
13

The Exact Complexity of the First-Order Logic Definability Problem

MARCELO ARENAS, Pontificia Universidad Católica de Chile
GONZALO I. DIAZ, University of Oxford

We study the definability problem for first-order logic, denoted by FO-DEF. The input of FO-DEF is a relational
database instance I and a relation R; the question to answer is whether there exists a first-order query Q
(or, equivalently, a relational algebra expression Q) such that Q evaluated on I gives R as an answer.

Although the study of FO-DEF dates back to 1978, when the decidability of this problem was shown,
the exact complexity of FO-DEF remains as a fundamental open problem. In this article, we provide a
polynomial-time algorithm for solving FO-DEF that uses calls to a graph-isomorphism subroutine (or oracle).
As a consequence, the first-order definability problem is found to be complete for the class GI of all problems
that are polynomial-time Turing reducible to the graph isomorphism problem, thus closing the open question
about the exact complexity of this problem. The technique used is also applied to a generalized version of the
problem that accepts a finite set of relation pairs, and whose exact complexity was also open; this version is
also found to be GI-complete.

CCS Concepts: � Information systems → Relational database query languages; � Theory of
computation → Problems, reductions, and completeness;

Additional Key Words and Phrases: Definability problem, expressiveness, relational algebra, first-order logic

ACM Reference Format:
Marcelo Arenas and Gonzalo I. Diaz. 2016. The exact complexity of the first-order logic definability problem.
ACM Trans. Database Syst. 41, 2, Article 13 (May 2016), 14 pages.
DOI: http://dx.doi.org/10.1145/2886095

1. INTRODUCTION

In a typical relational database querying scenario, a database instance I and a query Q
are given and the objective is to answer the query, that is, calculate the answer relation
R that Q produces for I. There are many real-world situations, though, in which the
database I and answer relation R are known and it is the query that is unknown. For
example, it is common for the results of a query to be published without the precise
query being made available, requiring reverse engineering [Tran et al. 2009; Zhang et al.
2013]. In other cases, users of a database system may have difficulties formulating a
query, in which case it is desirable to have the ability to infer or learn the query
by having the user specify tuples that they want included in the result (i.e., positive
examples), tuples that they want excluded from the result (i.e., negative examples),
or a combination of both. Query learning has been studied in relational databases
[Abouzied et al. 2013; Bonifati et al. 2014a] as well as in other data models such as

M. Arenas was funded by the Millennium Nucleus Center for Semantic Web Research under Grant
NC120004, and G. I. Diaz by Becas Chile of CONICYT Chile.
Authors’ addresses: M. Arenas, Departamento de Ciencia de la Computación, Pontificia Universidad Católica
de Chile, Vicuna Mackenna 4860, Edificio San Agustı́n, 4to piso, Macul 7820436, Santiago, Chile; email:
marenas@ing.puc.cl; G. I. Diaz, Department of Computer Science, University of Oxford, Wolfson Building,
Parks Road, Oxford OX1 3QD, United Kingdom; email: gonzalo.diaz@cs.ox.ac.uk.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2016 ACM 0362-5915/2016/05-ART13 $15.00
DOI: http://dx.doi.org/10.1145/2886095

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 13, Publication date: May 2016.

http://dx.doi.org/10.1145/2886095
http://dx.doi.org/10.1145/2886095

13:2 M. Arenas and G. I. Diaz

XML [Staworko and Wieczorek 2012; Cohen and Weiss 2013; Staworko and Wieczorek
2015], graph databases [Bonifati et al. 2015], and big data [Bonifati et al. 2014b]. This
situation also arises in data-integration scenarios, in which example source and target
instances are used to derive data-mapping queries between source and target [Bilke
and Naumann 2005; Gottlob and Senellart 2010; Qian et al. 2012; ten Cate et al. 2013].
Finally, a user may need to check whether a relation R is redundant in a database
instance I, in the sense that there exists a query Q that produces R when evaluated
over the other relations in I, implying that the information in R can be deduced from
the other relations in the instance I [Ferrarotti et al. 2009].

A common ground for the different query-discovery scenarios presented is the
definability problem for a query language Q. This decision problem takes as input
an appropriate database instance I and answer R, and asks whether there exists a
query Q ∈ Q such that Q evaluated on I results in R. Here, the semantics of the query
language Q determines what appropriate database instances and answer sets are.
In the case of first-order logic (without constants and without a linear order on the
domain) we denote the definability problem FO-DEF; the input is a relational database
instance I and an answer relation R. The definability problem has been studied for
relational databases and first-order logic (or, equivalently, relational algebra), as well
as for other data models and query languages. In particular, this problem has been
studied for nested relational databases and nested relational algebra [Gucht 1987;
Gyssens et al. 1989], for XML and XPath [Gyssens et al. 2006; Fletcher et al. 2015], and
for graph databases and conjunctive regular path queries [Antonopoulos et al. 2013].

The study of the computational complexity of FO-DEF dates back to 1978 [Paredaens
1978; Bancilhon 1978], when a semantic characterization of the problem, based on
automorphisms, placed FO-DEF in coNP (see Section 3 and Van den Bussche [2001]
for more details). Although this provided a complexity upper bound for the problem, an
exact complexity result has not been found since then [Fletcher et al. 2009; ten Cate and
Dalmau 2015]. In particular, the problem was never found to be coNP-hard. Despite
the open question for the first-order logic case, the corresponding definability problem
for conjunctive queries was determined to be coNEXPTIME-complete [Willard 2010].
Here, the complexity upper bound (i.e., the inclusion in coNEXPTIME) stems from
an analogous semantic characterization of the CQ definability problem in terms of
polymorphisms [Jeavons et al. 1999]. In a different direction, a natural generalization
of FO-DEF, dubbed BP-PAIRS [Fletcher et al. 2009], accepts a finite set of relation pairs
{(S1, R1), . . . , (Sn, Rn)} and asks whether there exists a first-order query Q such that
Q(Si) = Ri for all i ∈ [1, n]. By means of an analogous semantic characterization, the
authors found BP-PAIRS to be included in coNP.

In this article, we provide a novel polynomial-time algorithm for the first-order logic
definability problem, which uses calls to a graph-isomorphism subroutine (oracle). As
a consequence of the existence of this algorithm, FO-DEF is found to be included in the
complexity class GI (defined as the set of all languages that are polynomial-time Tur-
ing reducible to the graph isomorphism problem). Moreover, we also show that FO-DEF

is GI-hard, which allows us to conclude that FO-DEF is GI-complete. This allows us to
close the open question regarding the exact complexity of FO-DEF. This result also has
consequences in practical applications, as implementations for the definability problem
may now take advantage of algorithmic optimizations for the graph isomorphism prob-
lem [Piperno 2008; McKay and Piperno 2014; Babai 2015]. For example, for several
restricted classes of graphs, it is possible to solve the isomorphism problem in poly-
nomial time [Grohe 2012]; this performance will be inherited by definability problem
algorithms that use the characterization presented in this article. Finally, we find that
the technique used is also applicable to the BP-PAIRS problem and show that it is also
included in GI, solving a problem left open in Fletcher et al. [2009].

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 13, Publication date: May 2016.

The Exact Complexity of the First-Order Logic Definability Problem 13:3

2. PRELIMINARIES

Let U be an infinite countable universe. A relational schema R = {R1, . . . , Rm} is a set of
relation names, each with an associated arity, denoted by arity(Ri). Given a relational
schema, a relational instance I over R is a set of relations {RI

1, . . . , RI
m}, with each RI

i
a finite subset of Uarity(Ri). The active domain of I, denoted by adom(I), is the set of
elements of U that appear in some relation of I (we define the active domain of a
relation analogously).

We assume familiarity with the syntax and semantics of first-order logic [Abiteboul
et al. 1995; Enderton 1972]. Let R be a relational schema and I an instance over R. A
k-ary FO-query Q over R is given by an FO-formula ϕ(x̄), where x̄ = (x1, . . . , xk) is the
tuple of free variables of ϕ. Moreover, the evaluation of Q over I, denoted by Q(I), is
defined as the set of tuples ā such that ϕ(ā) holds in I.

Example 2.1. Consider the relational schema R = {Person, Knows} with arities 1
and 2, respectively. Also, consider the relational instance I = {PersonI

, KnowsI} defined
as follows:

PersonI KnowsI

Ada Ada John
John John Ada
Dana Dana Peter
Peter

Then, a query Q1 given by FO-formula Person(x) returns the list of persons in I, while
a query Q2 given by FO-formula ∃y (Person(x) ∧ Knows(x, y) ∧ x �= y) returns the list of
persons in I that know someone else.

Given instances I1, I2 over a relational schema R, a function f : U → U is an isomor-
phism from I1 to I2 if and only if (i) f is a bijection and (ii) for every R ∈ R such that
arity(R) = n, and for every t ∈ Un, it is the case that t ∈ RI1 if and only if f (t) ∈ RI2 ,
where f (t) is defined as (f (a1), . . . , f (an)) if t = (a1, . . . , an). Given an instance I over
a relational schema R, a function f : U → U is an automorphism of I if f is an iso-
morphism from I to I. The notions of isomorphism and automorphism for a relation
are defined analogously. In what follows, we use AUT(I), AUT(R) to denote the set of
automorphisms for an instance I and a relation R, respectively.

Given a tuple t = (a1, . . . , an), define the ith prefix of t in the following way:

π≤i(t) =
{

(a1, . . . , ai) if 1 ≤ i ≤ n,

() otherwise.

In order to extract only one column, we use the notation πi(t) = ai. We also allow an
overloaded version of the operator, where R is a relation of arity n:

π≤i(R) = {π≤i(t) | t ∈ R}.
In other words, π≤i(R) is the image of every tuple t ∈ R under π≤i.

The Graph Isomorphism Problem and the Complexity Class GI. The graph isomor-
phism problem is defined as GRAPH-ISO = {(G1, G2) | G1 and G2 are isomorphic graphs}
[Arora and Barak 2009; Köbler et al. 1993]. A major open problem in computational
complexity is to determine the exact complexity of this problem, in particular, whether
it can be solved in polynomial time, it is NP-complete, or it is NP-intermediate [Köbler
et al. 1993].

The problem GRAPH-ISO gives rise to the complexity class GI = {L | L ≤p
T GRAPH-ISO},

where L1 ≤p
T L2 indicates that there is a polynomial-time Turing reduction from the

decision problem L1 to the decision problem L2. In other words, GI is the class of all

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 13, Publication date: May 2016.

13:4 M. Arenas and G. I. Diaz

problems L that can be solved in polynomial time by an algorithm that uses an oracle (or
subroutine) for the graph isomorphism problem [Aaronson et al. 2005]. Furthermore, a
decision problem L is said to be GI-hard if and only if L′ ≤p

T L for every problem L′ ∈ GI.
Note that this is a relaxation with respect to the traditional definition of hardness for
NP, as only a Turing reduction is required (as opposed to a polynomial-time many-to-
one reduction for the standard notion of hardness). Examples of GI-complete problems
that will be used in this article are the relational instance isomorphism problem,
REL-ISO = {(I1, I2) | I1 and I2 are isomorphic relational instances} [Zemlyachenko et al.
1985], and the automorphism with one antifixed point problem, AUT-1-AFP = {(G, v) |
G = (V, E) is a graph with v ∈ V such that there exists an automorphism f of G
for which f (v) �= v} [Lubiw 1981]. It is important to note that, although GRAPH-ISO ∈
NP, the class GI is not known to be a subset of NP, since GI is defined in terms
of polynomial-time Turing reductions and NP is not known to be closed under such
reductions (NP is known to be closed under polynomial-time many-to-one reductions).

Finally, given a decision problem L, we denote the complement of L as L.

3. THE DEFINABILITY PROBLEM FOR FIRST-ORDER LOGIC

The first-order logic definability problem is defined as FO-DEF = {(I, R) | I is a rela-
tional instance, R is a relation, and there is a first-order query Q such that Q(I) = R}.
Note that both the schema R of I and the arity n of R are not fixed but can be deduced
from I and R, respectively, and that the query does not mention any constants. This
problem was studied in Paredaens [1978] and Bancilhon [1978], where it was deter-
mined that given a relational instance I and a relation R, (I, R) ∈ FO-DEF (that is,
R is definable from I by a first-order query) if and only if (i) adom(R) ⊆ adom(I)
and (ii) AUT(I) ⊆ AUT(R). The intuition behind this semantic characterization is as
follows. Assume that Q(I) = R, where Q is an FO-query. Then, R cannot mention a
value that does not occur in I, as first-order logic cannot invent new values. Thus, it
should be the case that adom(R) ⊆ adom(I). Moreover, assume that a and b are values
occurring in I and h is an automorphism of I such that h(a) = b. We know that if we
replace in I every value c by h(c), then we obtain the same instance I. Hence, a and b
are indistinguishable in I. In particular, these two values cannot be differentiated by
Q, as Q is defined by an FO-formula whose vocabulary is R and, thus, by an FO-formula
that does not mention any constant. Hence, given that R = Q(I), if any of a or b occurs
in R, then the other value has to occur in R, and, more generally, a and b have to
be indistinguishable in R. Formally, h has to be an automorphism of; therefore, every
automorphism of I has to be an automorphism of R (i.e., AUT(I) ⊆ AUT(R)).

Example 3.1. Let R and I be the relational schema and instance shown in Exam-
ple 2.1, respectively, and assume that R and S are the following relations:

R S
John Ada John

John Ada

In this case, the pair (I, S) ∈ FO-DEF, that is, it is possible to find a first-order query
Q such that Q(I) = S. In fact, in this case, Q is given by FO-formula (Knows(x, y) ∧
Knows(y, x)). On the other hand, the relation R is not definable from I by a first-order
query. To see why this is the case, note that Ada and John are interchangeable in I,
so that if R can be obtained as the result of evaluating an FO-query over I, then Ada
has to occur in R as John occurs in R. We can formalize this intuition and prove that
(I, R) �∈ FO-DEF by using the semantic characterization of the definability problem in
terms of automorphisms. More precisely, consider the function h : U → U such that
h(Ada) = John, h(John) = Ada, and for any other element u ∈ U, h(u) = u. The function

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 13, Publication date: May 2016.

The Exact Complexity of the First-Order Logic Definability Problem 13:5

h thus defined is an automorphism of I. However, h is not an automorphism of R, as
h(John) �∈ R, from which we conclude that (I, R) �∈ FO-DEF.

4. THE EXACT COMPLEXITY OF FO-DEF

From the characterization of FO-DEF in the previous section, it is clear that FO-DEF ∈
coNP, as an automorphism of I that is not an automorphism of R, provides a (polyno-
mially sized) witness to the fact that (I, R) �∈ FO-DEF. Although this provides an upper
bound for the complexity of this problem, the exact complexity of FO-DEF is an open
problem; in particular, the problem is not known to be coNP-hard. The following is the
main result of this article, in which we close this problem:

THEOREM 4.1. FO-DEF is GI-complete.

This result allows us to revisit the status of the FO-DEF problem with respect to P and
NP. As a first corollary of Theorem 4.1, we can now say that if GRAPH-ISO ∈ P, then it
will also be the case that FO-DEF ∈ P. As second corollary of Theorem 4.1, we obtain
strong evidence against the coNP-hardness of FO-DEF. Recall that if C is a complexity
class, then NPC is the class of decision problems that can be solved in polynomial time
by a nondeterministic Turing machine with an oracle for a decision problem L ∈ C.
Moreover, recall that the second level of the polynomial hierarchy [Stockmeyer 1976]
consists of the complexity classes �

p
2 = NPNP and �

p
2 = co�

p
2 = {L | L ∈ �

p
2 }, which

are widely believed to be different. From Theorem 4.1, we have the following.

COROLLARY 4.2. If FO-DEF is coNP-complete, then �
p
2 = �

p
2 .

To understand this corollary, we need to consider the second level of the low hierarchy of
NP [Schöning 1983; Hemaspaandra 1993]. Let Low2 be the class of decision languages
L ∈ NP such that

NP(NPL) = NPNP,

that is, the class of languages L ∈ NP such that the computational power of the second
level of the polynomial hierarchy is not augmented if L is available as an oracle. It
is known that GRAPH-ISO ∈ Low2 [Schöning 1988], and that if a language in Low2 is
NP-complete (under the usual notion of polynomial-time many-to-one reduction), then
�

p
2 = �

p
2 [Schöning 1983]. From Theorem 4.1 and the fact that GRAPH-ISO ∈ NP, we

have that FO-DEF ∈ NP ∩ GI, from which we conclude that FO-DEF ∈ Low2. Hence, if
FO-DEF is NP-complete, then �

p
2 = �

p
2 , from which Corollary 4.2 follows.

As a final comment, it is important to mention that Theorem 4.1 holds for any
relational query language that is BP-complete [Chandra and Harel 1980; Van Gucht
2009]. Thus, for example, the definability problem for Datalog is also GI-complete, for
which the input of this problem is an instance I and a relation R, and the question to
answer is whether there exists a Datalog program that evaluated over I produces R.

In the rest of this section, we concentrate on proving Theorem 4.1.

4.1. Proof of Theorem 4.1

The GI-hardness of FO-DEF is shown via a polynomial-time Turing reduction from
AUT-1-AFP; the inclusion of FO-DEF in GI is shown via a polynomial-time Turing
reduction to REL-ISO. Recall that these problems were defined in Section 2, and that
they are both known to be GI-complete [Zemlyachenko et al. 1985; Lubiw 1981].

In order to motivate the proof of the inclusion of FO-DEF in GI, consider the following
algorithm for FO-DEF using an oracle for REL-ISO, which constitutes a failed attempt
to show that FO-DEF ≤p

T REL-ISO. On input (I, R), with arity(R) = n, we wish to show
the existence of a function f ∈ AUT(I) for which there is a tuple t ∈ R such that

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 13, Publication date: May 2016.

13:6 M. Arenas and G. I. Diaz

f (t) = s and s �∈ R (note that s ∈ adom(I)n).1 This scenario can be restated in the
following way: does there exist a tuple t ∈ R, a bad tuple s ∈ adom(I)n \ R, and an
automorphism f ∈ AUT(I) such that f (t) = s? Then, for every t = (a1, . . . , an) ∈ R
and s = (b1, . . . , bn) ∈ adom(I)n \ R, the procedure builds the relational instances I1
and I2 from I by marking, for every i ∈ [1, n], the pair ai, bi in such a way that any
isomorphism from I1 to I2 must map ai to bi (these markings can be achieved by placing
ai and bi in fresh unary relations). We then consult the REL-ISO oracle with input (I1, I2)
to decide whether such an isomorphism exists.

Example 4.3. Consider the pair (I, R) from Examples 2.1 and 3.1. In order to decide
whether (I, R) is definable, we iterate over every tuple in , the only such tuple being
t = (John). For this fixed t, we iterate over all possible bad tuples s ∈ adom(I) \ R.
Upon reaching the case s = (Ada), we build the following instances:

—We first create a fresh relation name Fresh such that arity(Fresh) = arity(R) = 1.
—We prepare an instance I1 over the relational schema {Person, Knows, Fresh} such

that PersonI1 = PersonI , KnowsI1 = KnowsI , and FreshI1 = {(John)}.
—We prepare an instance I2 over the relational schema {Person, Knows, Fresh} such

that PersonI2 = PersonI , KnowsI2 = KnowsI , and FreshI2 = {(Ada)}.
We now call a REL-ISO oracle with input (I1, I2) in order to decide whether there is an
isomorphism from I1 to I2. Note that, with the addition of the FreshI relation, we are
actually asking whether there is an automorphism of I that maps John to Ada. The
oracle will respond true, which will serve as a witness to the nondefinability of (I, R),
whereby we return false.

The previous algorithm does not constitute a proof that FO-DEF ≤p
T REL-ISO due to

the fact that there are exponentially many bad tuples s ∈ adom(I)n \ R to be checked.
This problem can be avoided by considering an incremental characterization of the
first-order definability problem, which we turn to now.

LEMMA 4.4. Let I be an instance of a relational schema R and R a relation of arity
n such that adom(R) ⊆ adom(I). Given f ∈ AUT(I), f is not an automorphism of R if
and only if there exists a tuple t ∈ R and an integer i ∈ [0, n − 1] such that

(1) f (π≤i(t)) ∈ π≤i(R),
(2) f (π≤i+1(t)) �∈ π≤i+1(R).

Intuitively, f is not an automorphism of R if there is a tuple t ∈ R for which f (t) �∈ R;
however, we can refine this notion by finding the column i such that f maps t correctly
in the ith prefix (condition (1)), but fails to map t correctly for the (i + 1)th prefix
(condition (2)).

PROOF OF LEMMA 4.4. Let I be an instance of a relational schema R and R a relation of
arity n such that adom(R) ⊆ adom(I). The following is a well-known characterization
of the notion of automorphism of a relation.

CLAIM 1. f ∈ AUT(I) is not an automorphism of R if and only if there exists a tuple
t ∈ R such that f (t) �∈ R.

To prove the direction (⇒) of the lemma, we assume that f is not an automorphism of
R. In that case, we know by Claim 1 that there is a tuple t0 ∈ R such that f (t0) �= t for

1This would actually shows that (I, R) is not definable, but as this is a deterministic algorithm, we may
simply return the opposite answer.

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 13, Publication date: May 2016.

The Exact Complexity of the First-Order Logic Definability Problem 13:7

every t ∈ R. Then, for every t ∈ R, define kt as the minimum element of the set

{i ∈ [1, n] | f (πi(t0)) �= πi(t)}.
That is, kt represents the leftmost column for which f fails to map t0 to t. With the
previous, define

i0 =
(

max
t∈R

kt

)
− 1.

Then, we have that i0 satisfies the conditions stated in the lemma:

(1) Let t′ = argmaxt∈R kt. Then, by definition of i0 and t′, we have that f (π≤i0 (t0)) =
π≤i0 (t

′) (whereby f (π≤i0 (t0)) ∈ π≤i0 (R)).
(2) Let t′′ ∈ R. Then, by definition of i0, we have that f (π≤i0+1(t0)) �= π≤i0+1(t′′). As t′′ is

arbitrary, this implies that f (π≤i0+1(t)) �∈ π≤i0+1(R).

For the direction (⇐), assume that there exists tuple t ∈ R and integer i ∈ [0, n − 1]
such that items (1) and (2) hold. In particular, item (2) implies that f (t) �∈ R, whereby
f is not an automorphism of R by Claim 1.

We finally have all the necessary ingredients to prove Theorem 4.1.

PROOF OF THEOREM 4.1 We first show that FO-DEF ∈ GI by determining that
FO-DEF ≤p

T GRAPH-ISO. We use the result of Lemma 4.4 to produce Algorithm 1, a
deterministic polynomial-time algorithm that uses an oracle for the REL-ISO decision
problem.

Let I be a relational instance and R a relation such that arity(R) = n, and assume
that adom(R) ⊆ adom(I). On input (I, R), Algorithm 1 proceeds in a similar way as the
naı̈ve algorithm described at the beginning of this section, but trying to show the exis-
tence of a function f ∈ AUT(I) that fails as an automorphism of R in a specific column of
R. More precisely, Algorithm 1 starts by picking the values of i and t in its first two loops,
which will be used as stated in Lemma 4.4 to show that a function f ∈ AUT(I) is not
an automorphism of R. As f (π≤i(t)) must be a tuple in π≤i(R) according to Lemma 4.4,
there must exist a tuple s ∈ R such that f (π≤i(t)) = π≤i(s). This tuple is chosen in the
third loop of the algorithm. In addition, given that f (π≤i+1(t)) �∈ π≤i+1(R) according to
Lemma 4.4, then it must be the case that f (πi+1(t)) �= πi+1(s). But, in fact, for every
tuple r ∈ R such that π≤i(r) = π≤i(s), it must be the case that f (πi+1(t)) �= πi+1(r);
otherwise, f (π≤i+1(t)) would be a tuple in π≤i+1(R). The set BADELEMENTS contains all
the possible values a for f (πi+1(t)) that make f (πi+1(t)) to satisfy this condition. Thus,
in its innermost loop, Algorithm 1 picks a value a ∈ BADELEMENTS, and makes the call
CheckForIso (I, t, s, i, a) to check whether there exists an automorphism f of I such
that f (π≤i(t)) = π≤i(s) and f (πi+1(t)) = a. If this is the case, then Algorithm 1 knows
that f ∈ AUT(I) and f is not an automorphism of R; thus, it returns false. Otherwise,
after trying all possibilities for i, t, s and a, Algorithm 1 knows by Lemma 4.4 that
every automorphism of I is an automorphism of R; thus, it returns true.

To check whether there exists an automorphism f of I such that f (π≤i(t)) = π≤i(s) and
f (πi+1(t)) = a, function CheckForIso generalizes the approach given in Example 4.3,
and uses an oracle for the REL-ISO decision problem (in its penultimate line). More
precisely, this function starts by creating two copies I1 and I2 of I. Then, it adds to
I1 the fresh facts R1(π1(t)), . . ., Ri(πi(t)), Ra(πi+1(t)), and it adds to I2 the fresh facts
R1(π1(s)), . . ., Ri(πi(s)), Ra(a). Finally, it calls the oracle to verify whether there exists
an isomorphism from I1 to I2, which represents an automorphism of I satisfying the
aforementioned conditions, as it has to map π j(t) to π j(s) (1 ≤ j ≤ i) and πi+1(t) to a.

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 13, Publication date: May 2016.

13:8 M. Arenas and G. I. Diaz

ALGORITHM 1: Algorithm for Deciding First-Order Logic Definability
Input: Relational instance I, relation R with arity(R) = n.
Output: true if adom(R) ⊆ adom(I) and every automorphism of I is also an automorphism of

R, and false otherwise.
if adom(R) �⊆ adom(I) then

return false
end
for i = 0 to n − 1 do

foreach t ∈ R do
foreach s ∈ R do

BADELEMENTS ← {a ∈ adom(I) | ∀r ∈ R : if π≤i(r) = π≤i(s), then πi+1(r) �= a};
foreach a ∈ BADELEMENTS do

if CheckForIso(I, t, s, i, a) then
return false

end
end

end
end

end
return true

Function CheckForIso(I, t, s, i, a)
Input: Relational instance I, n-ary tuples t and s, values i ∈ [0, n] and a ∈ adom(I).
Output: true if there exists an automorphism f of I such that f (π≤i(t)) = π≤i(s) and

f (πi+1(t)) = a, and false otherwise.
R ← Relational schema of I;
R� ← R ∪ {R1, . . . , Ri, Ra}, where each Rj (1 ≤ j ≤ i) and Ra are fresh unary relation names;
I1 ← empty instance of R�;
I2 ← empty instance of R�;
foreach R ∈ R do

RI1 ← RI ;
RI2 ← RI ;

end
for j = 1 to i do

RI1
j ← {(π j(t))};

RI2
j ← {(π j(s))};

end
RI1

a ← {(πi+1(t))};
RI2

a ← {(a)};
if there exists an isomorphism from I1 to I2 (i.e., (I1, I2) ∈ REL-ISO) then return true;
else return false;

Example 4.5. Continuing with Examples 2.1 and 3.1, now consider the definability
problem for the pair (I, T), where I is defined as in Example 2.1 and T is the following
relation:

T
John Dana John
Ada Dana John

In this case, for i = 0, the algorithm will not find any automorphism of I that fails
to be an automorphism of π1(T). In fact, the only nontrivial automorphism of I is the
one that maps John → Ada, Ada → John, Dana → Dana, and Peter → Peter, and

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 13, Publication date: May 2016.

The Exact Complexity of the First-Order Logic Definability Problem 13:9

this one maps T correctly up to column i = 1. Similarly, for i = 1, we have that the
only nontrivial automorphism of I is also an automorphism of π≤2(T); thus, again,
the algorithm will not find the witness automorphism. For value i = 2, consider the
iteration step at which t = (John, Dana, John) and s = (Ada, Dana, John). Then, we
have that

BADELEMENTS = {Ada, Dana, Peter}.
We now iterate over the elements of BADELEMENTS. For a = Ada, we build instances I1

and I2, as follows. For I1, we have that PersonI1 = PersonI and KnowsI1 = KnowsI , and
we add the fresh facts:

TI1
1

John (= π1(t))
TI1

2
Dana (= π2(t))

TI1
a

John (= π3(t))

For I2, we have that PersonI2 = PersonI and KnowsI2 = KnowsI , and that

TI2
1

Ada (= π1(s))
TI2

2
Dana (= π2(s))

TI1
a

Ada (= a) .

Then, we have that I1 and I2 are, in fact, isomorphic, whereby the REL-ISO will return
true. Therefore, as a witness has been found, the algorithm returns false.

Algorithm 1 runs in polynomial time in the size of the input, assuming that every call
to the subroutine for the REL-ISO decision problem takes constant time (i.e., assuming
that Algorithm 1 has access to an oracle for the REL-ISO decision problem). More pre-
cisely, let |S| be the number of elements in a set S, and recall that n = arity(R). Then,
the outer loops of Algorithm 1 complete at most |R|2 × n iterations. For each of these
iterations, the set BADELEMENTS is computed in polynomial time, as at most |adom(I)|
candidate elements a are tested, in which case, for each element a, the condition defin-
ing the set BADELEMENTS can be checked in polynomial time on |R|, i ≤ n and |adom(I)|.
Moreover, as to the subroutine CheckForIso, it builds the relational instances I1 and I2
in polynomial time as well.

From this discussion, the fact that REL-ISO ∈ GI and the transitivity of polynomial-
time Turing reductions, we conclude that FO-DEF ≤p

T GRAPH-ISO, whereby FO-DEF ∈ GI.
We will now show that FO-DEF is GI-hard by showing that AUT-1-AFP ≤p

T FO-DEF

(we actually show a many-to-one reduction to the complement of FO-DEF, which is a
stronger result than we need). Given a graph G = (V, E) and a node v ∈ V , build a
relational instance I with only one relation E copying the edge relation of G. Finally,
build the relation R in the following way: RI = {(v)}, that is, R has arity 1 and only
contains one tuple with the distinguished node v. Note that, as built, an automorphism
f of I that is not an automorphism of R will be such that f (v) �= v. Thus, we have
that (G, v) ∈ AUT-1-AFP if and only if (I, R) �∈ FO-DEF. Hence, given that (I, R) can be
constructed in polynomial time from (G, v), we conclude that the problem AUT-1-AFP
can be solved in polynomial time by using an oracle for FO-DEF.

We therefore conclude that AUT-1-AFP ≤p
T FO-DEF, whereby FO-DEF is GI-

complete.

5. PRACTICAL CONSIDERATIONS AND POSSIBLE EXTENSIONS

Having established the exact complexity of the first-order logic definability problem,
we now turn to possible variations of the problem and practical considerations. The
definability problem, while of great theoretical interest, should be considered in the
broader context of database research. As was mentioned in the introduction, the de-
finability problem provides a common basis for research in reverse engineering [Tran
et al. 2009; Zhang et al. 2013], querying by example [Abouzied et al. 2013; Bonifati

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 13, Publication date: May 2016.

13:10 M. Arenas and G. I. Diaz

et al. 2014a], view definitions [Sarma et al. 2010], and so on. In fact, FO-DEF may be
interpreted as a basic query reverse-engineering scenario, in which a user who has
access to a dataset and an answer relation needs to discover the query (first-order
query, in this case) that produced such an answer over the data. A natural extension
of this scenario is one in which we must fit several such examples source–target pairs
[Fletcher et al. 2009], which we discuss in Section 5.1. Such scenarios find applications
in areas such as schema matching and data integration [Bilke and Naumann 2005;
Gottlob and Senellart 2010; Qian et al. 2012; ten Cate et al. 2013]. In each of these ar-
eas, it may be interesting to explore the consequences of the graph-isomorphism-based
approach to the definability problems presented here.

In terms of practical implementations of FO-DEF itself, an algorithm for FO-DEF

whose efficiency depends on an external subroutine for the graph isomorphism
problem—a heavily studied problem in its own right—comes with several benefits
for optimization. Not only can we now tap into the power of highly optimized graph-
isomorphism [Read and Corneil 1977; Arvind and Torán 2005; Torán and Wagner 2009;
Köbler et al. 1993; Piperno 2008; McKay and Piperno 2014; Babai 2015], we can also
consider all restrictions on the input graphs that produce efficiently solvable versions
of the graph-isomorphism problem, and inherit those benefits in our FO-DEF imple-
mentations (e.g., see Grohe [2011, 2012]).

As a final consideration, in Section 5.2, we comment on the use of constants in the
queries. Although we will see that unrestricted constants results in an uninteresting
problem, a more restricted use of constants may have practical applications that make
this case worth looking into.

5.1. The BP-PAIRS Problem

Expanding on the definability problem as a reverse engineering scenario, where a
query must be obtained to match a source-target (relational instance-relation) pair, the
situation where several such pairs are given is represented by the following decision
problem:

BP-PAIRS = {((S1, T1), . . . , (Sk, Tk)) | S1, T1, . . . Sk, Tk are relations and
there exists a first-order query Q such that for every i ∈ [1, k] : Q(Si) = Ti}.

In Fletcher et al. [2009], it was shown that GRAPH-ISO ≤p
m BP-PAIRS, that is, there

exists a polynomial-time many-to-one reduction from GRAPH-ISO to BP-PAIRS (this was
referred to as cograph-isomorphism-hardness in Fletcher et al. [2009]). Moreover, it
was also shown in Fletcher et al. [2009] that BP-PAIRS ∈ coNP. A corollary of the
first result is that BP-PAIRS is GI-hard, as a many-to-one reduction also constitutes
a Turing reduction (the GI-hardness of BP-PAIRS can be alternatively derived using
the results from Section 4). The key insight regarding this generalized version of the
definability problem is its semantic characterization: an input ((S1, T1), . . . , (Sk, Tk)) is
in BP-PAIRS if and only if (i) for every i ∈ [1, k], we have adom(Ti) ⊆ adom(Si); and
(ii) for every i, j ∈ [1, k], we have that if f is an isomorphism from Si to Sj , then it is
also an isomorphism from Ti to Tj [Fletcher et al. 2009].

Algorithm 1 can be adapted to solve this decision problem as well, leading to the
following:

THEOREM 5.1. BP-PAIRS ∈ GI.

The previous result, along with the GI-hardness of BP-PAIRS, as proven in Fletcher
et al. [2009], gives the following result:

COROLLARY 5.2. BP-PAIRS is GI-complete.

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 13, Publication date: May 2016.

The Exact Complexity of the First-Order Logic Definability Problem 13:11

The previous corollary establishes the exact complexity of BP-PAIRS, thus closes a
problem that was left open in Fletcher et al. [2009].

In order to prove Theorem 5.1, consider the following extension of Lemma 4.4:

LEMMA 5.3. Let S1, S2, T1, T2 be relations such that adom(Ti) ⊆ adom(Si) for i ∈
[1, 2]. Given an isomorphism f from S1 to S2, f is not an isomorphism from T1 to T2 if
and only if there exists a tuple t ∈ T1 and an integer i ∈ [0, n − 1] such that:

(1) f (π≤i(t)) ∈ π≤i(T2),
(2) f (π≤i+1(t)) �∈ π≤i+1(T2).

The proof of this lemma is very similar to that of Lemma 4.4, thus has been omitted.
With this result, an algorithm analogous to that shown in Section 4.1 is used to prove
Theorem 5.1.

5.2. Including Constants in the Definability Problem

As mentioned previously, FO-DEF considers the existence of a first-order logic query
without constants. Let FO-DEF-CONST be the decision problem consisting of pairs (I, R)
such that there exists a first-order query with constants Q such that Q(I) = R. Then,
FO-DEF-CONST can be decided in polynomial time due to the fact that a pair (I, R) will
be included in FO-DEF-CONST if and only if adom(R) ⊆ adom(I). It is evident that this
problem has become uninteresting, as a query can always be found with the sole ex-
ception that a first-order query may not introduce new constants into the answer. The
actual reverse-engineered query Q such that Q(I) = R is not very informative, though;
given an input (I, R) such that adom(R) ⊆ adom(I) and arity(R) = n, the proof of
FO-DEF-CONST ∈ P constructs a query Q of the form {(x1, . . . , xn) | ∨

t∈R Qt(x1, . . . , xn)},
where, for a tuple t = (a1, . . . , an) in R, the query Qt(x1, . . . , xn) is the expression∧

i∈[1,n] xi = ai. This query is fine tuned to the specific pair (I, R) and does not shed
light on the original unknown query which might have produced this pair. In fact, this
query becomes useless if some constants in the input (I, R) are renamed thus, it is an
example of overfitting.

A more restricted, and useful, use of constants is formalized in the following problem:
FO-DEF-CONST-S = {(I, R, C)} | I is a relational instance, R is a relation, C is a set of
constants, and there exists a first-order query Q, which may mention constants in C
only, such that Q(I) = R}. This extension of FO-DEF is GI-complete. To see this, note that
FO-DEF ≤p

m FO-DEF-CONST-S is trivial (by setting C = ∅), and that FO-DEF-CONST-S ≤p
m

FO-DEF admits a simple proof as well. On input (I, R, C) to FO-DEF-CONST-S, construct
an instance (I′, R′) to FO-DEF by encoding the constants in C into the instance I′, using
singleton relations. More precisely, set R′ = R and let I′ have all the relations in I plus a
unary singleton relation Ci = {(ci)} for each constant ci ∈ C. The previous arrangement
for (I′, R′) allows constants to be referred to indirectly by using the expression Ci(x) in
a first-order query, as it will be true only when x is assigned to ci.

As a more elaborate—and interesting—setting, consider the problem FO-DEF-
CONST-≤ = {(I, R, 0n) | I is a relational instance, R is a relation, and n is a natural
number, such that there exists a first-order query Q that mentions at most n distinct
constants, and Q(I) = R}. Note that the input n in FO-DEF-CONST-≤ is encoded in unary
as a string of 0s of length n. Although FO-DEF-CONST-≤ remains GI-hard (set n = 0 in
a Turing reduction), it is no longer obviously in GI. Actually, FO-DEF-CONST-≤ ∈ NPGI,
as a nondeterministic polynomial-time algorithm, may guess a set C of n constants and
use an oracle for the FO-DEF-CONST-S problem. The question remains, then, whether
FO-DEF-CONST-≤ is in GI.

Finally, consider the case in which the queries have access to a linear order over
the constants in the relational instance, which exhibits underlying similarities

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 13, Publication date: May 2016.

13:12 M. Arenas and G. I. Diaz

to the unrestricted constants case FO-DEF-CONST. Formally, consider the problem
FO-DEF-LIN = {(I, R) | I to be a relational instance having a binary relation < which is a
linear order over all elements in adom(I), R is a relation, and there exists a first-order
query Q such that Q(I) = R}. In the presence of the linear order, and using the semantic
characterization, the only automorphism of I is the identity (i.e., the function h(x) = x),
which is trivially also an automorphism of R. Hence, in this case, an algorithm must
ensure only that adom(R) ⊆ adom(I) to check whether (I, R) ∈ FO-DEF-LIN, which
may be completed in polynomial time. Therefore, FO-DEF-LIN ∈ P and, once again,
the problem becomes trivial. Moreover, this is also an example of over-fitting, as every
element in I can be identified by its position in the linear order, which is used as in
the case of FO-DEF-CONST to define a query Q such that Q(I) = R.

6. CONCLUSIONS

The first-order logic definability problem, FO-DEF, and the generalized version,
BP-PAIRS, have been found to be GI-complete, thus closing two open problems in the
database area. Two fundamental corollaries of these results are that FO-DEF can be
solved efficiently if the graph-isomorphism problem can be solved efficiently, and that
FO-DEF is not coNP-complete unless the polynomial hierarchy collapses to the second
level. The incremental approach taken by the polynomial-time algorithm for FO-DEF

with an oracle for the graph-isomorphism problem may prove applicable to other sce-
narios as well, and deserves further investigation.

ACKNOWLEDGMENTS

The authors would like to thank Michael Benedikt for participating in the discussions that led to the
results presented, and to Miguel Romero and Balder ten Cate for providing many valuable comments and
suggestions.

REFERENCES

Scott Aaronson, Greg Kuperberg, and Christopher Granade. 2005. Complexity Zoo. Retrieved March 28,
2016 from https://complexityzoo.uwaterloo.ca.

Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of Databases. Addison-Wesley, New
York, NY.

Azza Abouzied, Dana Angluin, Christos H. Papadimitriou, Joseph M. Hellerstein, and Avi Silberschatz.
2013. Learning and verifying quantified Boolean queries by example. In Proceedings of the 32nd ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS’13), New York, NY,
June 22–27, 2013. 49–60.

Timos Antonopoulos, Frank Neven, and Frédéric Servais. 2013. Definability problems for graph query lan-
guages. In Proceedings of the Joint 2013 EDBT/ICDT Conferences (ICDT’13), Genoa, Italy, March 18–22,
2013. 141–152.

Sanjeev Arora and Boaz Barak. 2009. Computational Complexity - A Modern Approach. Cambridge Univer-
sity Press, New York, NY.

Vikraman Arvind and Jacobo Torán. 2005. Isomorphism testing: Perspective and open problems. Bulletin of
the EATCS 86, 66–84.

László Babai. 2015. Graph isomorphism in quasipolynomial time. CoRR abs/1512.03547 (2015).
http://arxiv.org/abs/1512.03547

François Bancilhon. 1978. On the completeness of query languages for relational data bases. In Proceed-
ings of the 7th Symposium of Mathematical Foundations of Computer Science 1978, Zakopane, Poland,
September 4–8, 1978 (Lecture Notes in Computer Science), Józef Winkowski (Ed.), Vol. 64. Springer,
Berlin, 112–123.

Alexander Bilke and Felix Naumann. 2005. Schema matching using duplicates. In Proceedings of the 21st
International Conference on Data Engineering (ICDE’05), 5–8 April 2005, Tokyo, Japan. 69–80.

Angela Bonifati, Radu Ciucanu, and Aurélien Lemay. 2015. Learning path queries on graph databases. In
Proceedings of the 18th International Conference on Extending Database Technology (EDBT’15), Brussels,
Belgium, March 23–27, 2015. 109–120.

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 13, Publication date: May 2016.

https://complexityzoo.uwaterloo.ca
http://arxiv.org/abs/1512.03547

The Exact Complexity of the First-Order Logic Definability Problem 13:13

Angela Bonifati, Radu Ciucanu, Aurélien Lemay, and Slawek Staworko. 2014b. A paradigm for learning
queries on big data. In Proceedings of the 1st International Workshop on Bringing the Value of “Big
Data” to Users (Data4U@VLDB’14), Hangzhou, China, September 1, 2014. 7.

Angela Bonifati, Radu Ciucanu, and Slawek Staworko. 2014a. Interactive inference of join queries. In Pro-
ceedings of the 17th International Conference on Extending Database Technology (EDBT’14), Athens,
Greece, March 24–28, 2014. 451–462.

Ashok K. Chandra and David Harel. 1980. Computable queries for relational data bases. Journal of Computer
and System Sciences 21, 2, 156–178.

Sara Cohen and Yaacov Y. Weiss. 2013. Certain and possible XPath answers. In Proceedings of the Joint 2013
EDBT/ICDT Conferences (ICDT’13), Genoa, Italy, March 18–22, 2013. 237–248.

Herbert B. Enderton. 1972. A Mathematical Introduction to Logic. Academic Press, New York.
Flavio Antonio Ferrarotti, Alejandra Lorena Paoletti, and José M. Turull Torres. 2009. First-order types

and redundant relations in relational databases. In Proceedings of Advances in Conceptual Modeling -
Challenging Perspectives, ER 2009 Workshops, Gramado, Brazil, November 9–12, 2009. 65–74.

George H. L. Fletcher, Marc Gyssens, Jan Paredaens, and Dirk Van Gucht. 2009. On the expressive power
of the relational algebra on finite sets of relation pairs. IEEE Transactions on Knowledge and Data
Engineering 21, 6, 939–942.

George H. L. Fletcher, Marc Gyssens, Jan Paredaens, Dirk Van Gucht, and Yuqing Wu. 2015. Structural
characterizations of the navigational expressiveness of relation algebras on a tree. CoRR abs/1502.03258
(2015).

Georg Gottlob and Pierre Senellart. 2010. Schema mapping discovery from data instances. Journal of the
ACM 57, 2.

Martin Grohe. 2011. From polynomial time queries to graph structure theory. Communications of the ACM
54, 6, 104–112.

Martin Grohe. 2012. Fixed-point definability and polynomial time on graphs with excluded minors. Journal
of the ACM 59, 5, 27.

Marc Gyssens, Jan Paredaens, and Dirk Van Gucht. 1989. A uniform approach toward handling atomic and
structured information in the nested relational database model. Journal of the ACM 36, 4, 790–825.

Marc Gyssens, Jan Paredaens, Dirk Van Gucht, and George H. L. Fletcher. 2006. Structural characterizations
of the semantics of XPath as navigation tool on a document. In Proceedings of the 25th ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, June 26–28, 2006, Chicago, IL, 318–
327.

Lane A. Hemaspaandra. 1993. Lowness: A yardstick for NP-P. SIGACT News 24, 2, 10–14.
Peter Jeavons, David A. Cohen, and Marc Gyssens. 1999. How to determine the expressive power of con-

straints. Constraints 4, 2, 113–131.
Johannes Köbler, Uwe Schöning, and Jacobo Toran. 1993. The Graph Isomorphism Problem: Its Structural

Complexity. Springer.
Anna Lubiw. 1981. Some NP-complete problems similar to graph isomorphism. SIAM Journal on Computing

10, 1, 11–21.
Brendan D. McKay and Adolfo Piperno. 2014. Practical graph isomorphism, II. Journal of Symbolic Compu-

tation 60, 94–112.
Jan Paredaens. 1978. On the expressive power of the relational algebra. Information Processing Letters 7, 2,

107–111.
Adolfo Piperno. 2008. Search space contraction in canonical labeling of graphs (preliminary version). CoRR

abs/0804.4881 (2008). http://arxiv.org/abs/0804.4881
Li Qian, Michael J. Cafarella, and H. V. Jagadish. 2012. Sample-driven schema mapping. In Proceedings of

the ACM SIGMOD International Conference on Management of Data (SIGMOD’12), Scottsdale, AZ, May
20–24, 2012. 73–84.

Ronald C. Read and Derek G. Corneil. 1977. The graph isomorphism disease. Journal of Graph Theory 1, 4,
339–363.

Anish Das Sarma, Aditya G. Parameswaran, Hector Garcia-Molina, and Jennifer Widom. 2010. Synthesizing
view definitions from data. In Proceedings of the 13th International Conference on Database Theory
(ICDT’10), Lausanne, Switzerland, March 23–25, 2010. 89–103.

Uwe Schöning. 1983. A low and a high hierarchy within NP. Journal of Computer and System Sciences 27,
1, 14–28.

Uwe Schöning. 1988. Graph isomorphism is in the low hierarchy. Journal of Computer and System Sciences
37, 3, 312–323.

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 13, Publication date: May 2016.

http://arxiv.org/abs/0804.4881

13:14 M. Arenas and G. I. Diaz

Slawek Staworko and Piotr Wieczorek. 2012. Learning twig and path queries. In 15th International Confer-
ence on Database Theory (ICDT’12), Berlin, Germany, March 26–29, 2012. 140–154.

Slawek Staworko and Piotr Wieczorek. 2015. Characterizing XML twig queries with examples. In 18th
International Conference on Database Theory (ICDT’15), March 23–27, 2015, Brussels, Belgium. 144–
160.

Larry J. Stockmeyer. 1976. The polynomial-time hierarchy. Theory of Computing Sciences. 3, 1, 1–22.
Balder ten Cate and Vı́ctor Dalmau. 2015. The product homomorphism problem and applications. In 18th

International Conference on Database Theory (ICDT’15), March 23–27, 2015, Brussels, Belgium. 161–
176.

Balder ten Cate, Vı́ctor Dalmau, and Phokion G. Kolaitis. 2013. Learning schema mappings. ACM Transac-
tions on Database Systems 38, 4, 28.

Jacobo Torán and Fabian Wagner. 2009. The complexity of planar graph isomorphism. Bulletin of the EATCS
97, 60–82.

Quoc Trung Tran, Chee-Yong Chan, and Srinivasan Parthasarathy. 2009. Query by output. In Proceedings
of the ACM SIGMOD International Conference on Management of Data (SIGMOD’09), Providence, RI,
June 29 - July 2, 2009. 535–548.

Jan Van den Bussche. 2001. Applications of Alfred Tarski’s ideas in database theory. In Computer Science
Logic, 15th International Workshop (CSL’01). Proceedings of the 10th Annual Conference of the EACSL,
Paris, France, September 10–13, 2001. 20–37.

Dirk Van Gucht. 1987. On the expressive power of the extended relational algebra for the unnormalized
relational model. In Proceedings of the 6th ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, March 23–25, 1987, San Diego, California. 302–312.

Dirk Van Gucht. 2009. BP-completeness. In Encyclopedia of Database Systems. 265–266.
Ross Willard. 2010. Testing expressibility is hard. In Proceedings of the 16th International Conference on

Principles and Practice of Constraint Programming (CP’10), St. Andrews, Scotland, UK, September
6–10, 2010. 9–23.

V. N. Zemlyachenko, N. M. Korneenko, and R. I. Tyshkevich. 1985. Graph isomorphism problem. Journal of
Soviet Mathematics 29, 4.

Meihui Zhang, Hazem Elmeleegy, Cecilia M. Procopiuc, and Divesh Srivastava. 2013. Reverse engineering
complex join queries. In Proceedings of the ACM SIGMOD International Conference on Management of
Data (SIGMOD’13), New York, NY, June 22–27, 2013. 809–820.

Received May 2015; revised October 2015; accepted January 2016

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 13, Publication date: May 2016.

