2, we write
L1 �Pep L2 if Pep[L1] ⊆ Pep[L2]. Finally, we say that L2 is more expressive (w.r.t. the program

expressive power) than L1, written L1 ≺Pep L2, if L1 �Pep L2 �Pep L1. We proceed to show that

Theorem 7.1. Datalog ≺Pep warded Datalog∃.

Proof. For notational convenience, we write DAT for Datalog and WAR for warded Datalog∃. It

is clear that Pep[DAT] ⊆ Pep[WAR] since, by definition, a Datalog program is a warded Datalog∃

program, and, therefore, DAT �Pep WAR. It remains to show that WAR �Pep DAT, or, equivalently,

Pep[WAR] � Pep[DAT]. Consider the database D = {p (c)}, and the warded Datalog∃ queriesQ1 =

(Π ∪ Λ1,q) and Q2 = (Π ∪ Λ2,q), where

Π = {p (X) → ∃Y s (X ,Y)}, Λ1 = {s (X ,Y) → q}, Λ2 = {s (X ,Y),p (Y) → q}.

Clearly, () ∈ Q1 (D) and () � Q2 (D). Hence, (D,Λ1, ()) ∈ PepWAR[Π] and (D,Λ2, ()) � PepWAR[Π],
which in turn implies that Pep[WAR] contains a set of triples T such that (D,Λ1, ()) ∈ T and
(D,Λ2, ()) � T . We claim that T � Pep[DAT], which in turn implies that Pep[WAR] � Pep[DAT],
as needed. It is not difficult to see that, for every Datalog program Π′, () ∈ Q ′1 (D) implies () ∈
Q ′2 (D), where Q ′1 = (Π′ ∪ Λ1,q) and Q ′2 = (Π′ ∪ Λ2,q). Thus, the triples (D,Λ1, ()) and (D,Λ2, ())
necessarily coexist in PepDAT[Π′], for every Datalog program Π′. Thus, T � Pep[DAT]. �

By providing a similar argument, we can show that

Theorem 7.2. Datalog¬s,⊥ ≺Pep TriQ-Lite 1.0.

Equipped with the above result, it is easy to show that TriQ-Lite 1.0 is more expressive (w.r.t. the
program expressive power) than existing languages suitable for querying RDF graphs. Indeed, sev-
eral query languages that enhance SPARQL with navigation capabilities and/or recursion mecha-
nisms have been proposed, most notably nSPARQL [35], PSPARQL [2], recursive triple algebra [29],
and NEMODEQ [39]. Each one of the above languages L is contained in Datalog¬s,⊥, in the sense

ACM Transactions on Database Systems, Vol. 43, No. 3, Article 13. Publication date: November 2018.

13:40 M. Arenas et al.

that every query in L can be expressed as a Datalog¬s,⊥ query. Thus, we can consider the Datalog
version Ldat of L in order to compare the program expressive power of L and TriQ-Lite 1.0. From
Theorem 7.2, we immediately conclude that

Corollary 7.3. If L is nSPARQL, PSPARQL, recursive triple algebra or NEMODEQ, then Ldat ≺Pep

TriQ-Lite 1.0.

8 DISCUSSION

We considered the problem of bridging the gap between the existing RDF query languages and
key features for querying RDF data such as reasoning capabilities, navigational capabilities, and
a general form of recursion. A tractable Datalog-based query language has been proposed, called
TriQ-Lite 1.0, which is expressive enough to encode every SPARQL query under the entailment
regime for OWL 2 QL core. Moreover, this language allows us to formulate SPARQL queries in a
simpler way, as it can easily encode a more natural notion of entailment.

Interestingly, the logical core of TriQ-Lite 1.0, that is, warded Datalog∃, has already found inter-
esting applications in neighboring fields. Vadalog is a system for performing complex reasoning
tasks such as those required in advanced knowledge graphs [9, 10]. It is Oxford’s contribution to
the VADA research project,11 a joint effort of the universities of Oxford, Manchester, and Edin-
burgh, as well as around 20 industrial partners such as Meltwater, Banca d’Italia, and Neo4J. The

logical core of the underlying Vadalog language is warded Datalog∃. Indeed, warded Datalog∃

turned out to be powerful enough for expressing all the tasks given by the industrial partners of
VADA, while a recent analysis of it focusing on a practical implementation led to the reasoning al-
gorithm around which the Vadalog system is built; for more details see [10]. Further investigation

with the aim of identifying the space-efficient core of warded Datalog∃ has been recently carried
out in [11].

8.1 Future Work

We are planning to investigate whether TriQ-Lite 1.0 is powerful enough to deal with the other
two lightweight profiles of OWL 2, namely, OWL 2 EL and OWL 2 RL, and if not, how it can be
extended in order to obtain a unique tractable Datalog-based language that can deal with all the
three lightweight profiles of OWL 2 in a uniform way.

In this work, we considered the definition of SPARQL 1.0 that has been adopted in a large num-
ber of articles that formally study SPARQL under set semantics, starting from [34]. In the future
we would like to consider SPARQL under bag semantics. A good starting point for such an inves-
tigation is the recent (still unpublished) work [12], which studies Datalog under bag semantics.
Interestingly, it is shown that Datalog queries under bag semantics can be translated into warded
Datalog∃ queries under set semantics, i.e., the logical core of TriQ-Lite 1.0 as studied in Section 6.

APPENDIX

A TRANSLATING SPARQL INTO DATALOG¬s : A FORMAL DESCRIPTION

Given a SPARQL graph pattern P , we show how P can be translated into a Datalog¬s query Pdat =

(Π, answerP), where Π is the union of three subprograms: τbgp (P) that encodes the basic graph
patterns occurring in P , τopr (P) that represents the non-basic graph patterns occurring in P , and
τout (P) that computes the output predicate answerP .

11http://vada.org.uk/.

ACM Transactions on Database Systems, Vol. 43, No. 3, Article 13. Publication date: November 2018.

http://vada.org.uk/

Expressive Languages for Querying the Semantic Web 13:41

A.1 The Program τbgp(P): Encoding the Basic Graph Patterns

Assume first that P = {t1, . . . , tn } is a basic graph pattern such that ti = (ui ,vi ,wi) for every i ∈
[1,n], and var(P) = {?X1, . . ., ?Xk }. Thenτbgp (P) is the Datalog program defined as follows. Assume
that ς is a substitution such that for every symbol u occurring in P , ς (u) = u if u ∈ (U ∪ V), and
ς (u) is a fresh variable if u is a blank node. Then τbgp (P) is defined as

triple(ς (u1), ς (v1), ς (w1)), . . . , triple(ς (un), ς (vn), ς (wn)) → queryP (?X1, . . . , ?Xk).

For example, if P2 is the basic graph pattern mentioned in Example 5.1 (see Section 5.1), then
τbgp (P2) consists of the rule (7). Now assume that P is a graph pattern. Then τbgp (P) is the Datalog
program consisting of the rules τbgp (Pi) for every basic graph pattern Pi occurring in P . For ex-
ample, if P3 is the graph pattern mentioned in Example 5.1, then τbgp (P3) consists of the rules (8)
and (9).

A.2 The Program τopr (P): Encoding the SPARQL Operators

Program τopr (P) is used to encode the semantics of the SPARQL operators occurring in P . For
example, if P3 is the graph pattern mentioned in Example 5.1 (see Section 5.1), then τopr (P3) con-
sists of the rules (10), (11), and (12). Before defining τopr (P), we need to introduce some auxiliary
terminology. The set of free variables of P , denoted by fvar(P), is recursively defined as follows:

—If P is a basic graph pattern, then fvar(P) = var(P).
—If P is either (P1 AND P2) or (P1 OPT P2) or (P1 UNION P2), then fvar(P) = fvar(P1) ∪

fvar(P2).
—if P is (P1 FILTER R), then fvar(P) = fvar(P1).
—If P if (SELECT W P1), then fvar(P) = fvar(P1) ∩W .

Moreover, given a tuple of variables (?X1, . . . , ?Xk), where k ≥ 1, and given I ⊆ [1,k] such
that [1,k] \ I = {i1, i2, . . . , i j } with 1 ≤ i1 < i2 < · · · < i j ≤ k , define ρI (?X1, . . . , ?Xk) as the
tuple of variables (?Xi1 , ?Xi2 , . . . , ?Xi j

); notice that if I = [1,k], then ρI (?X1, . . . , ?Xk) is the
empty tuple.

We are now ready to define τopr (P). If P is a basic graph pattern, then τopr (P) = ∅. Assume now
that P1 and P2 are graph patterns such that fvar(P1) = {?X1, . . ., ?X� , ?Y1, . . ., ?Ym }, fvar(P2) =
{?X1, . . . , ?X�, ?Z1, . . . , ?Zn }, and {?X1, . . . , ?X� } = fvar(P1) ∩ fvar(P2). We proceed by considering
the five different syntactic forms that P can have:

(1) If P = (P1 AND P2), then τopr (P) is the program consisting of the rules in (τopr (P1) ∪
τopr (P2)) together with the following rule for every I1 ⊆ [1, � +m] and I2 ⊆ [1, � + n]:

queryI1
P1

(ρI1 (?X1, . . . , ?X�, ?Y1, . . . , ?Ym)),

queryI2
P2

(ρI2 (?X1, . . . , ?X�, ?Z1, . . . , ?Zn)) →

queryIP (ρI (?X1, . . . , ?X�, ?Y1, . . . , ?Ym , ?Z1, . . . , ?Zn)),

where I = (I1 ∩ I2 ∩ [1, �]) ∪ (I1 ∩ [� + 1, � +m]) ∪ {m + k | k ∈ I2 ∩ [� + 1, � + n]}.
(2) If P = (P1 UNION P2), then τopr (P) consists of the rules in (τopr (P1) ∪ τopr (P2)) together

with the following rules for every I1 ⊆ [1, � +m] and I2 ⊆ [1, � + n]:

ACM Transactions on Database Systems, Vol. 43, No. 3, Article 13. Publication date: November 2018.

13:42 M. Arenas et al.

queryI1
P1

(ρI1 (?X1, . . . , ?X�, ?Y1, . . . , ?Ym)) →

query
I′1
P

(ρI′1 (?X1, . . . , ?X�, ?Y1, . . . , ?Ym , ?Z1, . . . , ?Zn))

and

queryI2
P2

(ρI2 (?X1, . . . , ?X�, ?Z1, . . . , ?Zn)) →

query
I′2
P

(ρI′2 (?X1, . . . , ?X�, ?Y1, . . . , ?Ym , ?Z1, . . . , ?Zn)),

where I′1 = I1 ∪ [� +m + 1, � +m + n] and I′2 = (I2 ∩ [1, �]) ∪ [� + 1, � +m] ∪ {m + k |
k ∈ I2 ∩ [� + 1, � + n]}.

(3) If P = (P1 OPT P2), then τopr (P) consists of the rules in (τopr (P1) ∪ τopr (P2)) together with
the following rules for every I1 ⊆ [1, � +m] and I2 ⊆ [1, � + n]:

queryI1
P1

(ρI1 (?X1, . . . , ?X�, ?Y1, . . . , ?Ym)),

queryI2
P2

(ρI2 (?X1, . . . , ?X�, ?Z1, . . . , ?Zn)) →

queryIP (ρI (?X1, . . . , ?X�, ?Y1, . . . , ?Ym , ?Z1, . . . , ?Zn)),

compatible
(I1∩[1, �])
P1

(ρ (I1∩[1, �]) (?X1, . . . , ?X�)),

and

queryI1
P1

(ρI1 (?X1, . . . , ?X�, ?Y1, . . . , ?Ym)),

¬compatible
(I1∩[1, �])
P1

(ρ (I1∩[1, �]) (?X1, . . . , ?X�)) →

queryI1
P1

(ρI1 (?X1, . . . , ?X�, ?Y1, . . . , ?Ym)),

where I = (I1 ∩ I2 ∩ [1, �]) ∪ (I1 ∩ [� + 1, � +m]) ∪ {m + k | k ∈ I2 ∩ [� + 1, � + n]}.
(4) If P = (P1 FILTER R), then τopr (P) is defined as follows. First, let Σeq be a Datalog program

consisting of the following three rules:

triple(?X , ?Y , ?Z) → eq(?X , ?X),

triple(?X , ?Y , ?Z) → eq(?Y , ?Y),

triple(?X , ?Y , ?Z) → eq(?Z , ?Z).

Now, assume that R is in DNF, that is,

R =
s∨

i=1

(Li,1 ∧ · · · ∧ Li,ki
),

where Li, j (1 ≤ i ≤ s and 1 ≤ j ≤ ki) is an atomic built-in condition or the negation of
an atomic built-in condition. For every I ⊆ [1, � +m], define ΔI as the set of variables
?U such that ?U is mentioned in the tuple ρI (?X1, . . . , ?X�, ?Y1, . . . , ?Ym), and for every

ACM Transactions on Database Systems, Vol. 43, No. 3, Article 13. Publication date: November 2018.

Expressive Languages for Querying the Semantic Web 13:43

i ∈ {1, . . . , s} and j ∈ {1, . . . ,ki }, define τI (Li, j) as follows:

τI (Li, j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

eq(?U , c) if Li, j = (?U = c) and ?U ∈ ΔI ,
false if Li, j = (?U = c) and ?U � ΔI ,
eq(?U , ?V) if Li, j = (?U =?V), ?U ∈ ΔI and ?V ∈ ΔI ,
false if Li, j = (?U =?V), and ?U � ΔI or ?V � ΔI ,
true if Li, j = bound(?U) and ?U ∈ ΔI ,
false if Li, j = bound(?U) and ?U � ΔI ,
¬eq(?U , c) if Li, j = ¬(?U = c) and ?U ∈ ΔI ,
true if Li, j = ¬(?U = c) and ?U � ΔI ,
¬eq(?U , ?V) if Li, j = ¬(?U =?V), ?U ∈ ΔI and ?V ∈ ΔI ,
true if Li, j = ¬(?U =?V), and ?U � ΔI or ?V � ΔI ,
false if Li, j = ¬ bound(?U) and ?U ∈ ΔI ,
true if Li, j = ¬ bound(?U) and ?U � ΔI .

The program τopr (P) consists of the rules in (τopr (P1) ∪ Σeq) together with the following
set of rules for every I1 ⊆ [1, � +m]:{

queryI1
P1

(ρI1 (?X1, . . . , ?X�, ?Y1, . . . , ?Ym)),τI1 (Li, j1), . . . ,τI1 (Li, jp
) →

queryI1
P

(ρI1 (?X1, . . . , ?X�, ?Y1, . . . , ?Ym))
�����

1 ≤ i ≤ s,

τI1 (Li,q) � false for every q ∈ [1,ki], 1 ≤ j1 < · · · < jp ≤ ki ,

and {j1, . . . , jp } = {q ∈ [1,ki] | τI1 (Li,q) � true}
}
.

(5) Finally, if P = (SELECT W P1), then τopr (P) consists of the rules in τopr (P1) together with
the following rule for every I1 ⊆ [1, � +m]:

queryI1
P1

(ρI1 (?X1, . . . , ?X�, ?Y1, . . . , ?Ym)) →

query
I′1
P

(ρI′1 (?X1, . . . , ?X�, ?Y1, . . . , ?Ym)),

where I′1 = I1 ∪ {i | i ∈ [1, �] and ?Xi � fvar(P1) ∩W } ∪ {� + j | j ∈ [1,m] and ?Yj �
fvar(P1) ∩W }.

A.3 The Program τout (P): Computing the Output Predicate

By construction, some atoms of the form queryJ
P

, where J is a set of indices, appear in the
head of some rules of τopr (P). For example, if P3 is the graph pattern in Example 5.1 (see

Section 5.1), then queryP (?X , ?Y , ?Z) and query{3}
P

(?X , ?Y) occur in τopr (P3); if J = ∅, then

we simply write queryP (?X1, . . . , ?Xk) instead of query∅
P

(?X1, . . . , ?Xk). Then for every atom

queryJ
P

(?X1, . . . , ?Xk) occurring in τopr (P), the following rule is added to τout (P):

queryJ
P

(?X1, . . . , ?Xk) → answerP (t1, . . . , tmP
),

where mP is the arity of the predicate queryP , ti is the special constant � if i ∈ J , and after elimi-
nating all the occurrences of� from (t1, . . . , tmP

) the tuple (?X1, . . . , ?Xk) is obtained. For example,

due to the atom query{3}
P3

occurring in τopr (P3), where P3 is the graph pattern in Example 5.1,

query{3}
P3

(?X , ?Y) → answerP3 (?X , ?Y ,�)

is added to τout (P3).

ACM Transactions on Database Systems, Vol. 43, No. 3, Article 13. Publication date: November 2018.

13:44 M. Arenas et al.

ACKNOWLEDGMENTS

We would like to thank the anonymous referees for many helpful comments.

REFERENCES

[1] Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of Databases. Addison-Wesley.

[2] Faisal Alkhateeb, Jean-François Baget, and Jérôme Euzenat. 2009. Extending SPARQL with regular expression patterns

(for querying RDF). Journal of Web Semantics 7, 2 (2009), 57–73.

[3] Renzo Angles and Claudio Gutierrez. 2008. The expressive power of SPARQL. In Proceedings of the 7th International

Semantic Web Conference. 114–129.

[4] Marcelo Arenas, Georg Gottlob, and Andreas Pieris. 2014. Expressive languages for querying the semantic web. In

Proceedings of the 33rd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems. 14–26.

[5] Marcelo Arenas, Claudio Gutierrez, and Jorge Pérez. 2009. Foundations of RDF databases. In Reasoning Web. 158–204.

[6] Jean-François Baget, Michel Leclère, Marie-Laure Mugnier, and Eric Salvat. 2011. On rules with existential variables:

Walking the decidability line. Artificial Intelligence 175, 9–10 (2011), 1620–1654.

[7] Pablo Barceló. 2013. Querying graph databases. In Proceedings of the 32nd ACM SIGMOD-SIGACT-SIGART Symposium

on Principles of Database Systems. 175–188.

[8] Catriel Beeri and Moshe Y. Vardi. 1981. The implication problem for data dependencies. In Proceedings of the 8th

International Colloquium on Automata, Languages and Programming. 73–85.

[9] Luigi Bellomarini, Georg Gottlob, Andreas Pieris, and Emanuel Sallinger. 2017. Swift logic for big data and knowledge

graphs. In Proceedings of the 26th International Joint Conference on Artificial Intelligence. 2–10.

[10] Luigi Bellomarini, Emanuel Sallinger, and Georg Gottlob. 2018. The Vadalog system: Datalog-based reasoning for

knowledge graphs. Proceedings of the VLDB Endowment 11, 9 (2018), 975–987.

[11] Gerald Berger, Georg Gottlob, Andreas Pieris, and Emanuel Sallinger. 2018. The space-efficient core of Vadalog. In

Proceedings of the 38th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. To Appear.

[12] Leopoldo E. Bertossi, Georg Gottlob, and Reinhard Pichler. 2018. Datalog: Bag semantics via set semantics. CoRR

abs/1803.06445 (2018). arxiv:1803.06445 http://arxiv.org/abs/1803.06445.

[13] Andrea Calì, Georg Gottlob, and Michael Kifer. 2013. Taming the infinite chase: Query answering under expressive

relational constraints. Journal of Artificial Intelligence Research 48 (2013), 115–174.

[14] Andrea Calì, Georg Gottlob, Thomas Lukasiewicz, Bruno Marnette, and Andreas Pieris. 2010. Datalog+/−: A family

of logical knowledge representation and query languages for new applications. In Proceedings of the 25th Annual IEEE

Symposium on Logic in Computer Science. 228–242.

[15] Andrea Calì, Georg Gottlob, and Andreas Pieris. 2012. Towards more expressive ontology languages: The query

answering problem. Artificial Intelligence 193 (2012), 87–128.

[16] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, and Riccardo Rosati. 2007. Tractable

reasoning and efficient query answering in description logics: The DL-lite family. Journal of Automated Reasoning

39, 3 (2007), 385–429.

[17] Stefano Ceri, Georg Gottlob, and Letizia Tanca. 1990. Logic Programming and Databases. Springer.

[18] Artem Chebotko, Shiyong Lu, and Farshad Fotouhi. 2009. Semantics preserving SPARQL-to-SQL translation. Data &

Knowledge Engineering 68, 10 (2009), 973–1000.

[19] Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei Voronkov. 2001. Complexity and expressive power of logic

programming. ACM Computing Surveys 33, 3 (2001), 374–425.

[20] Valeria Fionda, Claudio Gutierrez, and Giuseppe Pirrò. 2012. Semantic navigation on the web of data: Specification

of routes, web fragments and actions. In Proceedings of the 21st World Wide Web Conference. 281–290.

[21] Tim Furche, Benedikt Linse, François Bry, Dimitris Plexousakis, and Georg Gottlob. 2006. RDF querying: Language

constructs and evaluation methods compared. In Reasoning Web. 1–52.

[22] Birte Glimm and Chimezie Ogbuji. 2013. SPARQL 1.1 Entailment Regimes. Retrieved March 21, 2013 from, http://

www.w3.org/TR/sparql11-entailment/.

[23] Georg Gottlob and Andreas Pieris. 2015. Beyond SPARQL under OWL 2 QL entailment regime: Rules to the rescue.

In Proceedings of the 24th International Joint Conference on Artificial Intelligence. 2999–3007.

[24] Georg Gottlob, Sebastian Rudolph, and Mantas Simkus. 2014. Expressiveness of guarded existential rule languages.

In Proceedings of the 33rd ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. 27–38.

[25] Steve Harris and Andy Seaborne. 2013. SPARQL 1.1 Query Language. Retrieved March 21, 2013 from http://www.w3.

org/TR/sparql11-query/.

[26] André Hernich, Clemens Kupke, Thomas Lukasiewicz, and Georg Gottlob. 2013. Well-founded semantics for extended

datalog and ontological reasoning. In Proceedings of the 32nd ACM SIGMOD-SIGACT-SIGART Symposium on Principles

of Database Systems. 225–236.

ACM Transactions on Database Systems, Vol. 43, No. 3, Article 13. Publication date: November 2018.

https://doi.org/1803.06445
http://arxiv.org/abs/1803.06445
http://www.w3.org/TR/sparql11-entailment/
http://www.w3.org/TR/sparql11-entailment/
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/sparql11-query/

Expressive Languages for Querying the Semantic Web 13:45

[27] Aidan Hogan, Marcelo Arenas, Alejandro Mallea, and Axel Polleres. 2014. Everything you always wanted to know

about blank nodes. Journal of Web Semenatics 27 (2014), 42–69.

[28] Ilianna Kollia, Birte Glimm, and Ian Horrocks. 2011. SPARQL query answering over OWL ontologies. In Proceedings

of the 8th Extended Semantic Web Conference, Part I. 382–396.

[29] Leonid Libkin, Juan L. Reutter, and Domagoj Vrgoc. 2013. Trial for RDF: Adapting graph query languages for RDF

data. In Proceedings of the 32nd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems. 201–212.

[30] Deborah L. McGuinness and Frank van Harmelen. 2004. OWL Web Ontology Language Overview. Retrieved on

February 10, 2004 from http://www.w3.org/TR/owl-features/.

[31] Boris Motik, Bernardo Cuenca Grau, Ian Horrocks, Zhe Wu, Achille Fokoue, and Carsten Lutz. 2012. OWL 2 Web

Ontology Language Profiles (2nd ed.). Retrieved December 11, 2012 from http://www.w3.org/TR/owl2-profiles/.

[32] Boris Motik, Peter F. Patel-Schneider, and Bijan Parsia. 2012. OWL 2 Web Ontology Language Structural Specification

and Functional-Style Syntax (2nd ed.). Retrieved December 11, 2012 from http://www.w3.org/TR/owl2-syntax/.

[33] Peter F. Patel-Schneider and Boris Motik. 2012. OWL 2 Web Ontology Language Mapping to RDF Graphs (2nd ed.).

Retrieved 11 December 2012 from http://www.w3.org/TR/owl2-mapping-to-rdf/.

[34] Jorge Pérez, Marcelo Arenas, and Claudio Gutiérrez. 2009. Semantics and complexity of SPARQL. ACM Transactions

on Database Systems 34, 3 (2009), 16:1–16:45.

[35] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. 2010. nSPARQL: A navigational language for RDF. Journal of

Web Semantics 8, 4 (2010), 255–270.

[36] Axel Polleres. 2007. From SPARQL to rules (and back). In Proceedings of the 16th International Conference on World

Wide Web. 787–796.

[37] Eric Prud’hommeaux and Andy Seaborne. 2008. SPARQL Query Language for RDF. Retrieved January 15, 2008 from

http://www.w3.org/TR/rdf-sparql-query/.

[38] Juan L. Reutter, Adrián Soto, and Domagoj Vrgoc. 2015. Recursion in SPARQL. In Proceedings of the 14th International

Semantic Web Conference. 19–35.

[39] Sebastian Rudolph and Markus Krötzsch. 2013. Flag & check: Data access with monadically defined queries. In Pro-

ceedings of the 32nd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems. 151–162.

[40] Simon Schenk. 2007. A SPARQL semantics based on Datalog. In Proceedings of the 30th Annual German Conference

on Artificial Intelligence. 160–174.

[41] W3C OWL Working Group. 2012. OWL 2 Web Ontology Language Document Overview (2nd ed.). Retrieved Decem-

ber 11, 2012 from http://www.w3.org/TR/owl2-overview/.

Received April 2017; revised May 2018; accepted July 2018

ACM Transactions on Database Systems, Vol. 43, No. 3, Article 13. Publication date: November 2018.

http://www.w3.org/TR/owl-features/
http://www.w3.org/TR/owl2-profiles/
http://www.w3.org/TR/owl2-syntax/
http://www.w3.org/TR/owl2-mapping-to-rdf/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/owl2-overview/

