
Composition and Inversion of Schema Mappings∗

Marcelo Arenas Jorge Pérez Juan Reutter Cristian Riveros
PUC Chile PUC Chile U. of Edinburgh Oxford University

marenas@ing.puc.cl jperez@ing.puc.cl juan.reutter@ed.ac.uk cristian.riveros@comlab.ox.ac.uk

1 Introduction

A schema mapping is a specification that describes how
data from a source schema is to be mapped to a target
schema. Schema mappings have proved to be essential
for data-interoperability tasks such as data exchange and
data integration. The research on this area has mainly fo-
cused on performing these tasks. However, as Bernstein
pointed out [7], many information-system problems in-
volve not only the design and integration of complex ap-
plication artifacts, but also their subsequent manipulation.
Driven by this consideration, Bernstein proposed in [7]
a general framework for managing schema mappings. In
this framework, mappings are usually specified in a logi-
cal language, and high-level algebraic operators are used
to manipulate them [7, 16, 33, 12, 8].

Two of the most fundamental operators in this frame-
work are thecompositionand inversionof schema map-
pings. Intuitively, the composition can be described as
follows. Given a mappingM1 from a schemaA to a
schemaB, and a mappingM2 fromB to a schemaE, the
compositionof M1 andM2 is a new mapping that de-
scribes the relationship between schemasA andE. This
new mapping must besemantically consistentwith the re-
lationships previously established byM1 andM2. On
the other hand,an inverseof M1 is a new mapping that
describes thereverserelationship fromB to A, and is se-
mantically consistent withM1.

In practical scenarios, the composition and inversion
of schema mappings can have several applications. In a
data exchange context [13], if a mappingM is used to
exchange data from a source to a target schema, an in-
verse ofM can be used to exchange the data back to the
source, thusreversingthe application ofM. As a sec-
ond application, consider a peer-data management system
(PDMS) [10, 24]. In a PDMS, a peer can act as a data
source, a mediator, or both, and the system relates peers

∗Database Principles Column. Column editor: Leonid Libkin,
School of Informatics, University of Edinburgh, Edinburgh, EH8 9AB,
UK. E-mail: libkin@inf.ed.ac.uk.

by establishingdirectional mappings between the peers
schemas. Given a query formulated on a particular peer,
the PDMS must proceed to retrieve the answers by refor-
mulating the query using its complex net of semantic map-
pings. Performing this reformulation at query time may be
quite expensive. The composition operator can be used to
essentially combine sequences of mappings into a single
mapping that can be precomputed and optimized for query
answering purposes. Another application is schema evo-
lution, where the inverse together with the composition
play a crucial role [8]. Consider a mappingM between
schemasA andB, and assume that schemaA evolves
into a schemaA′. This evolution can be expressed as a
mappingM′ betweenA andA

′. Thus, the relationship
between the new schemaA′ and schemaB can be ob-
tained by inverting mappingM′ and then composing the
result with mappingM.

In the recent years, a lot of attention has been paid
to the development of solid foundations for the compo-
sition [32, 16, 36] and inversion [12, 19, 4, 3] of schema
mappings. In this paper, we review the proposals for the
semantics of these crucial operators. For each of these
proposals, we concentrate on the three following prob-
lems: the definition of the semantics of the operator, the
language needed to express the operator, and the algorith-
mic issues associated to the problem of computing the op-
erator. It should be pointed out that we primarily consider
the formalization of schema mappings introduced in the
work on data exchange [13]. In particular, when studying
the problem of computing the composition and inverse of
a schema mapping, we will be mostly interested in com-
puting these operators for mappings specified bysource-
to-target tuple-generating dependencies[13]. Although
there has been an important amount of work about dif-
ferentflavorsof composition and inversion motivated by
practical applications [9, 34, 38], we focus on the most
theoretically-oriented results [32, 16, 12, 19, 4, 3].

Organization of the paper. We begin in Section 2 with
the terminology that will be used in the paper. We then
continue in Section 3 reviewing the main results for the

SIGMOD Record, September 2009 (Vol. 38, No. 3) 17



composition operator proposed in [16]. Section 4 con-
tains a detailed study of the inverse operators proposed
in [12, 19, 4]. In Section 5, we review a relaxed approach
to define the semantics for the inverse and composition
operators that parameterizes these notions by a query-
language [32, 3]. Finally, some future work is pointed
out in Section 6. Due to the lack of space, the proofs of
the new results presented in this survey are given in the
extended version of this paper, which can be downloaded
fromhttp://arxiv.org/.

2 Basic notation

In this paper, we assume that data is represented in the
relational model. Arelational schemaR, or justschema,
is a finite set{R1, . . . , Rn} of relation symbols, with each
Ri having a fixed arityni. An instanceI of R assigns to
each relation symbolRi of R a finiteni-ary relationRI

i .
Thedomainof an instanceI, denoted bydom(I), is the
set of all elements that occur in any of the relationsRI

i . In
addition,Inst(R) is defined to be the set of all instances
of R.

As usual in the data exchange literature, we consider
database instances with two types of values:constantsand
nulls. More precisely, letC andN be infinite and disjoint
sets of constants and nulls, respectively. If we refer to
a schemaS as asourceschema, thenInst(S) is defined
to be the set of all instances ofS that are constructed by
using only elements fromC, and if we refer to a schema
T as atargetschema, then instances ofT are constructed
by using elements from bothC andN.

Schema mappings and solutions. Schema mappings
are used to define a semantic relationship between two
schemas. In this paper, we use a general representation of
mappings; given two schemasR1 andR2, a mappingM
from R1 to R2 is a set of pairs(I, J), whereI is an in-
stance ofR1, andJ is an instance ofR2. Further, we say
thatJ is asolution forI underM if (I, J) ∈ M. The set
of solutions forI underM is denoted bySolM(I). The
domain ofM, denoted bydom(M), is defined as the set
of instancesI such thatSolM(I) 6= ∅.

Dependencies. As usual, we use a class of dependen-
cies to specify schema mappings [13]. LetL1, L2 be
query languages andR1, R2 be schemas with no relation
symbols in common. A sentenceΦ overR1 ∪ R2 is an
L1-TO-L2 dependency fromR1 to R2 if Φ is of the form
∀x̄ (ϕ(x̄) → ψ(x̄)), where (1)x̄ is the tuple of free vari-
ables in bothϕ(x̄) andψ(x̄); (2) ϕ(x̄) is anL1-formula
overR1; and (3)ψ(x̄) is anL2-formula overR2. Fur-
thermore, we usually omit the outermost universal quan-

tifiers fromL1-TO-L2 dependencies and, thus, we write
ϕ(x̄) → ψ(x̄) instead of∀x̄ (ϕ(x̄) → ψ(x̄)). Finally, the
semantics of anL1-TO-L2 dependency is defined as usual
(e.g., see [13, 4]).

If S is a source schema andT is a target schema,
an L1-TO-L2 dependency fromS to T is called an
L1-TO-L2 source-to-target dependency(L1-TO-L2 st-
dependency), and anL1-TO-L2 dependency fromT to
S is called anL1-TO-L2 target-to-source dependency
(L1-TO-L2 ts-dependency). Notice that the fundamen-
tal class of source-to-target tuple-generating dependencies
(st-tgds) [13] corresponds to the class of CQ-TO-CQ st-
dependencies.

When considering a mapping specified by a set of de-
pendencies, we use the usual semantics given by logi-
cal satisfaction. That is, ifM is a mapping fromR1

to R2 specified by a setΣ of L1-TO-L2 dependencies,
we have that(I, J) ∈ M if and only if I ∈ Inst(R1),
J ∈ Inst(R2), and(I, J) satisfiesΣ.

Query Answering. In this paper, we use CQ to denote the
class of conjunctive queries and UCQ to denote the class
of unions of conjunctive queries. Given a queryQ and
a database instanceI, we denote byQ(I) the evaluation
of Q overI. Moreover, we use predicateC(·) to differ-
entiate between constants and nulls, that is,C(a) holds
if and only if a is a constant value. We use=, 6=, and
C as superscripts to denote a class of queries enriched
with equalities, inequalities, and predicateC(·), respec-
tively. Thus, for example, UCQ=,C is the class of unions
of conjunctive queries with equalities and predicateC(·).

As usual, the semantics of queries in the presence of
schema mappings is defined in terms of the notion ofcer-
tain answer. Assume thatM is a mapping from a schema
R1 to a schemaR2. Then given an instanceI of R1 and
a queryQ overR2, thecertain answers ofQ for I under
M, denoted bycertainM(Q, I), is the set of tuples that
belong to the evaluation ofQ over every possible solution
for I underM, that is,

⋂

{Q(J) | J is a solution forI
underM}.

3 Composition of Schema Mappings

The composition operator has been identified as one of the
fundamental operators for the development of a frame-
work for managing schema mappings [7, 33, 35]. The
goal of this operator is to generate a mappingM13 that
has the same effect as applying successively two given
mappingsM12 andM23, provided that the target schema
of M12 is the same as the source schema ofM23. In
[16], Fagin et al. study the composition for the widely
used class of st-tgds. In particular, they provide solutions

18 SIGMOD Record, September 2009 (Vol. 38, No. 3)



to the three fundamental problems for mapping operators
considered in this paper, that is, they provide a formal se-
mantics for the composition operator, they identify a map-
ping language that is appropriate for expressing this oper-
ator, and they study the complexity of composing schema
mappings. In this section, we present these solutions.

In [16, 33], the authors propose a semantics for the
composition operator that is based on the semantics of this
operator for binary relations:

Definition 3.1 ([16, 33]) Let M12 be a mapping from a
schemaR1 to a schemaR2, andM23 a mapping fromR2

to a schemaR3. Then the composition ofM12 andM23

is defined asM12 ◦ M23 = {(I1, I3) | ∃I2 : (I1, I2) ∈
M12 and(I2, I3) ∈ M23}.

Then Fagin et al. consider in [16] the natural question of
whether the composition of two mappings specified by st-
tgds can also be specified by a set of these dependencies.
Unfortunately, they prove in [16] that this is not the case,
as shown in the following example.

Example 3.2. (from [16])Consider a schemaR1 consist-
ing of one binary relationTakes, that associates a student
name with a course she/he is taking, a schemaR2 consist-
ing of a relationTakes1, that is intended to be a copy of
Takes, and of an additional relation symbolStudent,
that associates a student with a student id; and a schema
R3 consisting of a binary relation symbolEnrollment,
that associates a student id with the courses this student is
taking. Consider now mappingsM12 andM23 specified
by the following sets of st-tgds:

Σ12 = {Takes(n, c) → Takes1(n, c),

Takes(n, c) → ∃sStudent(n, s)},

Σ23 = {Student(n, s) ∧ Takes1(n, c) →

Enrollment(s, c)}.

Mapping M12 requires that a copy of every tuple in
Takes must exist inTakes1 and, moreover, that each
student namen must be associated with some student id
s in the relationStudent. MappingM23 requires that
if a student with namen and ids takes a coursec, then
(s, c) is a tuple in the relationEnrollment. Intuitively,
in the composition mapping one would like to replace the
namen of a student by a student idin, and then for each
coursec that is taken byn, one would like to include the
tuple (in, c) in the tableEnrollment. Unfortunately,
as shown in [16], it is not possible to express this relation-
ship by using a set of st-tgds. In particular, a st-tgd of the
form:

Takes(n, c) → ∃y Enrollment(y, c) (1)

does not express the desired relationship, as it may asso-
ciate a distinct student idy for each tuple(n, c) in Takes
and, thus, it may create several identifiers for the same
student name.�

The previous example shows that in order to express
the composition of mappings specified by st-tgds, one has
to use a language more expressive than st-tgds. However,
the example gives little information about what the right
language for composition is. In fact, the composition of
mappingsM12 andM23 in this example can be defined
in first-order logic (FO):

∀n∃y∀c (Takes(n, c) → Enrollment(y, c)),

which may lead to the conclusion that FO is a good al-
ternative to define the composition of mappings specified
by st-tgds. However, a complexity argument shows that
this conclusion is wrong. More specifically, given map-
pingsM12 = (R1,R2,Σ12) andM23 = (R2,R3,Σ23),
where Σ12 and Σ23 are sets of st-tgds, define the
composition problem forM12 and M23, denoted by
COMPOSITION(M12,M23), as the problem of verify-
ing, givenI1 ∈ Inst(R1) andI3 ∈ Inst(R3), whether
(I1, I3) ∈ M12 ◦ M23. If the composition ofM12

with M23 is defined by a setΣ of formulas in some
logic, then COMPOSITION(M12,M23) is reduced to the
problem of verifying whether a pair of instances(I1, I3)
satisfiesΣ. In particular, if Σ is a set of FO formu-
las, then the complexity of COMPOSITION(M12,M23)
is in LOGSPACE, as the complexity of verifying whether
a fixed set of FO formulas is satisfied by an instance is
in LOGSPACE [39]. Thus, if for some mappingsM12

andM23, the complexity of the composition problem is
higher than LOGSPACE, one can conclude that FO is not
capable of expressing the composition. In fact, this higher
complexity is proved in [16].

Theorem 3.3 ([16]) For every pair of mappingsM12,
M23 specified by st-tgds,COMPOSITION(M12,M23) is
in NP. Moreover, there exist mappingsM⋆

12
and M⋆

23

specified by st-tgds such thatCOMPOSITION(M⋆
12
,M⋆

23
)

is NP-complete.

Theorem 3.3 not only shows that FO is not the right
language to express the composition of mappings given
by st-tgds, but also gives a good insight on what needs to
be added to st-tgds to obtain a language closed under com-
position. Given that COMPOSITION(M12,M23) is in NP,
we know by Fagin’s Theorem that the composition can be
defined by an existential second-order logic formula [26].
In fact, Fagin et al. use this property in [16] to obtain the
right language for composition. More specifically, Fagin

SIGMOD Record, September 2009 (Vol. 38, No. 3) 19



et al. extend st-tgds with existential second-order quantifi-
cation, which gives rise to the class of SO-tgds [16]. For-
mally, given schemasR1 andR2 with no relation sym-
bols in common, asecond-order tuple-generating depen-
dency fromR1 to R2 (SO-tgd) is a formula of the form
∃f̄ (∀x̄1(ϕ1 → ψ1) ∧ · · · ∧ ∀x̄n(ϕn → ψn)), where (1)
each member of̄f is a function symbol, (2) each formula
ϕi (1 ≤ i ≤ n) is a conjunction of relational atoms of
the formS(y1, . . . , yk) and equality atoms of the form
t = t′, whereS is ak-ary relation symbol ofR1 andy1,
. . ., yk are (not necessarily distinct) variables inx̄i, and
t, t′ are terms built from̄xi and f̄ , (3) each formulaψi

(1 ≤ i ≤ n) is a conjunction of relational atomic formu-
las overR2 mentioning terms built from̄xi andf̄ , and (4)
each variable in̄xi (1 ≤ i ≤ n) appears in some relational
atom ofϕi.

In [16], Fagin et al. show that SO-tgds are the right de-
pendencies for expressing the composition of mappings
given by st-tgds. First, it is not difficult to see that ev-
ery set of st-tgds can be transformed into an SO-tgd. For
example, setΣ12 from Example 3.2 is equivalent to the
following SO-tgd:

∃f

(

∀n∀c (Takes(n, c) → Takes1(n, c)) ∧

∀n∀c (Takes(n, c) → Student(n, f(n, c)))

)

.

Second, Fagin et al. show that SO-tgds are closed under
composition.

Theorem 3.4 ([16]) Let M12 and M23 be mappings
specified by SO-tgds. Then the compositionM12 ◦M23

can also be specified by an SO-tgd.

It should be noticed that the previous theorem can also be
applied to mappings that are specified by finite sets of SO-
tgds, as these dependencies are closed under conjunction.
Moreover, it is important to notice that Theorem 3.4 im-
plies that the composition of a finite number of mappings
specified by st-tgds can be defined by an SO-tgd, as every
set of st-tgds can be expressed as an SO-tgd.

Theorem 3.5 ([16]) The composition of a finite number
of mappings, each defined by a finite set of st-tgds, is de-
fined by an SO-tgd.

Example 3.6.LetM12 andM23 be the mappings defined
in Example 3.2. The following SO-tgd correctly specifies
the composition of these two mappings:

∃g

(

∀n∀c (Takes(n, c) → Enrollment(g(n), c))

)

.

�

Third, Fagin et al. prove in [16] that the converse of The-
orem 3.5 also holds, thus showing that SO-tgds are ex-
actly the right language for representing the composition
of mappings given by st-tgds.

Theorem 3.7 ([16]) Every SO-tgd defines the composi-
tion of a finite number of mappings, each defined by a
finite set of st-tgds.

Finally, Fagin et al. in [16] also study the complex-
ity of composing schema mappings. More specifically,
they provide an exponential-time algorithm that given two
mappingsM12 andM23, each specified by an SO-tgd,
returns a mappingM13 specified by an SO-tgd and equiv-
alent to the composition ofM12 andM23. Furthermore,
they show that exponentiality is unavoidable in such an
algorithm, as there exist mappingsM12 andM23, each
specified by a finite set of st-tgds, such that every SO-tgd
that defines the composition ofM12 andM23 is of size
exponential in the size ofM12 andM23.

In [36], Nash et al. also study the composition problem
and extend the results of [16]. In particular, they study the
composition of mappings given by dependencies that need
not be source-to-target, and for all the classes of mappings
considered in that paper, they provide an algorithm that
attempts to compute the composition and give sufficient
conditions that guarantee that the algorithm will succeed.

3.1 Composition under closed world se-
mantics

In [27], Libkin proposes an alternative semantics for
schema mappings and, in particular, for data exchange.
Roughly speaking, the main idea in [27] is that when ex-
changing data with a setΣ of st-tgds and a source in-
stanceI, one generates a target instanceJ such that ev-
ery tuple inJ is justified by a formula inΣ and a set
of tuples fromI. A target instanceJ that satisfies the
above property is called aclosed-world solutionfor I un-
der Σ [27]. In [28], Libkin and Sirangelo propose the
language ofCQ-SkSTDs, that slightly extends the syn-
tax of SO-tgds, and study the composition problem under
the closed-world semantics for mappings given by sets of
CQ-SkSTDs. Due to the lack of space, we do not give
here the formal definition of the closed-world semantics,
but instead we give an example that shows the intuition
behind it (see [28] for a formal definition of the semantics
and ofCQ-SkSTDs).

Example 3.8.Let σ be the SO-tgd of Example 3.6. For-
mulaσ is also aCQ-SkSTD [28]. Consider now a source

20 SIGMOD Record, September 2009 (Vol. 38, No. 3)



instanceI such thatTakesI = {(Chris, logic)}, and the
instancesJ1 andJ2 such that:

EnrollmentJ1 = {(075, logic)}

EnrollmentJ2 = {(075, logic), (084, algebra)}

Notice that both(I, J1) and (I, J2) satisfyσ (consider-
ing an interpretation for functiong such thatg(Chris) =
075). Thus, under the semantics based on logical satis-
faction [16], bothJ1 andJ2 are solutions forI. The cru-
cial difference betweenJ1 andJ2 is thatJ2 has anun-
justifiedtuple [27]; tuple(075, logic) is justifiedby tuple
(Chris, logic), while(084, algebra) has no justification. In
fact,J1 is a closed-world solution forI underσ, butJ2 is
not [27, 28]. �

Given a setΣ of CQ-SkSTDs from R1 to R2, we say
thatM is specified byΣ under the closed-world seman-
tics, denoted byM = cws(Σ,R1,R2), if M = {(I, J) |
I ∈ Inst(R1), J ∈ Inst(R2) andJ is a closed-world so-
lution for I underΣ}. Notice that, as Example 3.8 shows,
the mapping specified by a formula (or a set of formu-
las) under the closed-world semantics is different from the
mapping specified by the same formula but under the se-
mantics of [16]. Thus, it is not immediately clear whether
a closure property like the one in Theorem 3.4 can be di-
rectly translated to the closed-world semantics. In this
respect, Libkin and Sirangelo [28] show that the language
of CQ-SkSTDs is closed under composition.

Theorem 3.9 ([28]) Let M12 = cws(Σ12,R1,R2) and
M23 = cws(Σ23,R2,R3), whereΣ12 andΣ23 are sets of
CQ-SkSTDs. Then there exists a setΣ13 of CQ-SkSTDs
such thatM12 ◦M23 = cws(Σ13,R1,R3).

4 Inversion of Schema Mappings

In the recent years, the problem of inverting schema map-
pings has received a lot of attention. In particular, the is-
sue of providing agoodsemantics for this operator turned
out to be a difficult problem. Three main proposals for
inverting mappings have been considered so far in the lit-
erature:Fagin-inverse[12], quasi-inverse[19] andmaxi-
mum recovery[5]. In this section, we present and compare
these approaches.

Some of the notions mentioned above are only appro-
priate for certain classes of mappings. In particular, the
following two classes of mappings are used in this section
when defining and comparing inverses. A mappingM
from a schemaR1 to a schemaR2 is said to betotal if
dom(M) = Inst(R1), and is said to beclosed-down on
the leftif whenever(I, J) ∈ M andI ′ ⊆ I, it holds that
(I ′, J) ∈ M.

Furthermore, whenever a mapping is specified by a set
of formulas, we consider source instances as just contain-
ing constants values, and target instances as containing
constants and null values. This is a natural assumption in
a data exchange context, since target instances generated
as a result of exchanging data may beincomplete, thus,
null values are used as place-holders for unknown infor-
mation. In Section 4.3, we consider inverses for alterna-
tive semantics of mappings and, in particular, inverses for
theextended semanticsthat was proposed in [17] to deal
with incomplete information in source instances.

4.1 Fagin-inverse and quasi-inverse

We start by considering the notion of inverse proposed
by Fagin in [12], and that we call Fagin-inverse in this
paper1. Roughly speaking, Fagin’s definition is based on
the idea that a mapping composed with its inverse should
be equal to the identity schema mapping. Thus, given a
schemaR, Fagin first defines anidentity mappingId as
{(I1, I2) | I1, I2 are instances ofR andI1 ⊆ I2}. Then
a mappingM′ is said to be aFagin-inverseof a mapping
M if M◦M′ = Id. Notice thatId is not the usual identity
relation overR. As explained in [12],Id is appropriate as
an identity for mappings that are total and closed-down
on the left and, in particular, for the class of mappings
specified by st-tgds.

Example 4.1. Let M be a mapping specified by st-tgds
S(x) → U(x) andS(x) → V (x). Intuitively, M is
Fagin-invertible since all the information in the source re-
lationS is transferred to both relationsU andV in the tar-
get. In fact, the mappingM′ specified by ts-tgdU(x) →
S(x) is a Fagin-inverse ofM sinceM◦M′ = Id. More-
over, the mappingM′′ specified by ts-tgdV (x) → S(x)
is also a Fagin-inverse ofM, which shows that there need
not be a unique Fagin-inverse.�

A first fundamental question about any notion of in-
verse is for which class of mappings is guaranteed to ex-
ist. The following example from [12] shows that Fagin-
inverses are not guaranteed to exist for mappings specified
by st-tgds.

Example 4.2. Let M be a mapping specified by st-tgd
S(x, y) → T (x). Intuitively, M has no Fagin-inverse
sinceM only transfers the information about the first
component ofS. In fact, it is formally proved in [12] that
this mapping is not Fagin-invertible.�

1Fagin [12] named his notion just asinverseof a schema mapping.
Since we are comparing different semantics for theinverseoperator, we
reserve the terminverseto refer to this operator in general, and use the
nameFagin-inversefor the notion proposed in [12].

SIGMOD Record, September 2009 (Vol. 38, No. 3) 21



As pointed out in [19], the notion of Fagin-inverse is
rather restrictive as it is rare that a schema mapping pos-
sesses a Fagin-inverse. Thus, there is a need for weaker
notions of inversion, which is the main motivation for the
introduction of the notion of quasi-inverse of a schema
mapping in [19].

The idea behind quasi-inverses is to relax the notion
of Fagin-inverse by not differentiating between source in-
stances that have the same space of solutions. More pre-
cisely, letM be a mapping from a schemaR1 to a schema
R2. InstancesI1 andI2 of R1 aredata-exchange equiv-
alent w.r.t. M, denoted byI1 ∼M I2, if SolM(I1) =
SolM(I2). For example, for the mappingM in Exam-
ple 4.2, we have thatI1 ∼M I2, with I1 = {S(1, 2)} and
I2 = {S(1, 3)}. ThenM′ is said to be a quasi-inverse of
M if the propertyM◦M′ = Id holdsmodulothe equiv-
alence relation∼M. Formally, given a mappingN from
R to R, mappingN [∼M,∼M] is defined as

{(I1, I2) ∈ Inst(R) × Inst(R) | existI ′
1
, I ′

2
with

I1 ∼M I ′
1
, I2 ∼M I ′

2
and(I ′

1
, I ′

2
) ∈ N}

Then a mappingM′ is said to be aquasi-inverseof a map-
pingM if (M◦M′)[∼M,∼M] = Id[∼M,∼M].

Example 4.3. Let M be a mapping specified by st-tgd
S(x, y) → T (x). It was shown in Example 4.2 that
M does not have a Fagin-inverse. However, mapping
M′ specified by ts-tgdT (x) → ∃y S(x, y) is a quasi-
inverse ofM [19]. Notice that for the source instance
I1 = {S(1, 2)}, we have thatI1 andI2 = {S(1, 3)} are
both solutions forI1 under the compositionM◦M′. In
fact, for everyI such thatI ∼M I1, we have thatI is a
solution forI1 underM◦M′. �

In [19], the authors show that if a mappingM is Fagin-
invertible, then a mappingM′ is a Fagin-inverse ofM
if and only if M′ is a quasi-inverse ofM. Example 4.3
shows that the opposite direction does not hold. Thus, the
notion of quasi-inverse is a strict generalization of the no-
tion of Fagin-inverse. Furthermore, the author provides in
[19] a necessary and sufficient condition for the existence
of quasi-inverses for mappings specified by st-tgds, and
use this condition to show the following result:

Proposition 4.4 ([19]) There is a mappingM specified
by a single st-tgd that has no quasi-inverse.

Thus, although numerous non-Fagin-invertible schema
mappings possess natural and useful quasi-inverses [19],
there are still simple mappings specified by st-tgds that
have no quasi-inverse. This leaves as an open problem the
issue of finding an appropriate notion of inversion for st-
tgds, and it is the main motivation for the introduction of
the notion of inversion discussed in the following section.

4.2 Maximum recovery

We consider now the notion of maximum recovery intro-
duced by Arenas et al. in [4]. In that paper, the authors
follow a different approach to define a notion of inversion.
In fact, the main goal of [4] is not to define a notion of in-
verse mapping, but instead to give a formal definition for
what it means for a mappingM′ to recoversound infor-
mationwith respect to a mappingM. Such a mapping
M′ is called a recovery ofM in [4]. Given that, in gen-
eral, there may exist many possible recoveries for a given
mapping, Arenas et al. introduce an order relation on re-
coveries in [4], and show that this naturally gives rise to
the notion of maximum recovery, which is a mapping that
brings back the maximum amount of sound information.

Let M be a mapping from a schemaR1 to a schema
R2, andId the identity schema mapping overR1, that is,
Id = {(I, I) | I ∈ Inst(R1)}. When trying to invertM,
the ideal would be to find a mappingM′ from R2 to R1

such thatM◦M′ = Id .Unfortunately, in most cases this
ideal is impossible to reach (for example, for the case of
mappings specified by st-tgds [12]). If for a mappingM,
there is no mappingM1 such thatM◦M1 = Id, at least
one would like to find a schema mappingM2 that does
not forbid the possibility of recovering the initial source
data. This gives rise to the notion of recovery proposed
in [4]. Formally, given a mappingM from a schema
R1 to a schemaR2, a mappingM′ from R2 to R1 is
a recoveryof M if (I, I) ∈ M ◦ M′ for every instance
I ∈ dom(M) [4].

In general, ifM′ is a recovery ofM, then the smaller
the space of solutions generated byM ◦ M′, the more
informativeM′ is about the initial source instances. This
naturally gives rise to the notion of maximum recovery;
given a mappingM and a recoveryM′ of it, M′ is said
to be amaximum recoveryof M if for every recoveryM′′

of M, it holds thatM◦M′ ⊆ M◦M′′ [4].

Example 4.5.In [19], it was shown that the schema map-
pingM specified by st-tgd

E(x, z) ∧ E(z, y) → F (x, y) ∧M(z)

has neither a Fagin-inverse nor a quasi-inverse. However,
it is possible to show that the schema mappingM′ speci-
fied by ts-tgds:

F (x, y) → ∃u (E(x, u) ∧ E(u, y)),

M(z) → ∃v∃w (E(v, z) ∧ E(z, w)),

is a maximum recovery ofM. Notice that, intuitively, the
mappingM′ is making thebest effortto recover the initial
data transferred byM. �

22 SIGMOD Record, September 2009 (Vol. 38, No. 3)



In [4], Arenas et al. study the relationship between the
notions of Fagin-inverse, quasi-inverse and maximum re-
covery. It should be noticed that the first two notions
are only appropriate for total and closed-down on the left
mappings [12, 4]. Thus, the comparison in [4] focus on
these mappings. More precisely, it is shown in [4] that
for every mappingM that is total and closed-down on
the left, if M is Fagin-invertible, thenM′ is a Fagin-
inverse ofM if and only if M′ is a maximum recov-
ery of M. Thus, from Example 4.5, one can conclude
that the notion of maximum recovery strictly generalizes
the notion of Fagin-inverse. The exact relationship be-
tween the notions of quasi-inverse and maximum recov-
ery is a bit more involved. For every mappingM that is
total and closed-down on the left, it is shown in [4] that if
M is quasi-invertible, thenM has a maximum recovery
and, furthermore, every maximum recovery ofM is also
a quasi-inverse ofM.

In [4], the authors provide a necessary and sufficient
condition for the existence of a maximum recovery. It is
important to notice that this is general condition as it can
be applied to any mapping, as long as it is defined as a
set of pairs of instances. This condition is used in [4] to
prove that every mapping specified by a set of st-tgds has
a maximum recovery.

Theorem 4.6 ([4]) Every mappingM specified by a set
of st-tgds has a maximum recovery.

4.3 Inverses for alternative semantics

When mappings are specified by sets of logical formu-
las, we have considered the usual semantics of mappings
based on logical satisfaction. However, some alternative
semantics have been considered in the literature, such as
the closed world semantics[27], the universal seman-
tics [13], and theextended semantics[17]. Although some
of the notions of inverse discussed in the previous sections
can be directly applied to these alternative semantics, the
positive and negative results on the existence of inverses
need to be reconsidered in these particular cases. In this
section, we focus on this problem for the universal and
extended semantics of mappings.

4.3.1 Universal solutions semantics

Recall that a homomorphism from an instanceJ1 to an
instanceJ2 is a functionh : dom(J1) → dom(J2)
such that (1)h(c) = c for every constantc ∈ dom(J1),
and (2) for every tupleR(a1, . . . , ak) in J1, tuple
R(h(a1), . . . , h(ak)) is in J2. Given a mappingM and a

source instanceI, a target instanceJ ∈ SolM(I) is a uni-
versal solution forI underM if for everyJ ′ ∈ SolM(I),
there exists a homomorphism fromJ to J ′. It was shown
in [13, 14] that universal solutions have several desirable
properties for data exchange. In view of this fact, an al-
ternative semantics based on universal solutions was pro-
posed in [14] for schema mappings. Given a mappingM,
the mappingu(M) is defined as the set of pairs

{(I, J) | J is a universal solution forI underM}.

Mappingu(M) was introduced in [14] in order to give
a clean semantics for answering target queries after ex-
changing data with mappingM. By combining the re-
sults on universal solutions for mappings given by st-tgds
in [13] and the results in [5] on the existence of maximum
recoveries, one can easily prove the following:

Proposition 4.7 LetM be a mapping specified by a set of
st-tgds. Thenu(M) has a maximum recovery. Moreover,
the mapping(u(M))−1 = {(J, I) | (I, J) ∈ u(M)} is a
maximum recovery ofu(M).

4.3.2 Extended solutions semantics

A more delicate issue regarding the semantics of map-
pings was considered in [17]. In this paper, Fagin et
al. made the observation that almost all the literature about
data exchange and, in particular, the literature about in-
verses of schema mappings, assume that source instances
do not have null values. Since null values in the source
may naturally arise when using inverses of mappings to
exchange data, the authors relax the restriction on source
instances allowing them to contain values inC ∪ N. In
fact, the authors go a step further and propose new refined
notions for inverting mappings that consider nulls in the
source. In particular, they propose the notions ofextended
inverse, and ofextended recoveryandmaximum extended
recovery. In this section, we review the definitions of the
latter two notions and compare them with the previously
proposed notions of recovery and maximum recovery.

The first observation to make is that since null values
are intended to representmissingor unknowninformation,
they should not be treated naively as constants [25]. In
fact, as shown in [17], if one treats nulls in that way, the
existence of a maximum recovery for mappings given by
st-tgds is no longer guaranteed.

Example 4.8.Consider a source schema{S(·, ·)} where
instances may contain null values, and letM be a map-
ping specified by st-tgdS(x, y) → ∃z (T (x, z)∧T (z, y)).
ThenM has no maximum recovery if one considers a
naı̈ve semantics where null elements are used as constants
in the source [17].�

SIGMOD Record, September 2009 (Vol. 38, No. 3) 23



Since nulls should not be treated naively when ex-
changing data, in [17] the authors proposed a new way
to deal with null values. Intuitively, the idea in [17] is
to closemappings under homomorphisms. This idea is
supported by the fact that nulls are intended to represent
unknown data, thus, it should be possible to replace them
by arbitrary values. Formally, given a mappingM, define
e(M), thehomomorphic extensionof M, as the mapping:

{(I, J) | ∃(I ′, J ′) : (I ′, J ′) ∈ M and there exist

homomorphisms fromI to I ′ and fromJ ′ to J}.

Thus, for a mappingM that has nulls in source and target
instances, one does not have to considerM but e(M) as
the mapping to deal with for exchanging data and comput-
ing mapping operators, sincee(M) treats nulls in a mean-
ingful way [17]. The following result shows that with this
new semantics one can avoid anomalies as the one shown
in Example 4.8.

Theorem 4.9 ([18]) For every mappingM specified by a
set of st-tgds and with nulls in source and target instances,
e(M) has a maximum recovery.

As mentioned above, Fagin et al. go a step further in
[17] by introducing new notions of inverse for mappings
that consider nulls in the source. More specifically, a
mappingM′ is said to be anextended recoveryof M
if (I, I) ∈ e(M) ◦ e(M′), for every source instanceI.
Then given an extended recoveryM′ of M, the map-
ping M′ is said to be amaximum extended recoveryof
M if for every extended recoveryM′′ of M, it holds that
e(M) ◦ e(M′) ⊆ e(M) ◦ e(M′′) [17].

At a first glance, one may think that the notions of max-
imum recovery and maximum extended recovery are in-
comparable. Nevertheless, the next result shows that there
is a tight connection between these two notions. In par-
ticular, it shows that the notion proposed in [17] can be
defined in terms of the notion of maximum recovery.

Theorem 4.10 A mappingM has a maximum extended
recovery if and only ife(M) has a maximum recovery.
Moreover,M′ is a maximum extended recovery ofM if
and only ife(M′) is a maximum recovery ofe(M).

In [17], it is proved that every mapping specified by a set
of st-tgds and considering nulls in the source has a max-
imum extended recovery. It should be noticed that this
result is also implied by Theorems 4.9 and 4.10.

Finally, another conclusion that can be drawn from the
above result is that, all the machinery developed in [4, 5]
for the notion of maximum recovery can be applied over
maximum extended recoveries, and the extended seman-
tics for mappings, thus giving a new insight about inverses
of mappings with null values in the source.

4.4 Computing the inverse

Up to this point, we have introduced and compared three
notions of inverse proposed in the literature, focusing
mainly on the fundamental problem of the existence of
such inverses. In this section, we study the problem of
computing these inverses. More specifically, we present
some of the algorithms that have been proposed in the lit-
erature for computing them, and we study the languages
used in these algorithms to express these inverses.

Arguably, the most important problem to solve in this
area is the problem of computing inverses of mappings
specified by st-tgds. This problem has been studied for the
case of Fagin-inverse [19, 20], quasi-inverse [19], maxi-
mum recovery [4, 3, 5] and maximum extended recovery
[17, 18]. In this section, we start by presenting the algo-
rithm proposed in [5] for computing maximum recoveries
of mappings specified by st-tgds, which by the results of
Sections 4.1 and 4.2 can also be used to compute Fagin-
inverses and quasi-inverses for this class of mappings. In-
terestingly, this algorithm is based onquery rewriting,
which greatly simplifies the process of computing such
inverses.

Let M be a mapping from a schemaR1 to a schema
R2 andQ a query over schemaR2. Then a queryQ′

is said to be arewriting of Q over the sourceif Q′ is a
query overR1 such that for everyI ∈ Inst(R1), it holds
thatQ′(I) = certainM(Q, I). That is, to obtain the set
of certain answers ofQ overI underM, one just has to
evaluate its rewritingQ′ over instanceI.

The computation of a rewriting of a conjunctive query
is a basic step in the first algorithm presented in this sec-
tion. This problem has been extensively studied in the
database area [30, 31, 11, 1, 37] and, in particular, in the
data integration context [23, 22, 29]. The following algo-
rithm uses a query rewriting procedure QUERYREWRIT-
ING to compute a maximum recovery of a mappingM
specified by a setΣ of st-tgds. In the algorithm, if
x̄ = (x1, . . . , xk), thenC(x̄) is a shorthand forC(x1) ∧
· · · ∧ C(xk).

Algorithm MAXIMUM RECOVERY(M)
Input : M = (S,T,Σ), whereΣ is a set of st-tgds.
Output : M′ = (T,S,Σ′), where Σ′ is a set of
CQC-TO-UCQ= ts-dependencies andM′ is a maximum
recovery ofM.
1. Start withΣ′ as the empty set.
2. For every dependency of the formϕ(x̄) → ∃ȳ ψ(x̄, ȳ)
in Σ, do the following:

(a) LetQ be the query defined by∃ȳ ψ(x̄, ȳ).
(b) Use QUERYREWRITING(M, Q) to compute a for-
mulaα(x̄) in UCQ= that is a rewriting of∃ȳ ψ(x̄, ȳ)
over the source.

24 SIGMOD Record, September 2009 (Vol. 38, No. 3)



(c) Add dependency∃ȳ ψ(x̄, ȳ)∧C(x̄) → α(x̄) to Σ′.

3. ReturnM′ = (T,S,Σ′). �

Theorem 4.11 ([4, 5]) Let M = (S,T,Σ), where Σ
is a set of st-tgds. ThenMAXIMUM RECOVERY(M)
computes a maximum recovery ofM in exponential
time in the size ofΣ, which is specified by a set of
CQC-TO-UCQ= dependencies. Moreover, ifM is
Fagin-invertible (quasi-invertible), then the output of
MAXIMUM RECOVERY(M) is a Fagin-inverse (quasi-
inverse) ofM.

It is important to notice that the algorithm MAXIMUM -
RECOVERY returns a mapping that is a Fagin-inverse of
an input mappingM wheneverM is Fagin-invertible, but
it does not check whetherM indeed satisfies this condi-
tion (and likewise for the case of quasi-inverse). In fact, it
is not immediately clear whether the problem of checking
if a mapping given by a set of st-tgds has a Fagin-inverse
is decidable. In [20], the authors solve this problem show-
ing the following:

Theorem 4.12 ([20]) The problem of verifying whether a
mapping specified by a set of st-tgds is Fagin-invertible is
coNP-complete.

Interestingly, it is not known whether the previous prob-
lem is decidable for the case of the notion of quasi-inverse.

One of the interesting features of algorithm MAXI -
MUM RECOVERY is the use of query rewriting, as it al-
lows to reuse in the computation of an inverse the large
number of techniques developed to deal with the problem
of query rewriting. However, one can identify two draw-
backs in this procedure. First, algorithm MAXIMUM RE-
COVERY returns a mapping that is specified by a set of
CQC-TO-UCQ= dependencies. Unfortunately, this type
of mappings are difficult to use in the data exchange con-
text. In particular, it is not clear whether the standard
chase procedure could be used to produce a single canoni-
cal target database in this case, thus making the process of
exchanging data and answering queries much more com-
plicated. Second, the output mapping of MAXIMUM RE-
COVERY can be of exponential size in the size of the input
mapping. Thus, a natural question at this point is whether
simpler and smaller inverse mappings can be computed.
In the rest of this section, we show some negative results
in this respect, and also some efforts to overcome these
limitations by using more expressive mapping languages.

The languages needed to express Fagin-inverses and
quasi-inverses are investigated in [19, 20]. In the respect,
the first negative result proved in [19] is that there ex-
ist quasi-invertible mappings specified by st-tgds whose

quasi-inverse cannot be specified by st-tgds. In fact, it is
proved in [19] that the quasi-inverse of a mapping given
by st-tgds can be specified by using CQ6=,C-TO-UCQ de-
pendencies, and that inequality, predicateC(·) and dis-
junction are all unavoidable in this language in order to
express such quasi-inverse. For the case of Fagin-inverse,
it is shown in [19] that disjunctions are not needed, that
is, the class of CQ6=,C-TO-CQ dependencies is expres-
sive enough to represent the Fagin-inverse of a Fagin-
invertible mapping specified by a set of st-tgds. In
[12, 20], it is proved a second negative result about the
languages needed to express Fagin-inverses, namely that
there is a family of Fagin-invertible mappingsM speci-
fied by st-tgds such that the size of every Fagin-inverse of
M specified by a set of CQ6=,C-TO-CQ dependencies is
exponential in the size ofM. Similar results are proved
in [4, 5] for the case of maximum recoveries of mappings
specified by st-tgds. More specifically, it is proved in [4]
that the maximum recovery of a mapping given by st-tgds
can be specified by using CQC-TO-UCQ= dependencies,
and that equality, predicateC(·) and disjunction are all
unavoidable in this language in order to express such max-
imum recovery. Moreover, it is proved in [5] that there is
a family of mappingsM specified by st-tgds such that
the size of every maximum recovery ofM specified by
a set of CQC-TO-UCQ= dependencies is exponential in
the size ofM.

In view of the above negative results, Arenas et al. ex-
plore in [3] the possibility of using a more expressive
language for representing inverses. In particular, they
explore the possibility of using some extensions of the
class of SO-tgds to express this operator. In fact, Are-
nas et al. provide in [3] a polynomial-time algorithm that
given a mappingM specified by a set of st-tgds, returns
a maximum recovery ofM, which is specified in a lan-
guage that extends SO-tgds (see [3] for a precise defini-
tion of this language). It should be noticed that the algo-
rithm presented in [3] was designed to compute maximum
recoveries of mappings specified in languages beyond
st-tgds, such as the language ofnested mappings[21]
and plain SO-tgds (see Section 5 for a definition of the
class of plain SO-tgds). Thus, the algorithm proposed
in [3] can also be used to compute in polynomial time
Fagin-inverses (quasi-inverses) of Fagin-invertible (quasi-
invertible) mappings specified by st-tgds, nested map-
pings and plain SO-tgds. Interestingly, a similar approach
was used in [18] to provide a polynomial-time algorithm
for computing the maximum extended recovery for the
case of mappings defined by st-tgds.

SIGMOD Record, September 2009 (Vol. 38, No. 3) 25



5 Query-based notions of composi-
tion and inverse

As we have discussed in the previous sections, to ex-
press the composition and the inverse of schema mappings
given by st-tgds, one usually needs mapping languages
that are more expressive than st-tgds, and that do not have
the same good properties for data exchange as st-tgds.

As a way to overcome this limitation, some weaker no-
tions of composition and inversion have been proposed in
the recent years, which are based on the idea that in prac-
tice one may be interested in querying exchanged data by
using only a particular class of queries. In this section, we
review these notions.

5.1 A query-based notion of composition

In this section, we study the notion ofcomposition
w.r.t. conjunctive queries(CQ-composition for short) in-
troduced by Madhavan and Halevy [32]. This semantics
for composition can be defined in terms of the notion of
conjunctive-query equivalenceof mappings that was in-
troduced in [32] for studying CQ-composition and gen-
eralized in [15] when studying optimization of schema
mappings. Two mappingsM andM′ from S to T are
said to beequivalent w.r.t. conjunctive queries, denoted
by M ≡CQ M′, if for every conjunctive queryQ, the set
of certain answers ofQ underM coincides with the set of
certain answers ofQ underM′. Formally,M ≡CQ M′ if
for every conjunctive queryQ overT and every instance
I of S, it holds thatcertainM(Q, I) = certainM′(Q, I).
Then CQ-composition can be defined as follows:M3 is a
CQ-composition ofM1 andM2 if M3 ≡CQ M1 ◦M2.

A fundamental question about the notion of CQ-
composition is whether the class of st-tgds is closed under
this notion. This problem was implicitly studied by Fagin
et al. [15] in the context of schema mapping optimiza-
tion. In [15], the authors consider the problem of whether
a mapping specified by an SO-tgd is CQ-equivalent to a
mapping specified by st-tgds. Thus, given that the com-
position of a finite number of mappings given by st-tgds
can be defined by an SO-tgd [16], the latter problem is
a reformulation of the problem of testing whether st-tgds
are closed under CQ-composition. In fact, by using the
results and the examples in [15], one can easily construct
mappingsM1 andM2 given by st-tgds such that the CQ-
composition ofM1 andM2 is not definable by a finite set
of st-tgds.

A second fundamental question about the notion of
CQ-composition is what is the right language to express
it. Although this problem is still open, in the rest of this

section we shed light on this issue. By the results in [16],
we know that the language of SO-tgds is enough to rep-
resent the CQ-composition of st-tgds. However, as moti-
vated by the following example, some features of SO-tgds
are not needed to express the CQ-composition of map-
pings given by st-tgds.

Example 5.1. (from [16])Consider a schemaR1 consist-
ing of one unary relationEmp that stores employee names,
a schemaR2 consisting of a binary relationMgr1 that as-
signs a manager to each employee, and a schemaR3 con-
sisting of a binary relationMgr intended to be a copy of
Mgr1 and of a unary relationSelfMgr, that stores em-
ployees that are manager of themselves. Consider now
mappingsM12 andM23 specified by the following sets
of st-tgds:

Σ12 = { Emp(e) → ∃m Mgr1(e,m) },

Σ23 = { Mgr1(e,m) → Mgr(e,m),

Mgr1(e, e) → SelfMgr(e) }.

MappingM12 intuitively states that every employee must
be associated with a manager. MappingM23 requires
that a copy of every tuple inMgr1 must exists inMgr,
and creates a tuple inSelfMgrwhenever an employee is
the manager of her/himself. It was shown in [16] that the
mappingM13 given by the following SO-tgd:

∃f
(

∀e(Emp(e) → Mgr(e, f(e)))∧

∀e(Emp(e) ∧ e = f(e) → SelfMgr(e))
)

(2)

represents the compositionM12 ◦ M23. Moreover, the
authors prove in [16] that the equality in the above for-
mula is strictly necessary to represent that composition.
However, it is not difficult to prove that the mappingM′

13

given by the following formula:

∃f
(

∀e(Emp(e) → Mgr(e, f(e)))
)

(3)

is CQ-equivalent toM13, and thus,M′
13

is a CQ-
composition ofM12 andM23. �

We say that formula (3) is aplain SO-tgd. Formally, a
plain SO-tgd fromR1 to R2 is an SO-tgd satisfying the
following restrictions: (1) equality atoms are not allowed,
and (2) nesting of functions is not allowed. Notice that,
just as SO-tgds, this language is closed under conjunction
and, thus, we talk about a mapping specified by a plain
SO-tgd (instead of a set of plain SO-tgds). The following
result shows that even though the language of plain SO-
tgds is less expressive than the language of SO-tgds, they
are equally expressive in terms of CQ-equivalence.

Lemma 5.2 For every SO-tgdσ, there exists a plain SO-
tgdσ′ such thatσ ≡CQ σ

′.

26 SIGMOD Record, September 2009 (Vol. 38, No. 3)



It is easy to see that every mapping specified by a set
of st-tgds can be specified with a plain SO-tgd. Moreover,
the following theorem shows that this language is closed
under CQ-composition, thus showing that this class of de-
pendencies has good properties within the framework of
CQ-equivalence.

Theorem 5.3 Let M12 andM23 be mappings specified
by plain SO-tgds. Then theCQ-composition ofM12 and
M23 can be specified with a plain SO-tgd.

Thus, the CQ-composition of a finite number of map-
pings, each specified by a set of st-tgds, is definable by
a plain SO-tgd. It should be noticed that Theorem 5.3 is
a consequence of Lemma 5.2 and the fact that the class of
SO-tgds is closed under composition [16].

Besides the above mentioned results, the language of
plain SO-tgds also has good properties regarding inver-
sion. In particular, it is proved in [3] that every plain SO-
tgd has a maximum recovery, and, moreover, it is given
in that paper a polynomial-time algorithm to compute it.
Thus, it can be argued that this class of dependencies is
more suitable for inversion than SO-tgds, as there exist
SO-tgds that do not admit maximum recoveries.

5.2 A query-based notion of inverse

In [3], the authors propose an alternative notion of inverse
by focusing on conjunctive queries. In particular, the au-
thors first define the notion of CQ-recoveryas follows. A
mappingM′ is a CQ-recovery ofM if for every instance
I and conjunctive queryQ, it holds that

certainM◦M′(Q, I) ⊆ Q(I).

Intuitively, this equation states thatM′ recovers sound in-
formationfor M w.r.t. conjunctive queries since for every
instanceI, by posing a conjunctive queryQ against the
space of solutions forI underM◦M′, one can only re-
cover data that is already in the evaluation ofQ over I.
A CQ-maximum recoveryis then defined as a mapping
that recovers the maximum amount of sound information
w.r.t. conjunctive queries. Formally, a CQ-recoveryM′

of M is a CQ-maximum recovery ofM if for every other
CQ-recoveryM′′ of M, it holds that

certainM◦M′′(Q, I) ⊆ certainM◦M′(Q, I),

for every instanceI and conjunctive queryQ.
In [3], the authors study several properties about CQ-

maximum recoveries. In particular, they provide an al-
gorithm to compute CQ-maximum recoveries for st-tgds
showing the following:

Theorem 5.4 ([3]) Every mapping specified by a set of st-
tgds has aCQ-maximum recovery, which is specified by a
set ofCQC,6=-TO-CQ dependencies.

Notice that the language needed to express CQ-maximum
recoveries of st-tgds has the same good properties as st-
tgds for data exchange. In particular, the language is
chaseablein the sense that the standard chase procedure
can be used to obtain a canonical solution. Thus, com-
pared to the notions of Fagin-inverse, quasi-inverse, and
maximum recovery, the notion of CQ-maximum recovery
has two advantages: (1) every mapping specified by st-
tgds has a CQ-maximum recovery (which is not the case
for Fagin-inverses and quasi-inverses), and (2) such re-
covery can be specified in a mapping language with good
properties for data exchange (which is not the case for
quasi-inverses and maximum recovery).

In [3], the authors also study the minimality of the lan-
guage used to express CQ-maximum recoveries, showing
that inequalities and predicateC(·) are both needed to ex-
press the CQ-maximum recoveries of mappings specified
by st-tgds.

6 Future Work

As many information-system problems involve not only
the design and integration of complex application arti-
facts, but also their subsequent manipulation, the defini-
tion and implementation of some operators for meta data
management has been identified as a fundamental issue to
be solved [7]. In particular, composition and inverse have
been identified as two of the fundamental operators to be
studied in this area, as they can serve as building blocks
of many other operators [33, 35]. In this paper, we have
presented some of the results that have been obtained in
the recent years about the composition and inversion of
schema mappings.

Many problems remain open in this area. Up to now,
XML schema mapping languages have been proposed and
studied [6, 2, 38], but little attention has been paid to the
formal study of XML schema mapping operators. For the
case of composition, a first insight has been given in [2],
showing that the previous results for the relational model
are not directly applicable over XML. Inversion of XML
schema mappings remains an unexplored field.

Regarding the relational model, we believe that the fu-
ture effort has to be focused in providing a unifying frame-
work for these operators, one that permits the successful
application of them. A natural question, for instance, is
whether there exists a schema mapping language that is
closed under both composition and inverse. Needless to

SIGMOD Record, September 2009 (Vol. 38, No. 3) 27



say, this unified framework will permit the modeling of
more complex algebraic operators for schema mappings.

Acknowledgments

We would like to thank L. Libkin for many useful com-
ments. The authors were supported by: Arenas - Fondecyt
grant 1090565; Pérez - Conicyt Ph.D. Scholarship.

References
[1] S. Abiteboul and O. Duschka. Complexity of Answering Queries

Using Materialized Views. InPODS, pages 254–263, 1998.

[2] S. Amano, L. Libkin, and F .Murlak. XML schema mappings. In
PODS, pages 33-42, 2009.

[3] M. Arenas, J. Pérez, J. Reutter, and C. Riveros. Inverting schema
mappings: bridging the gap between theory and practice. InVLDB,
pages 1018–1029, 2009.

[4] M. Arenas, J. Pérez, and C. Riveros. The recovery of a schema
mapping: bringing exchanged data back. InPODS, pages 13–22,
2008.

[5] M. Arenas, J. Pérez, and C. Riveros. The recovery of a schema
mapping: bringing exchanged data back. To appear inTODS,
2009.

[6] M. Arenas and L. Libkin XML data exchange: Consistency and
query answering.JACM, 55(2), 2008.

[7] P. A. Bernstein. Applying model management to classical meta
data problems. InCIDR, 2003.

[8] P. A. Bernstein, S. Melnik. Model management 2.0: manipulating
richer mappings. InSIGMOD, pages 1-12, 2007.

[9] P. A. Bernstein, T. Green, S. Melnik, and A. Nash. Implementing
mapping composition, VLDB J. 17(2): 333-353, 2008.

[10] G. Giacomo, D. Lembo, M. Lenzerini, R. Rosati. On reconciling
data exchange, data integration, and peer data management. In
PODS, pages 133–142, 2007.

[11] O. Duschka, M. Genesereth. Answering Recursive Queries Using
Views. InPODS, pages 109–116, 1997

[12] R. Fagin. Inverting schema mappings.TODS, 32(4), 2007.

[13] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data exchange:
semantics and query answering.TCS, 336(1):89–124, 2005.

[14] R. Fagin, P. G. Kolaitis, and L. Popa. Data exchange: getting to
the core,TODS30(1):174–210, 2005.

[15] R. Fagin, P. G. Kolaitis, A. Nash, L. Popa. Towards a theory of
schema-mapping optimization. InPODS, pages 33–42, 2008.

[16] R. Fagin, P. Kolaitis, L. Popa, and W.-C. Tan. Composing schema
mappings: second-order dependencies to the rescue.TODS,
30(4):994–1055, 2005.

[17] R. Fagin, P. Kolaitis, L. Popa, and W.-C. Tan. Reverse data ex-
change: coping with nulls. InPODS, pages 23–32, 2009.

[18] R. Fagin, P. Kolaitis, L. Popa, and W.-C. Tan. Reverse data ex-
change: coping with nulls. Extended version of [17], submitted
for publication.

[19] R. Fagin, P. Kolaitis, L. Popa, and W.-C. Tan. Quasi-inverses of
schema mappings. InTODS, 33(2), 2008.

[20] R. Fagin, A. Nash. The structure of inverses schema mappings.
IBM Research Report RJ10425, version 4, April 2008.

[21] A. Fuxman, M. Hernández, H. Ho, R. Miller, P. Papotti, L. Popa
Nested Mappings: Schema Mapping Reloaded InVLDB, pages
67–78, 2006

[22] A. Y. Halevy. Answering queries using views: A survey.VLDB J.
10(4): 270–294 (2001)

[23] A. Halevy. Theory of Answering Queries using Views. SIGMOD
Record 29(1), pages 40–47, 2000.

[24] A. Halevy, Z. Ives, J. Madhavan, P. Mork, D. Suciu, I. Tatari-
nov. The Piazza Peer Data Management System.IEEE TKDE
16(7):787–798 (2004)

[25] T. Imielinski and W. Lipski Jr. Incomplete information in relational
databases.JACM, 31(4):761–791, 1984.

[26] L. Libkin. Elements of Finite Model Theory. Springer, 2004.

[27] L. Libkin. Data exchange and incomplete information. InPODS,
pages 60–69, 2006.

[28] L. Libkin, C. Sirangelo. Data Exchange and Schema Mappings in
Open and Closed Worlds InPODS, pages 139–148, 2008.

[29] M. Lenzerini. Data Integration: A Theoretical Perspective.. In
PODS, pages 233–246, 2002.

[30] A. Levy, A. Mendelzon, Y. Sagiv and D. Srivastava. Answering
Queries Using Views. InPODS, pages 95–104, 1995.

[31] A. Levy, A. Rajaraman and J. Ordille. Querying Heterogeneous
Information Sources using Source Descriptions. InVLDB, pages
251–262, 1996.

[32] J. Madhavan and A. Y. Halevy. Composing mappings among data
sources. InVLDB, pages 572–583, 2003.

[33] S. Melnik. Generic model management: concepts and algorithms.
Volume 2967 ofLNCS, Springer, 2004.

[34] S. Melnik, A. Adya, P. A. Bernstein. Compiling mappings to
bridge applications and databases. InTODS33(4), 2008.

[35] S. Melnik, P. A. Bernstein, A. Y. Halevy, and E. Rahm. Supporting
executable mappings in model management. InSIGMOD, pages
167–178, 2005.

[36] A. Nash, P. A. Bernstein, S. Melnik. Composition of mappings
given by embedded dependencies. InTODS32(1), 2007.

[37] R. Pottinger, A. Y. Halevy. MiniCon: A scalable algorithm for
answering queries using views.VLDB J.10(2-3): 182–198 (2001)

[38] J. F. Terwilliger, P. A. Bernstein, and S. Melnik. Full-Fidelity Flex-
ible Object-Oriented XML Access. InVLDB, pages 1030–1041,
2009.

[39] M. Y. Vardi. The Complexity of Relational Query Languages. In
STOC, pages 137–146, 1982.

28 SIGMOD Record, September 2009 (Vol. 38, No. 3)




