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Abstract Nested words provide a natural model of runs of programs with recursive
procedure calls. The usual connection between monadic second-order logic (MSO)
and automata extends from words to nested words and gives us a natural notion of
regular languages of nested words.

In this paper we look at some well-known aspects of regular languages—their
characterization via fixed points, deterministic and alternating automata for them, and
synchronization for defining regular relations—and extend them to nested words. We
show that mu-calculus is as expressive as MSO over finite and infinite nested words,
and the equivalence holds, more generally, for mu-calculus with past modalities eval-
uated in arbitrary positions in a word, not only in the first position. We introduce the
notion of alternating automata for nested words, show that they are as expressive as
the usual automata, and also prove that Muller automata can be determinized (unlike
in the case of visibly pushdown languages). Finally we look at synchronization over
nested words. We show that the usual letter-to-letter synchronization is completely
incompatible with nested words (in the sense that even the weakest form of it leads
to an undecidable formalism) and present an alternative form of synchronization that
gives us decidable notions of regular relations.
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1 Introduction

Nested words, introduced by Alur and Madhusudan [6], extend finite or infinite words
with a hierarchical nesting structure. The intuitive idea is that a nested word repre-
sents a model of execution of a program with recursive procedure calls; the nesting
relation then connects matching calls and returns, while other elements correspond to
internal operations. An example of a finite nested word is shown in the picture below,
where the ri ’s are returns matching calls ci ’s.

Such structures naturally appear in XML documents that are string representations of
trees using opening and closing tags [8, 32], or in software verification of programs
with stack-based control flow [2, 4]. A nested word automaton [6] runs from left
to right, similarly to a finite state automaton, but each time it encounters a “return”
position, the next state depends not only on the current state but also on the state of
the matching “call”.

A nice property of nested words and their automata is that they share logical char-
acterizations with the usual (unnested) words: the finite-automaton model has the
same expressiveness as monadic second-order logic (MSO) [5, 6]. This gives us a
natural and robust notion of regular languages of nested words, with the expected
closure properties, decision procedures, and logical characterizations.

For finite or infinite unnested words, an alternative way of describing regularity
logically is via the modal μ-calculus (cf. [7]). That is, μ-calculus formulae evaluated
in the first position of a word define precisely the regular languages. Moreover, μ-
calculus formulae with past modalities evaluated in an arbitrary position of a word
have precisely the power of MSO formulae with one free first-order variable. As
our first result, we extend these equivalences to the case of finite and infinite nested
words.

We then look at automata characterizations of regular languages of nested words.
Nondeterministic and deterministic automata have previously been considered [5, 6,
25], and [5] showed that automata can be determinized in the finite case, but in the
infinite case this is impossible even for automata with a Muller acceptance condition
(unlike in the case of the usual ω-words). Then [25] introduced a different automaton
model and showed that it admits a determinization procedure over nested words. We
expand this in two ways. First we introduce alternation in the case of nested word
automata, and prove that alternating automata can still be translated into nondeter-
ministic ones. Second, we refine the determinization procedure for automata from
[25] to show that over infinite nested words, every regular language is definable by a
deterministic Muller automaton. This also gives us some corollaries about the struc-
ture of regular languages of nested ω-words.
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We finally turn our attention to the notion of regular relations. Over words or
trees, one moves from sets to relations by using letter-to-letter synchronization. For
example, over words, an automaton runs over a tuple of words viewing the tuple of
ith letters of the words as a single letter of an expanded alphabet [18]. The same
approach works for trees, ranked and unranked [11]. The notion of regular relations
also leads to a notion of automatic structures [10, 13, 15], i.e. decidable first-order
structures over words in which all definable relations are regular.

In the case of nested words, there are two ways of synchronizing them: either by
considering their linear structure, as for words, or by considering the tree structure
imposed by the nesting relation. While in the latter case we essentially deal with the
known case of trees, we show that, in contrast, the notion of letter-to-letter synchro-
nization that uses the linear structure is incompatible with nested words: the simplest
extension of nested word automata with such synchronization is undecidable. We
also show how the tree synchronization can be interpreted over the linear structure,
by presenting an alternative call-return notion of synchronization.

Related work Regular languages of nested words are a special case of visibly push-
down languages (VPL) [5], which are a restriction of the class of context-free lan-
guages that subsumes all regular properties and some non-regular properties relevant
in program analysis (e.g. stack-inspection properties and pre-post conditions). VPLs
in many ways resemble regular languages: they have the same closure properties,
and most natural problems related to them are decidable. The idea of VPLs is that
the input alphabet � is partitioned into three parts, �c,�r,�i , of symbols viewed
as procedure calls, returns, and internal operations. A machine model for VPLs is a
special pushdown automaton that pushes a symbol onto the stack in a call, pops one
symbol in a return, and does not touch the stack when reading an internal symbol.

VPLs were introduced in [5] and regular languages of nested words in [6]. Nested
words can be viewed as special classes of trees (and we shall use this often in the
paper); such tree representations were introduced in [5, 6] as well. Applications in
program analysis are discussed, e.g., in [2, 4], and applications in processing tree-
structured data in [8, 32]. Alternating automata for nested words were introduced
independently, and at about the same time, in [14]. In this paper, we compare our
automata model with the automata model introduced in [14] and, in particular, we
use a result from [14] to prove that alternation can be eliminated in our case.

There are several related results on μ-calculus and MSO, e.g. their equality over
infinite binary trees [29] or finite unranked trees [9] or expressive-completeness of
μ-calculus [21]. We explain in Sect. 3 why we cannot derive our result from those.
Another fixed-point logic VPμ is defined in [2] to specify properties of executions of
programs. It differs from the standard versions of μ-calculus we look at as its fixed
points are evaluated not over sets of nodes but over sets of subtrees of the program;
further, its expressiveness is known to be different from MSO [3].

Nondeterministic automata for VPLs and regular languages of nested words were
defined in [5, 6], and [5] observed that Muller automata for VPLs (over infinite words)
are not determinizable. Then [25] noticed that this is due to VPLs having potentially
arbitrarily many unmatched calls/returns, and introduced a different automaton model
(stair automata) that can be determinized. We use them to show how to determinize
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finite-state Muller automata over nested ω-words. None of these papers addresses
alternating automata over nested words.

Letter-to-letter synchronization for defining regular relations is an old notion [18],
and the concept of universal automatic structures [13, 15] is based on it. Although
such automatic structures exist for both words and trees [10, 11], we show here that
letter-to-letter synchronization is incompatible with nesting structure. A very differ-
ent notion of synchronization for pushdown automata (that generalizes VPLs) was
studied in [16].

Organization Basic definitions are given in Sect. 2. We describe MSO unary queries
via μ-calculus in Sect. 3. In Sect. 4 we study automata for nested words, define al-
ternating automata, and describe determinization for Muller automata. In Sect. 5 we
look at synchronization and regular relations for nested words.

2 Preliminaries

Words, ω-words, and automata Let � be a finite alphabet. A finite word w =
a1 . . . an in �∗ is represented as a logical structure 〈 {1, . . . , n} , (Pa)a∈� ,< 〉, where
< is the usual linear order on {1, . . . , n}, and Pa is the set of i’s such that ai = a.
We shall use w to refer to both the word and its logical representation. Infinite, or ω-
words, are sequences a1a2 · · · of symbols in � indexed by positive natural numbers,
and are represented as structures 〈N+, (Pa)a∈�,<〉. The length of w is denoted by
|w|.

A (nondeterministic finite-state) automaton A over � is a tuple (�,Q,Q0, δ,F ),
where Q is a finite set of states, Q0 ⊆ Q is a set of initial states, F ⊆ Q is a set
of final states and δ : Q × � → 2Q is a transition function. For automata over ω-
words we shall use either a Büchi acceptance condition (given by F ⊆ Q) or a
Muller acceptance condition (given by F ⊆ 2Q). A run of A over a word w of
length n is a map ρ : {1, . . . , n + 1} → Q such that ρ(1) ∈ Q0 and ρ(i + 1) ∈
δ(ρ(i), ai), for all i ≤ n. Equivalently, a run of A over an ω-word w is a map
ρ : N

+ → Q such that ρ(1) ∈ Q0 and ρ(i + 1) ∈ δ(ρ(i), ai), for all i. The run
ρ on a finite word w is accepting if ρ(|w| + 1) ∈ F . We let Inf (ρ) be the set of
states that occurs infinitely often in a run ρ over an ω-word; that is, Inf (ρ) = {q ∈
Q | there exist infinitely many i ∈ N

+ such that ρ(i) = q}. Then ρ is accepting for a
Büchi condition F if Inf (ρ) ∩ F 
= ∅, and it is accepting for a Muller condition F
if Inf (ρ) ∈ F . A word is accepted iff there exists an accepting run on it. Sets of
(ω-)words accepted by automata are called regular.

A is deterministic if |Q0| = 1, and |δ(q, a)| = 1 for every a ∈ � and q ∈ Q. Non-
deterministic automata over ω-words with Büchi and Muller conditions are equiva-
lent, and automata with Muller acceptance conditions can be determinized, cf. [33].

Nested words A finite nested word over � is a pair w̄ = (w,η), where w ∈ �∗ and
η is a binary matching relation on {1, . . . , |w|} that satisfies: (1) η(i, j) implies i < j ;
(2) η(i, j) and η(i, j ′) imply j = j ′ and η(i, j) and η(i′, j) imply i = i′; and (3) if
η(i, j), η(i′, j ′), and i < i′ then either j < i′ or j ′ < j .

A nested ω-word is a pair w̄ = (w,η), where w is an ω-word and η is a match-
ing on N

+ satisfying conditions (1)–(3) above. We also refer to them as infinite
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nested words. We represent nested words as logical structures over the vocabulary
{(Pa)a∈�,<,η}, i.e. words expanded with a matching relation. For a nested word w̄

and two positions i < j , we let w̄[i, j ] be the substructure of w̄ induced by positions
� such that i ≤ � ≤ j .

A position i of a nested word w̄ is: (1) a call position if there is j such that η(i, j)

holds; (2) a return position if there is j such that η(j, i) holds; and (3) an internal
position if it is neither a call nor a return. Clearly, the sets of call, return and internal
positions of a nested word are pairwise disjoint. Whenever η(i, j) holds we say that
i is the call of j , and j is the return of i.

Nested word automata A nested word automaton, or NWA [6], A over � is defined
as a usual automaton, except that δ is a triple (δc, δι, δr ) of transition functions δc, δι :
Q × � → 2Q, and δr : Q × Q × � → 2Q. A run of A over w̄ = (a1 · · · , η) is a
mapping ρ : {1, . . .} → Q such that ρ(1) ∈ Q0 and for every i ∈ N

+ (or i ∈ [1, |w̄|]
for finite nested words),

• if i is a call position, then ρ(i + 1) ∈ δc(ρ(i), ai);
• if i is an internal position, then ρ(i + 1) ∈ δι(ρ(i), ai);
• if i is a return position whose matching call is j , then ρ(i +1) ∈ δr (ρ(i), ρ(j), ai).

Büchi and Muller acceptance conditions can then be defined in exactly the same way
as for the usual automata (and are easily shown to be equivalent over nested words,
for nondeterministic automata). We refer to such automata as ω-NWAs. An NWA is
deterministic if the values of all transition functions are singletons.

A set of nested (ω-)words accepted by an (ω-)NWA is called regular.

Monadic second-order logic and μ-calculus Monadic second-order logic (MSO)
extends first-order logic with quantification over sets. Over nested words, its vocab-
ulary contains predicates Pa (a ∈ �), < and η. That is, MSO over nested words is
defined as:

ϕ,ϕ′ := Pa(x) | X(x) | x ≤ y | η(x, y) | ϕ ∨ ϕ′ | ¬ϕ | ∃xϕ | ∃Xϕ,

where a ranges over �, x ranges over a countably infinite set of first-order variables
{x, y, . . . }, and X ranges over a countably infinite set of monadic second-order vari-
ables {X,Y, . . . }.

Intuitively, first-order variables in MSO formulas are interpreted as positions in a
nested word, while monadic second-order variables range over sets of positions in a
nested word. Given a nested word w̄, a valuation σ that assigns a position in w̄ to
each first-order variable x, and a valuation v that assigns a set of positions in w̄ to
each monadic second-order variable X, we formally define the semantics of MSO
formulas over nested words as follows (omitting the rules for Boolean connectives):

• (w̄, σ, v) |= Pa(x) iff σ(x) belongs to the interpretation of Pa in w̄;
• (w̄, σ, v) |= x ≤ y iff σ(x) ≤ σ(y) holds in w̄;
• (w̄, σ, v) |= η(x, y) iff η(σ (x), σ (y)) holds in w̄;
• (w̄, σ, v) |= X(x) iff σ(x) ∈ v(X);
• (w̄, σ, v) |= ∃xϕ iff there exists a position i in w̄ such that (w̄, σ [x → i], v) |= ϕ,

where σ [x → i] extends the valuation σ by assigning position i to the variable x;
and
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• (w̄, σ, v) |= ∃Xϕ iff (w̄, σ, v[X → I ]) |= ϕ, for some set I of positions in w̄, where
v[X → I ] extends the valuation v by assigning the set I to the variable X.

Let ϕ be an MSO formula without free second-order variables. As usual, we write
ϕ(x1, . . . , xn) to denote that x1, . . . , xn are the free first-order variables of ϕ. Fur-
ther, if σ(xj ) = ij (1 ≤ j ≤ n) then we write w̄ |= ϕ(i1, . . . , in) instead of (w,σ ) |=
ϕ(x1, . . . , xn).

Notice that it is not necessary to extend the MSO vocabulary of nested words
with unary predicates that identify which positions are calls, returns, and internals,
since they are easily definable in the language by means of the formulas ∃yη(x, y),
∃yη(y, x), and ¬∃y(η(x, y) ∨ η(y, x)), respectively.

It follows from [5, 6] that Büchi’s theorem—showing that in the absence of nesting
a language (of words or ω-words) is regular iff it is MSO definable—extends to nested
words. That is, a set of nested words or nested ω-words is regular (accepted by an
(ω-)NWA) iff it is definable by an MSO sentence (an MSO formula without free
variables).

The μ-calculus over nested words, denoted by Lμ, is defined by the grammar:

ϕ,ϕ′ := a | X | ϕ ∨ ϕ′ | ϕ ∧ ϕ′ | ¬ϕ | ♦ϕ | ♦ηϕ | μX.ϕ(X)

with X occurring positively in ϕ(X) (i.e. X occurs in ϕ(X) under the scope of an even
number of negations), and a ∈ � ∪ {call,int,ret}. Given a nested (ω-)word w̄

(finite or infinite), a position i in w̄, and a valuation v assigning to each free variable
X a set v(X) of positions of w̄, the semantics is as follows (omitting the rules for
Boolean connectives):

• (w̄, v, i) |= int iff i is an internal position; (w̄, v, i) |= call iff i is a call posi-
tion; and (w̄, v, i) |= ret iff i is a return position.

• (w̄, v, i) |= a, for a ∈ �, iff i is labeled a.
• (w̄, v, i) |= X iff i ∈ v(X).
• (w̄, v, i) |= ♦ϕ iff i + 1 belongs to w̄ and (w̄, v, i + 1) |= ϕ.
• (w̄, v, i) |= ♦ηϕ iff there is an � such that η(i, �) holds and (w̄, v, �) |= ϕ.
• (w̄, v, i) |= μX.ϕ(X) iff i is in the least fixed point of the operator defined by ϕ; in

other words, if i ∈ ⋂{P | {i′ | (w̄, v[P/X], i′) |= ϕ} ⊆ P }, where v[P/X] extends
the valuation v by assigning to X the set of positions P .

The μ-calculus over words mentions neither the modality ♦ηϕ nor the predicates
call, ret and int.

We include conjunction in our definition of Lμ, in addition to negation and dis-
junction, since later we will need to talk about the restriction of Lμ without negation,
but in which both disjunction and conjunction are used. Notice that the predicate
call is only syntactic sugar, as it can easily be defined in the logic by ♦η(a ∨ ¬a).
On the other hand, both ret and int add expressive power, as without them the
language lacks the ability to talk about the past. In order to overcome this lack of
expressive power, we shall also work with the full μ-calculus [35] (denoted by Lfull

μ ),
which is an extension of Lμ with the past modalities ♦−ϕ and ♦−

η ϕ:

• (w̄, v, i) |= ♦−ϕ iff i > 1 and (w̄, v, i − 1) |= ϕ.
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• (w̄, v, i) |= ♦−
η ϕ iff there is an � such that η(�, i) holds and (w̄, v, �) |= ϕ.

Greatest fixed-points νX.ϕ(X) are definable in Lμ as ¬μX.¬ϕ(¬X). Using greatest
fixed-points and �ϕ (defined as ¬♦¬ϕ), one can push all negations to atoms in Lμ

formulae. For resulting formulae, an important parameter is the alternation-depth of
least and greatest fixed-points [7]. We refer to Lk

μ as the fragment of Lμ that consists
of formulae of alternation depth at most k (e.g., the alternation-free fragment is L0

μ).

Languages and unary queries Formulae of Lμ (without free variables) are satisfied
in positions of a nested word, and thus they naturally give rise to classes of unary
queries that return, for w̄, the set {i | (w̄, i) |= ϕ}. Every Lμ formula ϕ without free
variables also defines a language (i.e. a class of nested words) {w̄ | (w̄,1) |= ϕ}.
Likewise, every MSO formula ϕ(x) with one free first-order variable defines a unary
query, and every MSO sentence defines a language. In the absence of nesting, it is
well-known (see, e.g., [7, 29]) that a language (of words or ω-words) is definable by
a Lμ formula iff it is definable by an MSO sentence (not using the nesting relation
η).

3 Mu-Calculus over Nested Words

Since NWA generalize finite state automata, the translation from MSO over nested
words to NWAs is non-elementary. But just as for finite words or trees, one can find
equally expressive logical formalisms with better model-checking complexity. We
show that the equivalence MSO = Lμ extends from words and trees to nested words.
It applies not only in sentences evaluated in the first position of a nested word, but
more generally to unary queries that select a set of positions in which a temporal
formula is true. This is relevant for finite nested words viewed as streaming XML
documents: while theoretical investigations have mostly looked at the case of sen-
tences [8, 32], in practical application one typically needs to evaluate unary queries
(e.g. XPath) over such streams [30]. To deal with unary queries, we look at Lμ with
the past, i.e. Lfull

μ , and prove that it is equivalent to MSO unary queries. That is:

Theorem 3.1 For finite nested words and nested ω-words, MSO and Lfull
μ define the

same classes of unary queries.

As a corollary to the proof, we obtain the fact that if we only want to define lan-
guages of nested words expressible in MSO then we can get rid of the past modalities:

Corollary 3.2 The languages of nested words (resp. nested ω-words) definable in
MSO and Lμ are the same.

We can tighten this for finite nested words. Let (Lfull
μ )+ be the negation-free (and

thus alternation-free) fragment of Lfull
μ that has two additional constants “first” and

“last” with their intuitive meanings: “first” holds only at the first position of a nested
word, and “last” holds at the last position. Likewise we define (Lμ)+ from Lμ.



Theory Comput Syst

Corollary 3.3 For unary queries over finite nested words, MSO = Lfull
μ = (Lfull

μ )+.
Furthermore, MSO, Lμ, and (Lμ)+ define the same languages of finite nested words.

From [17], we conclude that for every (Lfull
μ )+ formula ϕ and every finite nested

word w̄, the set {i | (w̄, i) |= ϕ} can be computed in time O(|ϕ| · |w̄|).
We make a couple of remarks before proving Theorem 3.1. Nested words are

naturally translated into trees, (in fact we shall use this translation in our proof), and
there is a closely related result in the literature, Niwinski’s theorem, showing that
over the full infinite binary tree, MSO and Lμ, evaluated at the root of the tree, are
equally expressive [29]. Despite this, there does not seem to be any easy adaptation
of proof techniques in [29] that yields a proof of Theorem 3.1. Not only do we need
a stronger result for unary queries and an extension with the past modalities, but in
addition translations of infinite nested words are not complete binary trees (in fact,
they have only one infinite path).

Another natural attempt at a proof is to use the expressive-completeness result of
Janin and Walukiewicz: every bisimulation-invariant MSO property is definable in
Lμ [21]. Then we could express runs of tree automata on tree encodings of nested
words by bisimulation-invariant MSO sentences, apply [21] to get an equivalent Lμ

formula for trees, and translate it into an Lμ formula over nested words. This sketch
indeed can be turned into a proof of MSO = Lμ for languages of nested words, but it
breaks already for unary queries over finite nested words, where one needs to encode
a more complicated run of a query automaton [26, 28], and it is even harder to adapt
this argument to infinite nested words for which we do not have an automaton model
capturing unary queries. Thus, we shall give a direct proof, based on the composition
method [27] and a translation from nested words w̄ into binary trees Tw̄ which is a
slight modification of the one in [5].

Let us recall the following before proving Theorem 3.1. A �-labeled binary tree is
a structure T = (D,≺0,≺1, (Pa)a∈�), where D is a prefix-closed subset of {0,1}∗,
s ≺0 s · 0 for each s · 0 ∈ D, s ≺1 s · 1 for each s · 1 ∈ D, and Pa is the set of nodes
in D that are labeled a. We say that T is finite if D is finite; otherwise it is infinite.
For a binary tree T and a node s of T , we denote by Ts the subtree of T rooted at s,
and by T s the envelope of s in T , that is, the subtree of T obtained by removing all
proper descendants of s in T . Thus, Ts and T s only have the node s in common.

MSO over binary trees can be defined in the usual way over the vocabulary that
contains binary relations ≺0 and ≺1 and unary relations (Pa)a∈� . The μ-calculus
over binary trees is defined by means of the following grammar:

ϕ,ϕ′ := a | X | ϕ ∨ ϕ′ | ¬ϕ | ♦(≺0)ϕ | ♦(≺1)ϕ | μX.ϕ(X)

with X occurring positively in ϕ(X), and a ∈ �. Intuitively, the modalities ♦(≺i ), i ∈
[0,1], check whether a node of the binary tree has an i-th child and such an i-th child
satisfies ϕ. The full μ-calculus over binary trees is its extension with past modalities
♦(≺−

i )ϕ, i = 0,1, that check whether a node in a binary tree is an i-th child and
its parent satisfies ϕ. We denote by MSO(T ), Lμ(T ), and Lfull

μ (T ) the versions of
MSO, the μ-calculus, and the full μ-calculus over binary trees, respectively, for not
confusing them with their respective counterparts over nested words.
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Fig. 1 A nested word and its
tree translation

It will be convenient during the proof of Theorem 3.1 to work with an extended
version of both Lμ(T ) and Lfull

μ (T ) that uses simultaneous fixed points, and thus, al-
lows to iterate several formulas at once. The syntax is thus enriched with the follow-
ing rule: If ϕi(X1, . . . ,Xn), 1 ≤ i ≤ n, are formulas where all Xi appear positively,
then μX1 . . .μXn. (ϕ1, . . . , ϕn)[j ] is also a formula, for each 1 ≤ j ≤ n. In order to
define its semantics, let T be a binary tree, s a node in T , and P the set of all those
{P1, . . . ,Pn} such that for each i ∈ [1, n],

{s′ | (T , v[P1/X1, . . . ,Pn/Xn], s′) |= ϕi} ⊆ Pi.

Then

(T , v, s) |= μX1, . . . ,μXn. (ϕ1, . . . , ϕn)[j ] ⇔ s ∈
⋂

{P1,...,Pn}∈P
Pj .

Simultaneous fixed points are often convenient for expressing complex properties,
that involve several sets to be defined at once, in a rather simple way. One can prove
(using Bekic’s principle) that the presence of simultaneous fixed points does not en-
rich the expressiveness of the logic, and thus, that they can be used (without loss of
generality) at any point in the proofs for the sake of simplicity.

Given a binary tree T and a distinguished node s ∈ D, we define its rank-k
MSO(T ) type, for k ≥ 0, as the set of unary MSO(T ) formulas ϕ(x) of quantifier
rank ≤ k such that T |= ϕ(s). It is well-known that for each k ≥ 0 there are finitely
many rank-k MSO(T ) types, that each rank-k MSO(T ) type is definable by a unary
MSO(T ) formula of quantifier rank k, and that each unary MSO(T ) formula of quan-
tifier rank k is a finite union of rank-k MSO(T ) types. We normally associate types
with formulas that define them. In the proof we also make use of rank-k MSO types
of words and ω-words with a distinguished position i, that can be defined in a similar
way.

We also define a translation from nested words to binary trees that is a slight
modification of the translation shown in [5]. We do it for nested ω-words, but the
same definition can also be applied to finite nested words. Let w̄ = (a1 · · · , η) be a
nested ω-word. Then for every pair (i, j), where i ∈ N

+ and j ∈ N
+ ∪{∞}, we define

a tree T [i, j ] as follows. If i > j , then T [i, j ] is the empty tree. If i = j , then T [i, j ]
has only one node, which is labeled ai . If i < j , then we consider three cases.

• If there is no k such that i < k ≤ j and η(i, k) holds, then T [i, j ] has its root labeled
ai , no 1th-child, and the subtree rooted at its 0th-child isomorphic to T [i + 1, j ].

• If there is k such that i < k < j and η(i, k) holds, then T [i, j ] has its root labeled
ai , the subtree rooted at its 1th-child isomorphic to T [i + 1, k], and the subtree
rooted at its 0th-child isomorphic to T [k + 1, j ].
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• If η(i, j) holds, then T [i, j ] has its root labeled ai , the subtree rooted at its 1th-
child isomorphic to T [i + 1, j ], and no 0th-child.

The translation Tw̄ of a nested ω-word w̄ is T [1,∞]. If w̄ is a finite nested word
(a1 · · ·an, η), then Tw̄ is defined as T [1, n]. Notice that each position i of a nested
word w̄ has a unique associated node s(i) in Tw̄ and that each node s of Tw̄ is of the
form s(i) for some position i of w̄. Further, if w̄ is a nested ω-word then Tw̄ will be
infinite, with the property that the path going down from the root obtained by always
taking the 0th-child of a node is the only infinite path in the tree. Figure 1 shows a
nested word and its tree translation.

Proof of Theorem 3.1 Translations from Lfull
μ to MSO are standard. We provide here

a translation from MSO to Lfull
μ over nested words. We only prove the infinite case,

as the finite case uses the same techniques.
To translate an MSO-formula ϕ(x) into an equivalent Lfull

μ -formula ψ , we do
three things: (A) First, translate unary MSO queries over nested ω-words into unary
MSO(T ) queries over the class of infinite binary trees of the form Tw̄ , where w̄

ranges over nested ω-words. (B) Then we show that over the class of infinite binary
trees of the form Tw̄ , unary MSO(T ) formulas are precisely those definable in the
full μ-calculus Lfull

μ (T ). (C) Finally, we translate each Lfull
μ (T ) formula over binary

trees of the form Tw̄ into an equivalent Lfull
μ formula over nested words.

(A) Let us start by proving that for every unary MSO formula ϕ(x) over nested
words there is an MSO(T ) formula ϕ′(x) over binary trees such that w̄ |= ϕ(i) ⇔
Tw̄ |= ϕ′(s(i)), for each nested ω-word w̄ and position i in w̄. We first define ≺ as
≺0 ∪ ≺1, and ≺∗ as the transitive closure of ≺. Both relations are MSO definable.
Then to construct ϕ′(x) from ϕ(x) it is enough to do the following:

• Replace in ϕ(x) each subformula of the form x < y with the formula x <d y,
where <d is the linear order obtained from the tree by doing a depth-first search
from right-to-left. That is,

x <d y ⇔ (
(x ≺∗ y) ∨ ∃z1z2z3((z1 ≺0 z2) ∧ (z1 ≺1 z3)

∧ (z3 = x ∨ z3 �∗ x) ∧ (z2 = y ∨ z2 �∗ y))
)
.

Indeed, from the tree encoding of a nested word as stated above one immediately
sees that i < i′ for two positions i, i′ in a nested ω-word w̄ iff s(i) <d s(i′) in the
infinite binary tree Tw̄; and

• replace each subformula η(x, y) with the formula

∃z (x ≺1 z ∧ ((z = y ∨ z ≺∗
0 y) ∧ ¬∃w(y ≺0 w)),

where ≺∗
0 is the transitive closure of ≺0 (which is definable in MSO from ≺0).

Indeed, j is the matching return of position i in a nested ω-word w̄ iff s(i) has a
1th-child in the binary tree Tw̄ and s(j) is the unique leaf that can be reached from
s(i) · 1 by always taking the 0th-child of a node.

(B) We prove next that over the class of infinite binary trees of the form Tw̄ , as w̄

ranges over nested ω-words, unary MSO(T ) formulas are precisely those definable



Theory Comput Syst

in the full μ-calculus Lfull
μ (T ). Let k be the set of all rank-k MSO(T ) types of

binary trees with one distinguished node. Let T be a binary tree and � the maximal
path in T that satisfies the following: � contains the root, and for each node s that
belongs to � the node s · 0 also belongs to �. Assume that � is the path s0, s1, . . .

of nodes in T . With each position si of � we associate a symbol mi in the alphabet
� × (k ∪ {#}), for # a fresh symbol not in � ∪k , such that mi = (a, τ ) iff the label
of si in T is a and the rank-k MSO type of the subtree of T rooted at si · 1, with
the root as a distinguished node, is τ (if si · 1 does not belong to T we assume that
τ = #). Further, with each position si in � we associate two words ρ→

� (T , si) and
ρ←

� (T , si) over alphabet � × (k ∪ {#}) such that ρ→
� (T , si) = m0m1 · · ·mi−1 and

ρ←
� (T , si) = mimi+1 · · · . Note that if si = s0, then ρ→

� (T , si) is the empty string.
Let s be a node of T . If s is not in � we denote by s′ the nearest ancestor of s that

is in �. We define a tuple πk(T , s) composed by 4 elements as follows (assuming ⊥
is a fresh element):

• The first component of πk(T , s) is the rank-k MSO type of ((Ts′·1)s, s) if s is not
in �; and it is the symbol ⊥ otherwise.

• The second component of πk(T , s) is the rank-k MSO type of (Ts, s) if s is not in
�; and it is the symbol ⊥ otherwise.

• The third component of πk(T , s) is the rank-k MSO type of (ρ→
� (T , s′), s′) if s is

not in �; and it is the rank-k MSO type of (ρ→
� (T , s), s) otherwise.

• The fourth component of πk(T , i) is the rank-k MSO type of (ρ←
� (T , s′), s′) if s′

is not in �; and it is the rank-k MSO type of (ρ←
� (T , s), s) otherwise.

The following lemma is a standard composition argument that can be proved via
Ehrenfeucht-Fraïssé games for MSO (c.f. [24]):

Lemma 3.4 Let k ≥ 0. Let T1, T2 be binary trees, and s1 and s2 nodes in T and
T ′, respectively. If πk(T1, s1) = πk(T2, s2) then the rank-k MSO types of (T1, s1) and
(T2, s2) are the same.

Let ϕ(x) be an arbitrary unary MSO(T ) formula, and assume that the depth of
quantifier nesting of ϕ is k ≥ 0. From the previous lemma it follows that there
is a finite set S of tuples of the form πk(Tw̄, s(i)) such that Tw̄′ |= ϕ(s(i′)) ⇔
πk(Tw̄′ , s(i′)) ∈ S, for each nested ω-word w̄′ and position i′ in w̄′. Fix a tuple
(χ,χ0, ξ, ξ0) ∈ S. Thus, in order to prove that for every unary MSO(T ) formula we
can construct an equivalent Lfull

μ (T ) formula over infinite binary trees of the form Tw̄ ,
it is enough to show that there is an Lfull

μ (T ) formula α(χ,χ0,ξ,ξ0) over binary trees,
such that (Tw̄, s(i)) |= α(χ,χ0,ξ,ξ0) ⇔ πk(Tw̄, s(i)) = (χ,χ0, ξ, ξ0), for each nested
ω-word w̄ and position i of w̄.

Note first that each first or second component of a tuple of the form πk(Tw̄, s(i)),
for a nested ω-word w̄ and position i in w̄, is the symbol ⊥ or the rank-k MSO(T )

type of a finite binary tree. Further, each letter in the word ρ←
� (Tw̄, s(j)) or

ρ→
� (Tw̄, s(j)), for a nested ω-word w̄ and a position j of �, is of the form (a,#)

or (a, τ ), where τ is the rank-k MSO(T ) type of a finite binary tree. Further, the only
infinite path in Tw̄ is � itself.

The following remarks will be important for the rest of the proof:
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• There is an Lfull
μ (T ) formula β� over binary trees of the form Tw̄ , defined as

μX.
(
root∨ ♦(≺−

0 )X
)
,

where root is the Lfull
μ (T ) formula (¬♦(≺−

0 )true ∧ ¬♦(≺−
1 )true) that iden-

tifies the root of the tree, such that a node s(i) of a binary tree Tw̄ satisfies β� iff
s(i) belongs to the unique infinite path � of Tw̄ .

• Each rank-k MSO(T ) type τ of a finite binary tree with the root as a distinguished
node is expressible by a Lμ(T ) formula τ ∗ (i.e. τ ∗ does not mention any past
modalities). That is, for each finite binary tree T and node s of T it is the case that
(T , s) |= τ ∗ iff the rank-k MSO type of (Ts, s) is τ . This can be proved by a simple
coding in Lμ(T ) of the run of a bottom-up tree automaton on a binary tree.

We first show that there is a Lfull
μ (T ) formula ψξ over binary trees, such that a node

s(j) of Tw̄ satisfies ψξ iff s(j) is in the path � of Tw̄ , and the rank-k MSO type of
(ρ→

� (Tw̄, s(j)), s(j)) is ξ . Since ξ is equivalent to an MSO sentence over finite words
with alphabet � × (k ∪ {#}), there is a deterministic automaton Aξ = (Q,q0, δ,F )

that accepts exactly those finite words over alphabet � × (k ∪ {#}) whose rank-k
MSO type is ξ . Assume Q = {q0, . . . , qp}. Consider the following Lfull

μ (T ) formula
over binary trees: μX0, . . . ,μXp. (αX0, . . . , αXp), where the formulas αXi

, for i ≤ p,
are defined as follows (τ ranges over k):

∨

δ(q0,(a,τ ))=qi

(¬♦(≺−
0 )true∧ ¬♦(≺−

1 )true∧ a ∧ ♦(≺1)τ
∗)

∨
∨

δ(q0,(a,#))=qi

(¬♦(≺−
0 )true∧ ¬♦(≺−

1 )true∧ a ∧ ¬♦(≺1)true)

∨
∨

δ(qj ,(a,τ ))=qi

(♦(≺−
0 )Xj ∧ a ∧ ♦(≺1)τ

∗)

∨
∨

δ(qj ,(a,#))=qi

(♦(≺−
0 )Xj ∧ a ∧ ¬♦(≺1)true).

It is not hard to see that if a node s(j) in Tw̄ belongs to the least fixed point of
some Xi , for i ≤ p, then s(j) is in the unique infinite path � of Tw̄ . Further, if s(j) ·0
is an element in �, then s(j) is in the least fixed point of Xi , where qi ∈ F , iff the
rank-k type of ρ→

� (Tw̄, s(j) · 0) is ξ . Therefore, ψξ can be defined as the Lfull
μ (T )

formula that computes the projection of the formula μX0, . . . ,μXp. (αX0, . . . , αXp)

over all those Xi such that qi ∈ F .
In a similar way, and using the fact that over words and ω-words MSO sentences

are precisely those definable in the μ-calculus without past modalities, one can show
that there is a Lμ(T ) formula λξ0 over binary trees (that is, λξ0 does not mention any
past modalities), such that a node s(j) of Tw̄ satisfies λξ0 iff s(j) is in the path �

of Tw̄ , and the rank-k MSO type of (ρ←
� (Tw̄, s(j)), s(j)) is ξ0. We can make sure

that each s(j) that satisfies the formula λξ0 is in the path � by using the formula
β� as defined above. We actually prove a stronger result. Let ϕ(X̄) be an arbitrary
μ-calculus formula over words over the alphabet � × (k ∪ {#}). There is an Lμ(T )
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formula ϕ′(X̄) over binary trees, such that for each nested ω-word w̄, valuation v

of the free variables, and position j of w̄, (Tw̄, v, s(j)) |= ϕ′(X̄) iff s(j) is in the
unique infinite path � of Tw̄ , and (ρ←

� (Tw̄, s(j)), v′, s(j)) |= ϕ(X̄), where for each
X ∈ X̄, v′(X) is the restriction of v(X) to the elements in � that are descendants of
s(j) (including j ). Note that this immediately implies the existence of λξ0 since ξ0 is
expressible by a formula without free variables in the μ-calculus over words.

The translation ϕ′(X̄) is defined as follows:

• If ϕ is (a, τ ), τ ∈ k , then ϕ′ is (β� ∧ a ∧ ♦(≺1)τ
∗), where τ ∗ is the μ-calculus

formula over finite binary trees that is equivalent to τ .
• If ϕ is (a,#), then ϕ′ is (β� ∧ a ∧ ¬♦(≺1)true).
• If ϕ is X, then ϕ′ is (X ∧ β�).
• If ϕ is ¬ψ , then ϕ′ is ¬ψ ′ ∧ β�.
• If ϕ is (ψ ∨ ζ ), then ϕ′ is (ψ ′ ∨ ζ ′).
• If ϕ is ♦ψ , then ϕ′ is ♦(≺0)ψ

′.
• If ϕ is μY.ψ(Y ), then ϕ′ is μY.ψ ′(Y ).

This finishes the proof of the existence of λξ0 .
Further, by adapting techniques in [9, 20, 28] one can show that there is a full

μ-calculus formula χ∗ over binary trees such that a node s(j) of Tw̄ satisfies χ∗ iff
s(j) is not in the path � of Tw̄ , and the rank-k MSO type of ((Ts(�)·1)s(j), s(j))

is χ , where s(�) is the nearest ancestor of s(j) that is in �. The intuitive idea is
to run a simultaneous fixed point formula downwards that starts at each node of
the form s(�) · 1, where s(�) is in �, and that labels each node s(j) not in � that
is a descendant of s(�) in the direction of s(�) · 1 with the rank-k MSO type of
((Ts(�)·1)s(j), s(j)). This can be done as it follows from [20, 28] that the rank-k MSO
type of ((Ts(�)·1)s(j)·(1−p), s(j) · (1 − p)), where p = 0,1, is uniquely determined
from the rank-k MSO type of ((Ts(�)·1)s(j), s(j)), which is obtained in the previous
step of the evaluation of the simultaneous fixed point, and the rank-k MSO type of
Ts(j)·p , which, as we mentioned earlier, is expressible in the μ-calculus over binary
trees.

The definition of α(χ,χ0,ξ,ξ0) is given by cases (here Pα is an abbreviation for
“somewhere in the past α”, that is expressible in Lfull

μ (T ) by the formula μX.(α ∨
♦(≺−

0 )X ∨ ♦(≺−
1 )X)):

• α(χ,χ0,ξ,ξ0) is the formula

¬β� ∧ χ∗ ∧ (χ0)
∗ ∧ P (¬β� ∧ ♦(≺−

1 )(β� ∧ λξ0 ∧ ¬root∧ ♦(≺−
0 )ψξ ))

if χ,χ0 
= ⊥ and ξ is not the type of the empty string;
• α(χ,χ0,ξ,ξ0) is the formula

¬β� ∧ χ∗ ∧ (χ0)
∗ ∧ P (¬β� ∧ ♦(≺−

1 )(β� ∧ λξ0 ∧ root))

if χ,χ0 
= ⊥ and ξ is the type of the empty string;
• α(χ,χ0,ξ,ξ0) is the formula

β� ∧ λξ0 ∧ ¬root∧ ♦(≺−
0 )ψξ

if χ,χ0 = ⊥ and ξ is not the type of the empty string;
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• and α(χ,χ0,ξ,ξ0) is the formula

β� ∧ λξ0 ∧ root

if χ,χ0 = ⊥ and ξ is the type of the empty string.

(C) In order to finish the proof we show that each full μ-calculus formula over
binary trees can be translated into an equivalent Lfull

μ -formula ψ over nested ω-words.
We prove something stronger. We show by induction on the structure of formulas that
for each ζ(X̄) in Lfull

μ (T ) there is an Lfull
μ -formula ζ ◦(X̄) over nested words, such that

(Tw̄, v, s(i)) |= ζ(X̄) ⇔ (w̄, v, i) |= ζ ◦(X̄), for each nested ω-word w̄, valuation v of
the variables, and position i of w̄.

The only nontrivial inductive cases are: (1) ♦(≺1)ζ , (2) ♦(≺0)ζ , (3) ♦(≺−
1 )ζ , and

(4) ♦(≺−
0 )ζ . These cases can be translated as: (1) (call∧ ♦ζ ◦), (2) (int∧ ♦ζ ◦) ∨

(call∧ ♦η♦ζ ◦), (3) ♦−(call∧ ζ ◦), and (4) ♦−(ret∧ ♦−
η ζ ◦) ∨ ♦−(int∧ ζ ◦),

respectively, where ζ ◦ is the translation of ζ that is obtained by induction hypothesis.
This concludes the proof of the theorem. �

Proof of Corollary 3.2 The rank-k MSO type of a tree Tw̄ with the root as a distin-
guished node, only depends on the rank-k MSO type of (ρ←

� (Tw̄, ε), ε), where ε is
the root of Tw̄ . Thus, in part (B) of the proof of Theorem 3.1 we only need to translate
into Lfull

μ (T ) tuples of the form (⊥,⊥, ξ, ξ0), where χ is the type of the empty string.
It follows from the proof that this can be done without the help of past modalities,
i.e. each one of these tuples can be expressed by a Lμ(T ) formula. From part (C) of
the proof of Theorem 3.1 it easily follows that each Lμ(T ) formula over trees can be
translated into an equivalent Lμ formula over nested words. �

Proof of Corollary 3.3 First, by an easy coding of a query automaton on binary trees
[28] one can show that each unary MSO(T ) formula over finite binary trees is equiv-
alent to an Lfull

μ (T ) formula that does not use negation but uses additional constants
root, leaf, no− 0th− child, and no− 1th− child, interpreted in the ob-
vious way (e.g. a node s satisfies no− 0th− child iff s · 0 does not belong to D).
It is then easy to translate each formula ϕ in this logic into an (Lfull

μ )+ formula ψ over
nested words such that (Tw̄, s(i)) |= ϕ ⇔ (w̄, i) |= ψ , for each finite nested word w̄

and position i in w̄. �

Final remark Every translation from MSO over nested words into the μ-calculus
shown in this section is effective. Consider the more general case, that of unary
queries over nested ω-words. The proof of Theorem 3.1 proceeds as follows. It first
translates each unary MSO query over nested ω-words into a unary MSO query over
the class of infinite binary trees that code nested ω-words. This translation is clearly
effective. Afterwards, it translates each unary MSO query over this class of trees into
an equivalent full μ-calculus formula. The translation first defines from the MSO for-
mula ϕ(x) a finite set S of tuples of the form πk(Tw̄, s(i)) such that Tw̄′ |= ϕ(s(i′)) iff
πk(Tw̄′ , s(i′)) ∈ S, for each nested ω-word w̄′ and position i′ in w̄′, and then defines
for each πk(Tw̄, s(i)) ∈ S a formula ψ in the full μ-calculus over infinite binary trees
such that πk(Tw̄′ , s(i′)) = πk(Tw̄, s(i)) iff (Tw̄′ , s(i′)) |= ψ . The construction of the
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set S from ϕ can be done effectively, simply because the MSO theory of the class
of labeled infinite binary trees is decidable and the class of labeled infinite binary
trees that code nested ω-words is MSO definable. The construction of the formula
ψ from πk(Tw̄, s(i)) is effective essentially for the same reasons. Finally, the proof
of Theorem 3.1 translates each full μ-calculus formula without free variables over
infinite binary trees that code nested ω-words into a full μ-calculus formula over
nested ω-words. Again, this translation is effective, and, thus, the whole translation
is effective.

4 Automata Models for Nested ω-Words

4.1 Nested ω-Word Automata

Visibly pushdown automata (VPA), with both Büchi and Muller acceptance condi-
tions, were introduced in [5]. These automata are a subclass of pushdown automata,
and accept words over a pushdown alphabet, where the nesting structure is implicit,
and there can be unmatched calls. In [5], VPAs were shown to be equivalent to MSO
extended with a binary matching predicate, but not necessarily determinizable. The
example of a visibly pushdown language (VPL) over infinite words that cannot be
accepted by a deterministic automaton [5] can use arbitrarily many calls without
matching returns, something that cannot happen in nested words. Then [25] intro-
duced a notion of stair visibly pushdown automata (stair VPA) to control such un-
matched calls and showed that stair VPAs are determinizable. These models were
defined for VPLs, so we first specialize a particular class of stair VPAs [25] to nested
words, thereby obtaining a notion of combined nested word automata, that admit de-
terminization. We then use such automata to show that over nested words, for every
ω-NWA (with a Büchi or a Muller acceptance condition), there exists an equivalent
deterministic Muller ω-NWA.

A combined nested word automaton (CNWA) puts together an ω-word automaton
A1 with a Muller acceptance condition and an NWA A2 over finite nested words. It
runs A1 over all positions that are not inside a call. Every time A1 finds a call position
i, it invokes A2 to process the finite nested word formed by the elements between i

and its matching return j , and then it uses its final state to determine what state to
assign to j + 1, and continues its run from position j + 1. Formally, a CNWA A over
� is a pair (A1, A2), where:

• A2 = (�,Q2,Q
0
2, δ2 = (δ2

c , δ
2
ι , δ

2
r )) is an NWA without accepting states;

• A1 = (� ∪ Q2,Q1,Q
0
1, δ1, F1) is an ω-word automaton with Muller acceptance

condition over alphabet �∪Q2 (we assume, of course, that � and Q2 are disjoint).

Given a nested ω-word w̄ and i ≥ 1, we define the set of external positions E(w̄)

as positions i such that there are no j, k ≥ 1 such that j < i ≤ k and η(j, k) holds.
Note that 1 ∈ E(w̄) and E(w̄) is infinite. If i ∈ E(w̄) is not a call, then i + 1 ∈ E(w̄).
If i ∈ E(w̄) is a call with j being its matching return, then the next, after i, element of
E(w̄) is j +1. With this, we define a run of A over a nested ω-word w̄ = (a1a2 · · · , η)

as a mapping ρ : E(w̄) → Q1 such that ρ(1) ∈ Q0
1 and for every i ∈ E(w̄):
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• if i is not a call (and i + 1 ∈ E(w̄)), then ρ(i + 1) ∈ δ1(ρ(i), ai);
• if i is a call with return j (and the successor of i in E(w̄) is j +1), then ρ(j +1) ∈

δ1(ρ(i), q), where q is a state in Q2 such that there exists a run ρ2 of A2 over
w̄[i, j ] having q as the last state.

A CNWA A accepts w̄ if there is a run ρ of A over w̄ such that Inf (ρ) ∈ F1. We say
that CNWA A = (A1, A2) is deterministic if both A1 and A2 are deterministic. Then
results in [25] can be restated in this terminology as:

Proposition 4.1 [25] Over nested ω-words, CNWAs and deterministic CNWAs are
equivalent.

Next we extensively use the notion of combined nested word automaton to prove the
main result of this section:

Theorem 4.2 Over nested ω-words, MSO, ω-NWA with Büchi acceptance condi-
tion and deterministic ω-NWA with Muller acceptance condition, define precisely the
regular languages. Moreover, translations between these formalisms are effective.

Now we proceed to prove Theorem 4.2. In the proof, we use the intermediate
results presented below.

Lemma 4.3 For every ω-NWA A with n states, one can construct an CNWA B such
that B has O(n2) states and L(A) = L(B).

Proof Assume that A = (�,Q,Q0, δ = (δc, δι, δr ),F ). The idea behind the defini-
tion of CNWA B = (B1, B2) is very simple. Let i be an external position of a nested
ω-word w̄ and assume that B has assigned state q to this position. If i is not a call,
then B uses δι to determine the successor state. If i is call position with matching
return j , then B runs B2 over w̄[i, j ] to determine the successor state. Automaton B2

works as A and has states of the form (q1, q2, x), where q1, q2 ∈ Q and x is either t
or f. In a triple (q1, q2, x), q1 is the initial state of the execution of A, q2 is the cur-
rent state of the execution of A and x indicates whether a final state has been visited
in the execution of automaton A (x = t if and only if q2 is a final state or a final state
occurred previously). Once the execution of B2 has terminated, B chooses a run ρ of
B2 over w̄[i, j ] where all the states are of the form (q, q ′, x), since the state of call
position i was q . Furthermore, B uses flag x to know whether a final state of A was
visited when processing w̄[i, j ]. This is an important issue because the acceptance
condition of A depends on the states visited in any position of w̄, while it depends
only on the external positions for the case of B. Thus, B uses flag x to handle the case
where a nested ω-word is accepted by A because some final state is visited infinitely
often in the non-external positions, while final states are visited only a finite number
of times in the external positions.

Formally, nested word automaton B2 is defined as (�,Q2,Q
0
2, δ2 = (δ2

c , δ
2
ι , δ

2
r )),

where Q2 = Q × Q × {t,f}, Q0
2 = {(q, q,t) | q ∈ F } ∪ {(q, q,f) | q ∈ Q \ F } and

δ2 is defined as follows:
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• For every q1, q2 ∈ Q and a ∈ �:

δ2
c ((q1, q2,t), a) = {(q1, q3,t) | q3 ∈ δc(q2, a)},

δ2
c ((q1, q2,f), a) = {(q1, q3, x) | q3 ∈ δc(q2, a)

and x = t if q3 ∈ F, and x = f otherwise},
δ2
ι ((q1, q2,t), a) = {(q1, q3,t) | q3 ∈ δι(q2, a)},

δ2
ι ((q1, q2,f), a) = {(q1, q3, x) | q3 ∈ δι(q2, a)

and x = t if q3 ∈ F, and x = f otherwise}.
• For every q1, q2, q3 ∈ Q, x ∈ {t,f} and a ∈ �:

δ2
r ((q1, q2,t), (q1, q3, x), a) = {(q1, q4,t) | q4 ∈ δr (q2, q3, a)},

δ2
r ((q1, q2,f), (q1, q3, x), a) = {(q1, q4, y) | q4 ∈ δr (q2, q3, a) and

y = t if q4 ∈ F, and y = f otherwise}.
Moreover, ω-word automaton B1 is defined as (�∪Q2,Q1,Q

0
1, δ1, F1), where Q1 =

Q ∪ (Q × {int}), Q0
1 = Q0, F1 = {X ⊆ Q1 | X ∩ (F ∪ (Q × {int})) 
= ∅} (F1

is a Muller acceptance condition that represents Büchi acceptance condition F1 =
F ∪ (Q × {int})), and δ1 : Q1 × (Q2 ∪ �) → 2Q1 is defined as follows:

• If q ∈ Q and a ∈ �, then

δ1(q, a) = δι(q, a),

δ1((q,int), a) = δι(q, a).

• If q ∈ Q and (q1, q2, x) ∈ Q2, then

δ1(q, (q1, q2, x)) =

⎧
⎪⎨

⎪⎩

∅ q 
= q1

{q2} q = q1 and x = f

{(q2,int)} q = q1 and x = t

δ1((q,int), (q1, q2, x)) =

⎧
⎪⎨

⎪⎩

∅ q 
= q1

{q2} q = q1 and x = f

{(q2,int)} q = q1 and x = t.

It is not difficult to prove that L(A) = L(B). This concludes the proof of the
lemma. �

Lemma 4.4 For every deterministic CNWA A with n states, one can construct a de-
terministic ω-NWA B with Muller acceptance condition such that B has O(n) states
and L(A) = L(B).

Proof Assume that A = (A1, A2), where A2 = (�,Q2, q2, δ2 = (δ2
c , δ

2
ι , δ

2
r )), A1 =

(� ∪ Q2,Q1, q1, δ1, F1), both A1 and A2 are deterministic and Q1 ∩ Q2 = ∅. We
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define a deterministic ω-NWA B = (�,Q,q0, δ = (δc, δι, δr ), F ) as follows. The set
of states Q, the initial state q0 and the acceptance condition F are defined as (Q1 ∪
Q2 ∪ {qN }), q1 and F1, respectively, where qN 
∈ (Q1 ∪Q2). Transition function δ is
defined in such a way that for every position i of an ω-word w̄ such that i ∈ E(w̄):
(1) if i is not a call position, then B works on this position as A1, and (2) if i is a
call position with return j , then B works on the word w̄[i, j ] as the NWA A2. More
precisely, for every state q ∈ Q1 and a ∈ �:

δι(q, a) = δ1(q, a),

δc(q, a) = δ2
c (q2, a).

It should be noticed that δc(q, a) is defined as δ2
c (q2, a) since B launches a compu-

tation of A2 in every call position that belongs to E(w̄), and q2 is the initial state of
A2. For every state q ∈ Q2 and a ∈ �:

δι(q, a) = δ2
ι (q, a),

δc(q, a) = δ2
c (q, a).

For every q, q ′ ∈ Q1 and a ∈ �:

δr (q, q ′, a) = qN .

We note that the state qN is used to mark the runs of B that cannot represent a valid
run of A. For example, it could not be the case that the transition function δ2

r uses
two states of A1 and, thus, δr (q, q ′, a) = qN for every q, q ′ ∈ Q1 and a ∈ �. Fur-
thermore, for every q, q ′ ∈ Q2 and a ∈ �:

δr (q, q ′, a) = δ2
r (q, q ′, a).

For every q ∈ Q1, q ′ ∈ Q2 and a ∈ �:

δr (q
′, q, a) = δ1(q, δ2

r (q
′, q2, a)),

δr (q, q ′, a) = qN .

It should be noticed that δr (q
′, q, a) is defined as δ1(q, δ2

r (q
′, q2, a)) since the last

state in the run of A2 on a sub-word is obtained by executing δ2
r (q

′, q2, a). Finally,
for every q ∈ (Q1 ∪ Q2 ∪ {qN }) and a ∈ �:

δι(qN , a) = qN,

δc(qN , a) = qN,

δr (qN , q, a) = qN,

δr (q, qN , a) = qN .

It is not difficult to prove that L(A) = L(B). This concludes the proof of the
lemma. �
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Proof of Theorem 4.2 From Lemma 4.3, Proposition 4.1, Lemma 4.4 and the fact that
every ω-NWA with Muller acceptance condition can be translated into an equivalent
ω-NWA with Büchi acceptance condition, we conclude that over nested ω-words,
all the following define precisely the class of regular languages: ω-NWA with Büchi
acceptance condition, CNWA and deterministic ω-NWA with Muller acceptance con-
dition. Moreover, the equivalence of these automata models with MSO is a corollary
of the results in [5] and [25], which concludes the proof of the theorem. �

By using the machinery developed in this section, one can also prove that (note
that the bound is the same as for determinization of stair VPAs for VPLs [25]):

Corollary 4.5 For every ω-NWA with n states, one can construct an equivalent de-
terministic ω-NWA with a Muller acceptance condition and with 2O(n2) states.

Proof To prove the corollary, we need a more technical version of Lemma 4.3, which
can be proved by combining the idea in the proof of Lemma 4.3 with the determiniza-
tion algorithm for NWAs proposed in [6]:

Lemma 4.6 For every ω-NWA A with n states, one can construct an CNWA B =
(B1, B2) such that B1 has O(n) states, B2 has 2O(n2) states, B2 is a deterministic
NWA and L(A) = L(B).

Now assume that A is an ω-NWA with n states. By using Lemma 4.6, one obtains an
equivalent CNWA B = (B1, B2) such that B1 has O(n) states, B2 has 2O(n2) states
and B2 is a deterministic NWA. Then a deterministic CNWA C = (C1, B2) equivalent
to B is obtained by determinizing ω-word automaton C1 using a 2O(n logn) Safra con-
struction [31]. Finally, a deterministic ω-NWA D with Muller acceptance condition
is obtained from C by using Lemma 4.4. Automaton D is equivalent to A, and it has
2O(n2) states as C1 has 2O(n logn) states, B2 has 2O(n2) states, and the number of states
in D is linear in the number of states in C = (C1, B2). This concludes the proof of the
corollary. �

It is well known that a language of ω-words is regular (accepted by a Büchi or
a Muller automaton) iff it is a finite union of languages of the form UV ω, where
U,V ⊆ �∗ are regular languages. Automata characterizations imply a similar result
for nested ω-words.

Corollary 4.7 A language of nested ω-words is regular iff it is a finite union of lan-
guages of the form UV ω, where U and V are regular languages of finite nested
words.

Proof First, it follows from any of the characterizations of regular languages of
nested ω-words that sets of the form UV ω, where U and V are regular languages
of finite nested words, are regular. For the converse, let A = (A1, A2) be a deter-
ministic CNWA accepting a regular language of nested ω-words. Assume that L is
a regular language of usual finite words over � ∪ Q2, where Q2 is the set of states
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of A2. Define W(L) as the set of finite nested words obtained from words s ∈ L as
follows: each letter q ∈ Q2 is replaced by a finite nested word whose first position is
a call, whose last position is its matching return, and over which the unique run of
A2 ends in q . It follows immediately from the automata (or MSO) characterizations
that W(L) is a regular language of finite nested words.

Now consider the language of ω-words over � ∪ Q2 accepted by A1. Since it
is regular, it is of the form

⋃
i L

′
iL

ω
i , where L′

i ,Li are regular languages of fi-
nite words. But then it follows immediately that the language accepted by A is⋃

i W(L′
i )W(Li)

ω , proving the corollary. �

A basic problem in automata theory, that plays a crucial role in verification of
properties of infinite computations [34], is the nonemptiness problem: is the lan-
guage accepted by an automaton nonempty? It was shown in [5] that nonemptiness,
and more generally the reachability problem for visibly pushdown ω-automata is
polynomial. Combining this with a NLOGSPACE algorithm for nonemptiness of ω-
word automata, we get polynomial nonemptiness algorithms for ω-NWA and CNWA.
Further, a slight modification of the PTIME-hardness reduction for emptiness for
context-free grammars in [22] gives us:

Corollary 4.8 The nonemptiness problem for both ω-NWA and CNWA is PTIME-
complete.

Finally, by coding a deterministic automaton with an L1
μ formula, we obtain the

following:

Corollary 4.9 Over nested ω-words, Lμ collapses to L1
μ.

Proof It follows from [6] that (deterministic) NWA and MSO define the same class
of finite nested words. On the other hand, from Corollary 3.3, each language of finite
nested words defined by an MSO sentence can also be defined by an (Lμ)+ formula.
Since (Lμ)+ formulas do not use negation, they can be expressed in the alternation-
free fragment L0

μ of Lμ. We conclude that over finite nested words, acceptance by a
(deterministic) NWA can be described by an L0

μ formula. Moreover, we know that
acceptance by a Muller automaton on (unnested) ω-words can be expressed by an L1

μ

formula [7]. Using that L1
μ formula and plugging in a L0

μ formula for acceptance by
an NWA we can thus simulate acceptance by a CNWA in L1

μ. �

4.2 Alternating Automata for Nested ω-Words

In the context of formal verification, alternating automata have proved to be the key
to a comprehensive automata-theoretic framework for temporal logics [34]. With the
development of temporal logics for nested words [1, 2, 4], it is natural to develop al-
ternating automata for nested words, with the hope that they can simplify the process
of translating temporal logics into automata.

We now define (finite-state) alternating automata for both finite and infinite nested
words, and show that they are equivalent to NWAs. We note that this is in sharp
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contrast with the theory of alternating automata for nested trees, where alternating
automata are known to be more expressive than nondeterministic automata [3].

First recall the definition of alternating automata for usual finite and infinite words.
Given a set of states Q, let B+(Q) be the set of positive Boolean combinations of
elements from Q. Given X ⊆ Q and ϕ ∈ B+(Q), we say that X satisfies ϕ if the
truth assignment σX satisfies ϕ, where σX is defined as σX(q) = 1 iff q ∈ X. Then an
alternating (ω-)word automaton A is a tuple (�,Q,Q0, δ,F ), where Q, Q0 and F

are defined as for the case of word automata, and δ : Q × � → B+(Q) is a transition
function. A run of such an automaton is a labeled tree. A �-labeled tree T is a pair
(D,λ), where λ : D → � and D is a prefix-closed subset of N

∗ such that (1) if
x · i ∈ D and 0 ≤ j < i, then x · j ∈ D, and (2) for every x ∈ D, there exists a finite
number of strings of the form x · i in D (finite branching). For x ∈ N

∗, its length is
denoted by |x|. The depth of a tree is maxx∈D |x|.

A run of an alternating word automaton A = (�,Q,Q0, δ,F ) over a finite word
w = a1 · · ·an is a finite Q-labeled tree T = (D,λ) of depth n such that λ(ε) ∈ Q0
and for every x ∈ D that has children x · 0, . . . , x · � of length i, we have that {λ(x ·
0), . . . , λ(x · �)} satisfies δ(λ(x), ai). An alternating word automaton A accepts a
word w = a1 · · ·an if there is a run T = (D,λ) of A over w such that λ(x) ∈ F for
every node x in T of length n. The run of an alternating ω-word automaton A =
(�,Q,Q0, δ,F ) over an ω-word w = a1a2 · · · is defined in exactly the same way
as an infinite Q-labeled tree T = (D,λ). Then A accepts ω-word w if there is an
accepting run T = (D,λ) of A over w, i.e. such that every infinite branch of T visits
infinitely often nodes labeled by states in F .

An alternating nested word automaton (or alternating NWA, or ANWA) is an
NWA that admits alternation in call, return, and internal transitions. Formally, an
ANWA A is a tuple (�,Q,Q0, δ,F ), where Q, Q0 and F are defined as for the
case of alternating word automata, and δ is a triple (δc, δι, δr ) of transition functions
δc, δι : Q × � → B+(Q), and δr : Q × Q × � → B+(Q). A run of A over w̄ =
(a1 · · ·an, η) is a Q-labeled finite tree T = (D,λ) of depth n such that λ(ε) ∈ Q0 and
for every x ∈ D with children x · 0, . . . , x · � of length i ≤ n:

• if i is a call position, then {λ(x · 0), . . . , λ(x · �)} satisfies δc(λ(x), ai);
• if i is an internal position, then {λ(x · 0), . . . , λ(x · �)} satisfies δι(λ(x), ai);
• if i is a return position with matching call j and y is the prefix of x with |y| = j −1,

then {λ(x · 0), . . . , λ(x · �)} satisfies δr (λ(x), λ(y), ai).

An alternating nested word automaton A accepts a nested word w̄ = (a1 · · ·an, η) if
there is a run T = (D,λ) of A over w̄ such that λ(x) ∈ F for every node x in T of
length n.

As for the case of nested word automata, alternating automata can also be con-
sidered for the case of nested ω-words. More precisely, an alternating nested ω-word
automaton (ω-ANWA) A is a tuple (�,Q,Q0, δ,F ), where Q, Q0, δ and F are
defined exactly as for ANWA. A run is defined in the same way as above, and the
acceptance condition again states that along each infinite branch, states from F are
seen infinitely often.

We now show that alternating nested word automata, for both finite and infinite
nested words, are equivalent to nested word automata. We start with the infinite case.
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Theorem 4.10 For every ω-ANWA of size n, there exists (and can be effectively con-

structed) an equivalent ω-NWA with a Büchi acceptance condition and of size 22nO(1)

.

Proof We start by introducing the necessary terminology to state a result in [14] that
is used to prove the theorem. In particular, we introduce the notions of nondetermin-
istic visibly pushdown automaton with Büchi acceptance condition and alternating
visibly pushdown automaton with Büchi acceptance condition.1

A visibly pushdown alphabet � is an alphabet which is partitioned into three pair-
wise disjoint sets �c (call symbols), �r (return symbols) and �ι (internal symbols).
Given a visibly pushdown alphabet � = �c ∪ �r ∪ �ι, a nondeterministic visibly
pushdown automaton with Büchi acceptance condition (Büchi NVPA) on ω-words
over � is a tuple A = (�,Q,Q0,,�,F ), where Q is a finite set of states, Q0 ⊆ Q

is a finite set of initial states, F ⊆ Q is a finite set of accepting states,  is the alphabet
of the stack and

� ⊆ (
Q × �c × Q × 

) ∪ (
Q × �r × ( ∪ {⊥}) × Q

) ∪ (
Q × �ι × Q

)
, (†)

with ⊥ a special stack bottom symbol not contained in  [14]. A run ρ of A over an
ω-word w = a1a2 · · · is a function that indicates what the state and the content of the
stack are in each step of the execution of A. More precisely, ρ is a function from N

+
into Q × (∗ · {⊥}) such that ρ(1) = (q,⊥), where q ∈ Q0, and for every i ≥ 1:

• If ρ(i) = (q,α) and ai ∈ �c, then there exist B ∈  and q ′ ∈ Q such that
(q, ai, q

′,B) ∈ � and ρ(i + 1) = (q ′,B · α);
• If ρ(i) = (q,α) and ai ∈ �r , then there exist B ∈ ( ∪ {⊥}) and q ′ ∈ Q such that

(q, ai,B, q ′) ∈ � and

ρ(i + 1) =
{

(q ′,⊥) B = ⊥ and α = ⊥,

(q ′, β) B ∈  and α = B · β;

• If ρ(i) = (q,α) and ai ∈ �ι, then there exists q ′ ∈ Q such that (q, ai, q
′) ∈ � and

ρ(i + 1) = (q ′, α).

Given a run ρ of A over w, define Inf (ρ) as the set of states from Q that occur
infinitely often in ρ. Then A accepts w if and only if there exists a run ρ of A over
w such that Inf (ρ) ∩ F 
= ∅.

Now assume given a visibly pushdown alphabet � = �c ∪�r ∪�ι. Then an alter-
nating visibly pushdown automaton with Büchi acceptance condition (Büchi AVPA)
on ω-words over � is a tuple A = (�,Q,Q0,, δ,F ), where Q, Q0, F and  are
defined as for the case of Büchi NVPAs and

δ : Q × � × ( ∪ {⊥}) → B+(Q) ∪ B+(Q × ),

1It is important to notice that alternating visibly pushdown automata were introduced in [14] by consider-
ing a parity acceptance condition. We reformulate here some of the results of [14] for alternating visibly
pushdown automata with a Büchi acceptance condition.
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where (1) for every q ∈ Q, a ∈ �c and B ∈ ( ∪ {⊥}), δ(q, a,B) ∈ B+(Q × ),
(2) for every q ∈ Q, a ∈ �r ∪�ι and B ∈ ( ∪{⊥}), δ(q, a,B) ∈ B+(Q), and (3) for
every q ∈ Q, a ∈ �c ∪�ι and B,B ′ ∈ ( ∪{⊥}), δ(q, a,B) = δ(q, a,B ′) [14]. A run
ρ of A over an ω-word w = a1a2 · · · is a Q × (∗ · {⊥})-labeled tree T = (D,λ)

satisfying the following properties. Given X ⊆ Q and ϕ ∈ B+(Q), X is said to exactly
satisfy ϕ if X satisfies ϕ and no proper subset of X satisfies ϕ, and likewise for a
subset Y of B+(Q × ). Then λ(ε) = (q,⊥), where q ∈ Q0, and for every i ≥ 1 and
x ∈ D with children x · 0, . . . , x · � of length i:

• If λ(x) = (q,B · α) and ai ∈ �c, then there exists a set {(q0,B0), . . . , (q�,B�)}
exactly satisfying δ(q, ai,B) and such that λ(x · i) = (qi,Bi · B · α), for every
i ∈ {0, . . . , �}.

• If λ(x) = (q,B · α) and ai ∈ �r , then there exists a set {q0, . . . , q�} exactly satis-
fying δ(q, ai,B) and such that for every i ∈ {0, . . . , �}:

λ(x · i) =
{

(qi,⊥) B = ⊥,

(qi, α) B ∈ .

• If λ(x) = (q,B · α) and ai ∈ �ι, then there exists a set {q0, . . . , q�} exactly satis-
fying δ(q, ai,B) and such that λ(x · i) = (qi,B · α), for every i ∈ {0, . . . , �}.

It should be noticed that every infinite path ρ of T starting at the root corresponds
to a run of a Büchi NVPA. Then Büchi AVPA A is said to accept an ω-word w if
and only if there exists a run T of A over w such that for every infinite path ρ in T

starting at the root, Inf (ρ) ∩ F 
= ∅.
In [14], it is proved that:

Theorem 4.11 [14] For every Büchi AVPA A of size n, there exists (and can be

effectively constructed) an equivalent Büchi NVPA B of size 22nO(1)

.

Next we use this result to prove our theorem. More precisely, given an alphabet �,
define 〈� as {〈a | a ∈ �} and �〉 as {a〉 | a ∈ �}, and then define a visibly pushdown
alphabet �̂ = �̂c ∪ �̂r ∪ �̂ι as �̂c = 〈�, �̂r = �〉 and �̂ι = � [6]. Moreover, given
a nested ω-word w̄ = (a1a2 · · · , η) over an alphabet �, define 〈w̄〉 as the ω-word
b1b2 · · · over �̂ such that for every i ≥ 1:

bi =

⎧
⎪⎨

⎪⎩

ai i is an internal position in w̄,

〈ai i is a call position in w̄,

ai〉 i is a return position in w̄.

Thus, a symbol 〈a is used to indicate a call in a nested word, while a symbol b〉 is
used to indicate a return in a nested word. In particular, if w̄ is a nested ω-word, then
the angular brackets in 〈w̄〉 are balanced.

As a first step in the proof of the theorem, we show in the following lemma that
an ω-ANWA over an alphabet � can be translated in polynomial time into a Büchi
AVPA over the alphabet �̂.
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Lemma 4.12 There exists a polynomial time algorithm that, given an ω-ANWA A
over an alphabet �, constructs a Büchi AVPA B over �̂ such that for every nested
ω-word w̄ over �, it holds that w̄ ∈ L(A) if and only if 〈w̄〉 ∈ L(B).

Proof Assume that A = (�,Q,Q0, δ,F ), where δ = (δc, δι, δr ), δc, δι : Q × � →
B+(Q) and δr : Q × Q × � → B+(Q). Then let B = (�̂,Q,Q0,, δ′,F ), where
 = Q and δ′ is defined as follows. First, define a function τ : B+(Q) × Q →
B+(Q × Q) by using the following recursive rules: (a) τ(q1, q) = (q1, q) for every
q1, q ∈ Q, (b) τ(ϕ ∨ ψ,q) = τ(ϕ, q) ∨ τ(ψ,q), and (c) τ(ϕ ∧ ψ,q) = τ(ϕ, q) ∧
τ(ψ,q). For example, of ϕ = (q1 ∨ q2) ∧ q3, then τ(ϕ, q) = ((q1, q) ∨ (q2, q)) ∧
(q3, q). Then define transition function δ′ by considering the following three cases:

• If q1 ∈ Q, a ∈ � and q2 ∈ (Q ∪ {⊥}), then δ′(q1, a, q2) = δι(q1, a).
• If q1 ∈ Q, 〈a ∈ 〈� and q2 ∈ (Q ∪ {⊥}), then δ′(q1, 〈a, q2) = τ(δc(q1, a), q1).
• If q1 ∈ Q, a〉 ∈ �〉 and q2 ∈ Q, then δ′(q1, a〉, q2) = δr (q1, q2, a).

Thus, given a nested ω-word w̄, automaton B uses its stack to store the nested
structure of w̄. In particular, if B is in a state q reading a symbol 〈a, then it
knows that automaton A has reached a call position, and so B stores state q in its
stack and moves into a set of states that exactly satisfies δc(q, a). For example, if
δc(q, a) = (q1 ∨ q2) ∧ q3, then τ(δc(q, a), q) = ((q1, q) ∨ (q2, q)) ∧ (q3, q), which
indicates that q should be stored in the stack of B and the automaton should move
to a set of states that exactly satisfies (q1 ∨ q2) ∧ q3. Moreover, if B is in a state q

reading a symbol a〉, then it knows that automaton A has reached a return position,
and so B uses q and the state q ′ at the top of the stack to continue with its execution.
In particular, q ′ corresponds to the state of the matching call of the return position,
so B moves to a set of states that exactly satisfies δr (q, q ′, a) to continue simulating
automaton A.

The ideas in the previous paragraph can be used to prove that for every nested ω-
word w̄ over �, one can construct an accepting run of B over 〈w̄〉 from an accepting
run of A over w̄, and vice-versa. Thus, it is possible to prove that for every nested
ω-word w̄ over �, it holds that w̄ ∈ L(A) if and only if 〈w̄〉 ∈ L(B). �

As a second step in our proof, we need to show that Büchi NVPA can be translated
in polynomial time into ω-NWA.

Lemma 4.13 There exists a polynomial time algorithm that, given a Büchi NVPA
A over an alphabet �̂, constructs an ω-NWA B over � such that for every nested
ω-word w̄ over �, it holds that 〈w̄〉 ∈ L(A) if and only if w̄ ∈ L(B).

Proof Assume that A = (�̂,Q,Q0,,�,F ), where � is as in (†). Then define an
ω-NWA B = (�,Q′,Q′

0, δ,F
′) as follows: Q′ = Q × ( ∪ {⊥}), Q′

0 = Q0 × {⊥},
F ′ = F × ( ∪ {⊥}) and

• for every (q,B) ∈ Q × ( ∪ {⊥}) and a ∈ �:

δc((q,B), a) = {(q ′,B ′) | (q, 〈a, q ′,B ′) ∈ �},
δι((q,B), a) = {(q ′,B) | (q, a, q ′) ∈ �},
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• for every (q1,B1) ∈ Q × ( ∪ {⊥}), (q2,B2) ∈ Q × ( ∪ {⊥}) and a ∈ �:

δr ((q1,B1), (q2,B2), a) = {(q,B2) | (q1, a〉,B1, q) ∈ �}.
Thus, automaton B uses its nested structure to store the content of the stack of A: B
is in state (q,B) at the position i of a nested ω-word w̄ if and only if A is in state
q and has symbol B at the top of its stack at the position i of 〈w̄〉. To see why this
is the case, notice first that if i is a call position in a nested ω-word w̄, and B is in
state (q,B) reading symbol a at that position, then B moves into a state (q ′,B ′) such
that (q, 〈a, q ′,B ′) ∈ �, which simulates the fact that A at position i moves to state q ′
and places B ′ at the top of its stack. Moreover, if i is a return position with matching
call j in the nested ω-word w̄, and B is in state (q1,B1) reading symbol a at position
i, then B uses (q1,B1), a and its state (q2,B2) at position j to determine where to
move. More precisely, B knows in this case that A will remove B1 from the top of its
stack, leaving B2 at the top of it. Thus, B moves in this case to a state (q,B2) such
that (q1, a〉,B1, q) ∈ �.

The ideas in the previous paragraph can be used to prove that for every nested
ω-word w̄ over �, one can construct an accepting run of B over w̄ from an accepting
run of A over 〈w̄〉, and vice-versa. Thus, it is possible to prove that for every nested
ω-word w̄ over �, it holds that 〈w̄〉 ∈ L(A) if and only if w̄ ∈ L(B). �

As a final step of the proof, we just notice that our theorem is a corollary of Theo-
rem 4.11, and Lemmas 4.12 and 4.13. �

We conclude this section by showing that Theorem 4.10 also holds in the finite
case, that is, by proving that every alternating NWA can be translated into an NWA.

Proposition 4.14 For every alternating NWA of size n, there exists (and can be ef-

fectively constructed) an equivalent NWA of size 22nO(1)

.

Proof This proposition can be proved by using Theorem 4.10 and a standard padding
argument, where an extra symbol # is used to encode (finite) nested words as nested
ω-words (a nested word w̄ = (a1 · · ·an, η) is represented as a nested ω-word w̄ =
(a1 · · ·an#ω,η)). �

5 Synchronization of Nested Words

Synchronization of words and trees leads to a concept of regular relations. The idea
is that positions in several words or trees are tied together (synchronized) accord-
ing to some criterion, and then an automaton runs over such synchronized words
and trees [18, 19]. To be concrete, we describe the word model. Let w1, . . . ,wk be
words from �∗. Assume that # is a letter that is not in �. Let n = maxi |wi |, and let
[(w1, . . . ,wk)] be a word of length n constructed as follows. It is over the alphabet
(� ∪ {#})k , and its ith letter is a k-tuple �ai = (ai

1, . . . , a
i
k), where each ai

j is the ith
letter of wj if i ≤ |wj |, and # if i > |wj |. That is, we pad words shorter than n with
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#’s to make them all of length n, and then take the ith letter of [(w1, . . . ,wk)] to be
the tuple of the ith letters of these padded words.

Then regular k-ary relations over � are defined as sets R ⊆ (�∗)k such that the set
{[(w1, . . . ,wk)] | (w1, . . . ,wk) ∈ R} is accepted by an automaton over the alphabet
(� ∪ {#})k [13, 15, 19]. Such automata are called letter-to-letter automata. Regular
relations are closed under Boolean combinations, product, and projection. This makes
it possible to find infinite structures over �∗ with decidable first-order theories whose
definable sets are precisely the regular relations (these are universal automatic struc-
tures, cf. [13, 15]). The most commonly used such structure is 〈�∗,≺, (Pa)a∈�, el〉,
where ≺ is the prefix relation, Pa(w) is true iff the last letter of w is a, and el(w,w′)
(the equal-length predicate) holds iff |w| = |w′| [10, 13, 15].

We now study synchronization for nested words. There are two ways to apply syn-
chronization to them. One, as in words, is to use the linear structure of nested words
to synchronize positions. We show that such linear letter-to-letter synchronization for
words is completely incompatible with the nesting structure because even the sim-
plest nested extension of letter-to-letter automata is undecidable. An alternative is to
use synchronization based on the tree representation of nested words. This, as follows
from [11], leads to a decidable model. We present it as well, and explain it in terms
of the linear structure of nested words.

5.1 Letter-to-Letter Nested Word Automata

Assume that we have k nested words w̄1, . . . , w̄k , and we again pad the shorter words
with a special symbol # so that all of them are of the same length n. By [(w̄1, . . . , w̄k)]
we denote the structure obtained by tying together w̄1, . . . , w̄k . Technically, this is a
word over the alphabet (� ∪ {#})k , with k nesting relations, one from each of the
w̄i ’s. Let �ai be the ith letter of it. The letter-to-letter automaton runs from left to right
on [(w̄1, . . . , w̄k)], as an NWA. The main difference with NWAs is that each position
i may now be a return position in several of the w̄j ’s, and thus states in several call
positions determine the next state.

That is, in a k-letter-to-letter NWA over k-tuples of nested words, we have multiple
return transitions δX

r : Q × Q|X| × (� ∪ {#})k → 2Q, indexed by nonempty X ⊆
{1, . . . , k}. Suppose i is a return position in w̄l1, . . . , w̄lm , where 1 ≤ l1 < · · · < lm ≤ k

and m > 0. In the definition of a run ρ, we require that if j1, . . . , jm are the matching
calls, i.e. ηl1(j1, i), . . . , ηlm(jm, i) hold, then ρ(i + 1) must depend on ρ(i), �ai , and
the states in positions j1, . . . , jm:

ρ(i + 1) ∈ δ{l1,...,lm}
r (ρ(i), ρ(j1), . . . , ρ(jm), �ai).

For positions without returns, we have one transition δ : Q × (� ∪ {#})k → 2Q.
We show that even a much simpler automaton is undecidable. We call this model a

simplified k-letter-to-letter NWA. Syntactically, this is just an NWA, with an internal
transition and one return transition δr : Q × Q × (� ∪ {#})k → 2Q. The internal
transitions are handled exactly as in NWAs. The condition on the runs ρ for return
transitions is as follows: if i is a return position in words w̄l1, . . . , w̄lm , for 1 ≤ l1 <

· · · < lm ≤ k, then ρ(i + 1) ∈ δr (ρ(i), ρ(j1), �ai), where j1 is the call of i in w̄l1 .
In other words, we look at the state of only one call position, corresponding to the
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word with the smallest index. For all other positions we have a single transition δ :
Q × (� ∪ {#})k → 2Q.

If k = 1, these are the usual NWAs. But, as one might expect, even if k = 2, they
are undecidable.2

Theorem 5.1 The nonemptiness problem is undecidable for simplified 2-letter-to-
letter NWAs (and thus for k-letter-to-letter NWAs for k > 1).

Proof We reduce Post’s Correspondence Problem (PCP) to our problem. Given an
alphabet �, an instance of PCP is a pair of sequences of words u1, . . . , u� and
v1, . . . , v� over �. Then the problem is to find a sequence of integers i1, i2, . . . , in

in the interval [1, �] such that ui1ui2 · · ·uin = vi1vi2 · · ·vin . PCP is known to be unde-
cidable.

Let u1, . . . , u� and v1, . . . , v� be an instance of PCP over an alphabet �. Next we
define a simplified letter-to-letter NWA A such that L(A) is not empty iff there is
a sequence of integers i1, i2, . . . , in from the interval [1, �] such that ui1ui2 · · ·uin =
vi1vi2 · · ·vin .

We now explain how A works. The alphabet of A is 4, where

 = (� × {c, i, r}) ∪ {#,1, . . . , �}

(assuming that {1, . . . , �} ∩ � = ∅). Thus, A is a synchronized automaton that works
over 4 nested words. Intuitively, on two of these words A will guess a solution to PCP,
and on the other words it will guess a sequence of indices of words, and then will use
matching relations to relate indices of words with their start positions in ui1ui2 · · ·uin

and vi1vi2 · · ·vin .
More precisely, in the first nested word, A stores a sequence of words ui1, . . . , uin ,

where each ik ∈ [1, �] (1 ≤ k ≤ n), and in its third nested word, A stores a sequence of
words vj1, . . . , vjm , where each jk ∈ [1, �] (1 ≤ k ≤ m). In these two nested words, A
uses a symbol c to indicate the starting point of a word, r to indicate the end point of
a word and i to indicate that a position is neither the starting point nor the end point
of a word. Thus, for example, if u1 = aba and u2 = aaab, and A decides to store
u2u1, then the first nested word of A will be (a, c)(a, i)(a, i)(b, r)(a, c), (b, i)(a, r).
In the first and third nested word, A is trying to guess sequences that satisfy the
condition for PCP. Thus, A first checks whether ui1 · · ·uin = vj1 · · ·vjm , and then
uses its second and fourth nested word to verify whether for the previous sequences,
it is the case that n = m and ik = jk for every k ∈ [1, n]. Next we show how this is
done for the following example: u1 = aba, u2 = aaab, v1 = aaa and v2 = baba.
Assume that i2 = j1 = 1 and i1 = j2 = 2. Then the following is the letter-by-letter

2In fact, a closely related result is proved in a technical report [12] which appeared at the same time as the
first version of this paper.



Theory Comput Syst

word accepted by A that represents these sequences:

We note that ui1ui2 = vj1vj2 and that ui1ui2 , vj1vj2 have been stored in the first and
third nested word of A, respectively. The nesting structure of the second nested word
is used to store the sequence of indexes used in the first nested word. More pre-
cisely, every position p in the first nested word with label (x, c) corresponds to a call
position in the second nested word, whose matching return is a position with label
y ∈ {1, . . . , �}, which indicates what is the index associated with the word with start-
ing point p. The fourth nested word is constructed in the same way but considering
the third nested word. Since A is a simplified letter-to-letter NWA, the return posi-
tions in the fourth nested word are displaced by one letter to the right, so that return
positions in different nested words do not coincide. Let p be the first position in the
first nested word with label #, and let w2 and w4 be the suffixes from position p of
the words in the second and fourth nested word, respectively. Then to check whether
i1 = j1 and i2 = j2, automaton A just has to check whether w2 and w4 are of the
form i1#i2# and #i1#i2, respectively.

Automaton A is constructed as the product of several simplified letter-to-letter
NWA that verify the conditions described above. Each of these automata is straight-
forward to construct. Note also that simplified k-letter-to-letter automata are closed
under product. In the construction above, we defined A as a synchronized automaton
that works over four nested words. It easy to see that the first and the second nested
word can combined into a single one, as well as the third and the fourth nested word.
This show that the emptiness problem is undecidable even for simplified letter-to-
letter NWA working over 2 nested words. �
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Thus, there is no hope to use even the simplest possible form of letter-to-letter
synchronization in nested words. As another example of such incompatibility, we
show that there are no natural decidable extensions of universal automatic structures
on words to nested words. We look at structures M = 〈�∗

nw,�〉 (where �∗
nw is the

set of all finite nested words over �) of a vocabulary �. We assume that � includes
some basic relations. One is a prefix relation w̄ �nw w̄′ iff w̄ = w̄′[1,m] for some
m ≤ |w̄′| (so we can refer to the linear structure of nested words). The other allows
us to refer to the nesting structure: we relate a prefix w̄ of w̄′ so that in w̄′, there is a
call-return edge from the last position of w̄ to the last position of w̄′. That is, w̄ �η

w̄′ iff w̄ = w̄′[1,m], and η(m, |w̄′|) holds in w̄′. We say that M defines all regular
languages of nested words if for each such language L, there is a formula ϕL(x) such
that L = {w̄ ∈ �∗

nw | M |= ϕ(w̄)}. We say that M defines all regular relations over
words if for each regular relation R ⊆ (�∗)k , there is a formula ψR(x1, . . . , xk) such
that M |= ψR(w̄1, . . . , w̄k) iff (w1, . . . ,wk) ∈ R (recall that wi is a word from �∗
obtained by removing the nesting structure from w̄i ).

Proposition 5.2 There is no structure M = 〈�∗
nw,�nw,�η, . . .〉 that defines all reg-

ular languages of nested words, all regular relations over words, and has a decidable
first-order theory.

Proof By the assumption that every regular relation is definable in M, there is a
formula ψel(x, y) such that M |= ψel(w̄1, w̄2) iff |w1| = |w2|, and a formula ψLa (x),
for each a ∈ �, such that M |= ψLa (w̄) iff the last element of w is labeled a.

It is known [23] that for every context-free language L, one can effectively con-
struct a second-order sentence αL = QM1 . . . QMkβ(M1, . . . ,Mk) where each Q is
∃ or ∀, Mi ’s range over binary matching relations, and β is a first-order formula of
the vocabulary of words (i.e., < and the Pa’s unary predicates) such that a word w

satisfies αL iff it belongs to L. Thus, it suffices to model such a sentence over M (i.e.
define a formula α′

L(x) such that M |= α′
L(w̄) iff w ∈ L) – then ∃x α′

L1
(x) ∧ α′

L2
(x)

will encode the intersection of two context-free languages.
Assume x is a variable not mentioned in αL. To construct α′

L(x) from αL, we first
replace each second-order quantifier ∃Mi in αL by

∃mi

(
ψel(x,mi) ∧ · · · )

and each first-order quantifier ∃y in αL with

∃y
(
y �nw x ∧ · · · ).

That is, each matching relation is modeled by a nested word of the same length as x

(whose labeling is irrelevant; we shall only look at the matching relation), and each
first-order quantifier (i.e. a position) is modeled by a prefix of x. Then, to obtain α′

L,
we replace each atom of the form Pa(y) in β by ψLa (y), and each atom of the form
y < z with y �nw z. Finally, we replace each atom of the form Mi(y, z) with

∃u∃u′ (
ψel(u, y) ∧ ψel(u

′, z) ∧ u �nw x ∧ u′ �nw x ∧ u �η u′).

This concludes the proof of the proposition. �
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5.2 Call-Return Synchronization

As the usual letter-to-letter synchronization over the linear structure is incompatible
with nested words, we propose a different model, that is based on viewing nested
words as trees. Then known results on tree-automatic structures will imply decidabil-
ity [11]. In line with the previous notion of this section, we shall present this notion
using the linear structure as well (although the synchronization procedure will behave
differently in internal and call positions).

The idea of this call-return synchronization is that, instead of synchronizing po-
sitions with the same index i in different words, we synchronize positions for which
the shortest paths to them (from the first position) are the same. To formalize this, we
use a notion of a summary path introduced recently in connection with the study of
LTL-like logics on nested ω-words [1]. A summary path to a position i in a nested
word w̄ = (w,η) is the shortest path from 1 to i that combines both successor and
matching edges. That is, it is a sequence 1 = i0 < i1 < · · · < ik = i such that, if il is
a call with η(il, j) and i ≥ j , then η(il, il+1) holds, and otherwise il+1 = il + 1. We
represent this summary path as a word a1 . . . ak over the alphabet � = {i, c,m}:
1. if il = il−1 + 1 and il−1 is not a call, then al = i (path goes via an internal edge);
2. if il = il−1 + 1 and il−1 is a call, then al = c (path goes via a call edge);
3. if η(il−1, il) holds, then al = m (path goes via a matching edge).

If both i1 = il−1 + 1 and η(il−1, il) hold, we let al be m. The unique summary path to
position i will be denoted by πw̄(i) ∈ �∗, and the set of all summary paths by �(w̄).
The label of πw̄(i) is the label of i in w̄. Note that �(w̄) is closed under prefix.

The idea of the call-return synchronization is that now with each position i, we
keep its summary paths πw̄(i), to remember how it was reached in different nested
words. That is, a call-return synchronization of nested words w̄1, . . . , w̄k is a pair
(�(w̄1, . . . , w̄k), λ) where �(w̄1, . . . , w̄k) = ⋃

l �(w̄l), and λ : �(w̄1, . . . , w̄k) →
(� ∪ {#})k is a labeling function that labels each summary path with its label in w̄i

if it occurs in w̄i , and with # otherwise, for each i ≤ k. This synchronization can
naturally be viewed as a tree.

As an example, consider two nested words below, w̄1 (on the left) and w̄2 (on the
right), with summary paths shown above positions.

The synchronization occurs in the first and the second position, and we recursively
synchronize the calls (from i) and what follows their returns (from im). Intuitively,
this results in adding a dummy internal node ici inside the call for w̄2, and adding
a dummy last internal position imii for w̄2. Note that position 4 (i.e. ici) in w̄1 is
in no way related to position 4 (im) in w̄2, as it would have been in letter-to-letter
synchronization.

We now say that R ⊆ (�∗
nw)k is a regular k-ary relation of nested words iff

there is a tree automaton on ternary trees over (� ∪ {#})k that accepts precisely
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(�(w̄1, . . . , w̄k), λ), for (w̄1, . . . , w̄k) ∈ R. The following is an immediate conse-
quence of coding tree representations in MSO, and of the work on automatic struc-
tures over trees [11]:

Proposition 5.3

• Regular relations of nested words are closed under union, intersection, comple-
mentation, product, and projection.

• Regular 1-ary relations of nested words are precisely the regular nested languages.
• There is a finite collection � of unary and binary predicates on �∗

nw such that
〈�∗

nw,�〉 is a universal automatic structure for nested words, i.e. its definable re-
lations are precisely the regular relations of nested words, and its theory is decid-
able.
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