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Abstract. Blank nodes are defined in RDF as ‘existential variables’ in the same
way that has been used before in mathematical logic. However, evidence suggests
that actual usage of RDF does not follow this definition. In this paper we thor-
oughly cover the issue of blank nodes, from incomplete information in database
theory, over different treatments of blank nodes across the W3C stack of RDF-
related standards, to empirical analysis of RDF data publicly available on the
Web. We then summarize alternative approaches to the problem, weighing up
advantages and disadvantages, also discussing proposals for Skolemization.

1 Introduction

The Resource Description Framework (RDF) is a W3C standard for representing in-
formation on the Web using a common data model [18]. Although adoption of RDF is
growing (quite) fast [4, § 3], one of its core features—blank nodes—has been sometimes
misunderstood, sometimes misinterpreted, and sometimes ignored by implementers,
other standards, and the general Semantic Web community. This lack of consistency
between the standard and its actual uses calls for attention.

The standard semantics for blank nodes interprets them as existential variables, de-
noting the existence of some unnamed resource. These semantics make even simple
entailment checking intractable. RDF and RDFS entailment are based on simple entail-
ment, and are also intractable due to blank nodes [14].

However, in the documentation for the RDF standard (e.g., RDF/XML [3], RDF
Primer [19]), the existentiality of blank nodes is not directly treated; ambiguous phras-
ing such as “blank node identifiers” is used, and examples for blank nodes focus on
representing resources which do not have a natural URI. Furthermore, the standards
built upon RDF sometimes have different treatment and requirements for blank nodes.
As we will see, standards and tools are often, to varying degrees, ambivalent to the exis-
tential semantics of blank nodes, where, e.g., the standard query language SPARQL can
return different results for two graphs considered equivalent by the RDF semantics [1].

Being part of the RDF specification, blank nodes are a core aspect of Semantic Web
technology: they are featured in several W3C standards, a wide range of tools, and
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Fig. 1. An RDF graph for our running example. In this graph, URIs are preceded by ‘:’ blank
nodes by ‘_:’ and literals are enclosed in quotation marks.

hundreds of datasets across the Web, but not always with the same meaning. Dealing
with the issue of blank nodes is thus not only important, but also inherently complex and
potentially costly: before weighing up alternatives for blank nodes, their interpretation
and adoption—across legacy standards, tools, and published data—must be considered.

In this paper, we first look at blank nodes from a background theoretical perspective,
additionally introducing Skolemization (§ 3). We then look at how blank nodes are used
in the Semantic Web standards: we discuss how they are supported, what features rely
on them, issues surrounding blank nodes, and remarks on adoption (§ 4). Next, we look
at blank nodes in publishing, their prevalence for Linked Data, and what blank node
graph-structures exist in the wild (§ 5). Finally, in light of the needs of the various
stakeholders already introduced, we discuss proposals for handling blank nodes (§ 6).

Throughout this document, we use the the RDF graph given in Figure 1 to illustrate
our discussion. The graph states that the tennis player :Federer won an event at the
:FrenchOpen in 2009; it also states twice that he won :Wimbledon, once in 2003.

2 Preliminaries

We follow the abstract representation [13,20] of the formal RDF model [14,18]. This
means we will consider standard notation for the sets of all URIs (U), all literals (L) and
all blank nodes (B), all being pairwise disjoint. For convenience of notation, we write
UBL for the union of U, B and L, and likewise for other combinations. In general, we
write (s, p, o) for an RDF triple, and assume that (s, p, o) ∈ UB × U × UBL.

For the purposes of our study, we define an interpretation of a graph as per [20],
but without considering literals or classes since they are irrelevant for the study of
blank nodes. Also, we do not consider the use of vocabularies with predefined se-
mantics (e.g., RDFS or OWL). Graphs that do not use such vocabularies are called
simple. More precisely, define a vocabulary as a subset of UL. Given an RDF graph
G, denote by terms(G) the set of elements of UBL that appear in G, and denote by
voc(G) the set terms(G)∩UL. Then an interpretation I over a vocabulary V is a tuple
I = (Res, Prop,Ext, Int) such that: (1) Res is a non-empty set of resources, called the
domain or universe of I; (2) Prop is a set of property names (not necessarily disjoint
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from or a subset of Res); (3) Ext : Prop → 2Res×Res, a mapping that assigns an exten-
sion to each property name; and (4) Int : V → Res ∪ Prop, the interpretation mapping,
a mapping that assigns a resource or a property name to each element of V , and such
that Int is the identity for literals. Given an interpretation mapping Int and a function
A : B → Res, we define the extension function IntA : V ∪ B → Res ∪ Prop as the
extension of Int byA, that is, IntA(x) = Int(x) if x ∈ V , and IntA(x) = A(x) if x ∈ B.
Based on interpretations, we have the fundamental notion of model:

Definition 1. An interpretation I = (Res, Prop,Ext, Int) is a model of G if I is an
interpretation over voc(G) and there exists a function A : B → Res such that for each
(s, p, o) ∈ G, it holds that Int(p) ∈ Prop and (IntA(s), IntA(o)) ∈ Ext(Int(p)).

The existentiality of blank nodes is given by the extension A above. We say that a
graph is satisfiable if it has a model. Simple RDF graphs are trivially satisfiable thanks
to Herbrand interpretations [14], in which URIs and literals are interpreted as their
(unique) syntactic forms instead of “real world” resources. This will be important in
distinguishing Skolemization in first-order logic from Skolemization in RDF.

Recall that in the context of RDF a subgraph is a subset of a graph. Then a graph G
is lean if there is no map h : UBL → UBL that preserves URIs and literals (h(u) = u
for all u ∈ UL) such that the RDF graph obtained from G by replacing every element
u mentioned in G by h(u), denoted by h(G), is a proper subgraph of G; otherwise, the
graph is non-lean and (formally speaking) contains redundancy. For instance, the graph
G in Figure 1 is non-lean as the triple (_:b3, event, :Wimbledon) is redundant: if h maps
_:b3 to _:b1 and is the identity elsewhere, then h(G) is a proper subgraph of G.

3 Theoretic Perspective

In this section we look at theoretic aspects of blank nodes, focusing on background
theory with respect to existentials (§ 3.1) and Skolemization (§ 3.2) in first-order logic.

3.1 Existential Variables

As per Section 2, the existentiality of blank nodes is given by the extension functionA
for an interpretation mapping Int. We now show that this interpretation of blank nodes
can be precisely characterized in terms of existential variables in first-order logic.

Let G be an RDF graph. We define Th(G) to be a first-order sentence with a ternary
predicate triple as follows. Let V be an infinite set of variables disjoint with U, L and B,
and assume that ρ : ULB → ULV is a one-to-one function that is the identity on UL.
Now, for every triple t = (s, p, o) in G, define ρ(t) as the fact triple(ρ(s), ρ(p), ρ(o)),
and define Th(G) as ∃x1 · · · ∃xn (

∧
t∈G ρ(t)), where x1, . . ., xn are the variables from

V mentioned in
∧

t∈G ρ(t). Then we have the following equivalence between the notion
of entailment for RDF graphs and the notion of logical consequence for first-order logic.

Theorem 1 ([9]). Given RDF graphs G and H , it holds that G |= H if and only if
Th(G) |= Th(H). ��
This theorem reveals that the implication problem for RDF can be reduced to implica-
tion for existential first-order formulae without negation and disjunction.
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RDF implication in the presence of existentials is NP-Complete [14,26]. However,
Pichler et al. [22] note that for common blank node morphologies, entailment be-
comes tractable. Let G be a simple RDF graph, and consider the (non-RDF) graph
blank(G) = (V,E) as follows: V = B ∩ terms(G) and E = {(b, c) ∈ V × V | b 	= c
and there exists P ∈ terms(G) such that (b, P, c) ∈ G or (c, P, b) ∈ G}. Thus,
blank(G) gives an undirected graph connecting blank nodes appearing in the same triple
inG. Let G andH denote two RDF graphs withm and n triples respectively. Now, per-
forming the entailment check G |= H has the upper bound O(n2 + mn2k), where
k = tw(blank(H))+1 for tw(blank(H)) the treewidth of blank(H) [22]. Note that we
will survey the treewidth of blank node structures in published data in Section 5.1.2,
which gives insights into the expense of RDF entailment checks in practice.

3.2 Skolemization

In first-order logic (FO), Skolemization is a way of removing existential quantifiers
from a formula in prenex normal form (a chain of quantifiers followed by a quantifier-
free formula). The process was originally defined and used by Thoralf Skolem to gen-
eralize a theorem by Jacques Herbrand about models of universal theories [5].

The central idea of Skolemization is to replace existentially quantified variables for
“fresh” constants that are not used in the original formula. For example, ∃x∀y R(x, y)
can be replaced by ∀y R(c, y) where c is a fresh constant, as this new formula also
states that there exists a value for the variable x (in fact, x = c) such that R(x, y)
holds for every possible value of variable y. Similarly, ∀x∃y (P (x) → Q(y)) can be
replaced by ∀x(P (x) → Q(f(x))), where the unary function f does not belong to the
underlying vocabulary, as in this case we know that for every possible value of variable
x, there exists a value of variable y that depends on x and such that P (x) → Q(y)
holds. When the original formula does not have universal quantifiers, only constants
are needed in the Skolemization process; since only existential quantifiers are found
in simple RDF graphs (see Definition 1), we need only talk about Skolem constants.
However, if Skolemization was used to study the satisfiability of logical formulae in
more expressive languages (e.g., OWL), Skolem functions would be needed.

The most important property of Skolemization in first-order logic is that it preserves
satisfiability of the formula being Skolemized. In other words, if ψ is a Skolemization
of a formula ϕ, then ϕ and ψ are equisatisfiable, meaning that ϕ is satisfiable (in the
original vocabulary) if and only if ψ is satisfiable (in the extended vocabulary, with the
new Skolem functions and constants). Nevertheless, this property is of little value when
Skolemizing RDF graphs since we recall that all simple RDF graphs are satisfiable.

4 Blank Nodes in the Standards

We now look at the treatment of blank nodes in the RDF-related standards, viz. RDF
syntaxes, RDFS, OWL, RIF and SPARQL; we also cover RDB2RDF and SPARQL 1.1.

4.1 RDF Syntaxes

We first give general discussion on the role of blank nodes in RDF syntaxes.
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Support for blank nodes. All RDF syntaxes allow blank nodes to be explicitly la-
beled; in N-Triples, explicit labeling is necessary. Explicit labels allow blank nodes to
be referenced outside of nested elements and thus to be used in arbitrary graph-based
data even though the underlying syntaxes (e.g., XML) are inherently tree-based. Note
that we will study cyclic blank node structures in published data later in Section 5.1.2.

Features requiring blank nodes. Blank nodes play two major (and related) roles in all
but the N-Triples syntax. First, aside from N-Triples, all syntaxes passively default to
representing resources as blank nodes when optional URIs are omitted. Second, blank
nodes are also used in shortcuts for n-ary predicates and RDF lists (aka. containers) [14,
§ 3.3.1] in Turtle and RDF/XML, as well as containers [14, § 3.3.2] and reification [14,
§ 3.3.1] in RDF/XML. For example, the Turtle shortcut:

:GrandSlam :order (:AustralianOpen :FrenchOpen :Wimbledon :USOpen) .

represents an RDF list. This would be equivalently representable in Turtle’s square-
bracket syntax (left), and full verbose forms (right) as follows:

:GrandSlam :order
[ rdf:first :AustralianOpen ; rdf:rest
[ rdf:first :FrenchOpen ; rdf:rest
[ rdf:first :Wimbledon ; rdf:rest
[ rdf:first :USOpen ; rdf:rest rdf:nil ]]]]

:GrandSlam :order _:b1 .
_:b1 rdf:first :AustralianOpen .
_:b2 rdf:first :FrenchOpen .
_:b3 rdf:first :Wimbledon .
_:b4 rdf:first :USOpen .

_:b1 rdf:rest _:b2 .
_:b2 rdf:rest _:b3 .
_:b3 rdf:rest _:b4 .
_:b4 rdf:rest rdf:nil .

In the two shortcut notations, the labels of the “structural” blank nodes are left implicit.
Similar shortcuts using unlabeled blank nodes hold for n-ary predicates, reification and
containers in RDF/XML. Note that such shortcuts can only induce “trees” of blank
nodes; e.g., _:b1 :p _:b2 . _:b2 :p _:b1 . cannot be expressed without explicit labels.

Issues with blank nodes. Given a fixed, serialized RDF graph (i.e., a document), la-
beling of blank nodes can vary across parsers and across time. Checking if two repre-
sentations originate from the same data thus often requires an isomorphism check, for
which in general, no polynomial algorithms are known (cf. e.g. [6] in the RDF con-
text). Further, consider a use-case tracking the changes of a document over time; given
that parsers can assign arbitrary labels to blank nodes, a simple syntactic change to the
document may cause a dramatic change in blank node labels, making precise change
detection difficult (other than on a purely syntactic level). We note that isomorphism
checking is polynomial for “blank node trees” (e.g., as generated for documents with-
out explicit blank node labels) [17].

In practice. Parsers typically feature a systematic means of labeling blank nodes based
on the explicit blank node labels and the order of appearance of implicit blank nodes.
The popular Jena Framework1 offers methods for checking the RDF-equivalence of two
graphs. We will further discuss blank nodes in publishing in Section 5.

4.2 RDF Schema (RDFS)

RDF Schema (RDFS) is a lightweight language for describing RDF vocabularies, which
allows for defining sub-class, sub-property, domain and range relations between class

1 http://jena.sourceforge.net/

http://jena.sourceforge.net/
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and property terms (as appropriate). The RDFS vocabulary—incl., e.g., rdfs:domain,
rdfs:range, rdfs:subClassOf and rdfs:subPropertyOf—is well-defined by means of a (nor-
mative) model-theoretic semantics, accompanied by a (non-normative) set of entailment
rules to support inferencing [14,20].

Support for blank nodes. RDFS entailment is built on top of simple entailment, and
thus supports an existential semantics for blank nodes.

Features requiring blank nodes. Blank nodes are used as “surrogates” for literals
through entailment rules LG/GL in [14]. This is necessary for completeness of the entail-
ment rules w.r.t. the formal semantics such that literal terms can “travel” to the subject
position of triples by means of their surrogates [14]; for instance, the triples

:Federer atp:name ‘‘Roger Federer’’ . atp:name rdfs:range atp:PlayerName .

entail the triple _:bFederer rdf:type atp:PlayerName by the RDFS rules LG and RDFS2 [14].
Here, the “surrogate” blank node _:bFederer represents the actual literal, whereas the di-
rect application of rule RDFS2 (without LG) would result in a non-valid RDF triple
having a literal in the subject position; viz. “Roger Federer” rdf:type atp:PlayerName .

Issues with blank nodes. Existential semantics for blank nodes makes RDFS entail-
ment NP-Complete [14,13,26,20]. Further, ter Horst [26] showed that the RDFS en-
tailment lemma in the non-normative section of the RDF Semantics is incorrect: blank
node surrogates are still not enough for the completeness of rules in [14, § 7], where
blank nodes would further need to be allowed in the predicate position. For example,
consider the three triples (1) :Federer :wins _:b1, (2) :wins rdfs:subPropertyOf _:p, and (3)
_:p rdfs:domain :Competitor, we still cannot infer the triple :Federer rdf:type :Competitor,
since the required intermediate triple :Federer _:p _:b1 is not valid in RDF.

In practice. To overcome the NP-completeness of simple entailment, RDFS rule-based
reasoners often apply Herbrand interpretations over blank nodes such that they de-
note their own syntactic form: this “ground RDFS entailment” is equisatisfiable and
tractable [26]. Avoiding the need for (or supplementing) literal surrogates, reasoners
often allow various forms of “generalized triples” in intermediate inferencing steps,
with relaxed restrictions on where blank nodes and literals can appear [26,11].

4.3 Web Ontology Language (OWL)

The Web Ontology Language (OWL) is a more expressive language than RDFS (but
which partially re-uses RDFS vocabulary). With the advent of OWL 2, there are now
eight standard profiles of OWL. OWL Full and OWL 2 Full are given an RDF-Based Se-
mantics [24] and so are compatible with arbitrary RDF graphs, but are undecidable [11].
OWL Lite, OWL DL, OWL 2 EL, OWL 2 QL and OWL 2 RL are given a Direct Se-
mantics based on Description Logics (DL) formalisms and are decidable [11], but are
not compatible with arbitrary RDF graphs. Further, OWL 2 RL features the OWL 2
RL/RDF entailment ruleset: a partial axiomatization of the RDF-Based Semantics.

Support for blank nodes. The RDF-Based Semantics is built on top of simple en-
tailment [24], and considers blank nodes as existentials. The OWL Direct Semantics
does not treat blank nodes in assertions, where special DL-based existentials are instead
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supported; e.g., the implicit assertion that :Federer won “something” can be expressed
in the DL axiom Federer ∈ ∃wins.� (i.e., on a level above blank nodes).

Features requiring blank nodes. For the DL-based (sub)languages of OWL, blank
nodes are used to map between DL-based structural syntaxes and RDF representations:
the structural syntaxes feature special n-ary predicates represented with blank nodes in
RDF. For example, the DL concept ∃wins.� is expressed structurally as ObjectSomeVal-

uesFrom(OPE(:wins) CE(owl:Thing)), which maps to the following three RDF triples:

_:x a owl:Restriction . _:x owl:someValuesFrom owl:Thing . _:x owl:onProperty :wins .

Blank nodes are also required to represent RDF lists used in the mapping, e.g., of OWL
union classes, intersection classes, enumerations, property chains, complex keys, etc.
An important aspect here is the locality of blank nodes: if the above RDF representa-
tion is valid in a given graph, it is still valid in an Open World since, e.g., an external
document cannot add another value for owl:onProperty to _:x.

Issues with blank nodes. Once RDF representations are parsed, DL-based tools are
agnostic to blank nodes; existentials are handled on a higher level. RDF-based tools en-
counter similar issues as for RDFS; e.g., OWL 2 RL/RDF supports generalized
triples [11] (but otherwise gives no special treatment to blank nodes).

In practice. Rule-based reasoners—supporting various partial-axiomatizations of the
RDF-Based Semantics such as DLP [12], pD* [26] or OWL 2 RL/RDF [11]—again
often apply Herbrand interpretations over blank nodes. ter Horst proposed pD*sv [26]
which contains an entailment rule with an existential blank node in the head to support
owl:someValuesFrom, but we know of no system supporting this rule.

4.4 SPARQL Protocol and RDF Query Language (SPARQL)

SPARQL [23] is the standard query language for RDF, and includes an expressive set
of query features. An important aspect of SPARQL is the notion of Named Graphs:
SPARQL querying is defined over a dataset given as {G0, (u1, G1), . . . , (un, Gn)}
such that u1, . . . , un ∈ U, andG0, . . . , Gn are RDF graphs; each pair (ui, Gi) is called
a named graph and G0 is called the default graph.

Support for blank nodes. With respect to querying over blank nodes in the dataset,
SPARQL considers blank nodes as constants scoped to the graph they appear in [23,
§ 12.3.2]. Thus, for example, the query:

SELECT DISTINCT ?X WHERE { :Federer :wins ?X . ?X :event :Wimbledon . }

issued over the graph depicted in Figure 1 would return
{{(?X, _:b1)}, {(?X, _:b3)}}

as distinct solution mappings, here effectively considering blank nodes as constants.
Interestingly, SPARQL 1.1—currently a Working Draft—introduces a COUNT aggre-
gate, which, with an analogue of the above query, would answer that :Federer won an
event at :Wimbledon twice. Posing the same COUNT query over a lean (and thus RDF
equivalent [14]) version of Figure 1 would return once.

Features requiring blank nodes. SPARQL uses blank nodes in the query to represent
non-distinguished variables, i.e., variables which can be arbitrarily bound, but which
cannot be returned in a solution mapping. For example:
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SELECT ?p WHERE { ?p :wins _:t . _:t :event :Wimbledon . _:t :year _:y . }

requests players who have won some Wimbledon event in some year (viz., :Federer).2

We note that such queries can be expressed by replacing blank nodes with fresh query
variables. A special case holds for CONSTRUCT templates which generate RDF from
solution mappings: a blank node appearing in a query’s CONSTRUCT clause is replaced
by a fresh blank node for each solution mapping in the resulting RDF.

Issues with blank nodes. A practical problem posed by blank nodes refers to “round-
tripping”, where a blank node returned in a solution mapping cannot be referenced in a
further query. Consider receiving the result binding (?X, _:b1) for the previous DISTINCT

query; one cannot ask a subsequent query for what year the tournament _:b1 took place
since the _:b1 in the solution mapping no longer has any relation to that in the originating
graph; thus, the labels need not correspond to the original data. Further, SPARQL’s
handling of blank nodes can cause different behavior for RDF-equivalent graphs, where,
e.g., leaning a graph will affect results for COUNT.

In practice. Where round-tripping is important, SPARQL engines often offer a special
syntax for effectively Skolemizing blank nodes. For example, ARQ3 is a commonly
(re)used SPARQL processor which supports a non-standard <_:b1> style syntax for
terms in queries, indicating that the term can only be bound by a blank node labeled
“b1” in the data. Virtuoso4 [8] supports the <nodeID://b1> syntax with similar purpose,
but where blank nodes are only externalized in this syntax and (interestingly) where
isBlank(<nodeID://b1>) evaluates as true.

4.5 RDB2RDF

In the last 10 years, we have witnessed an increasing interest in publishing relational
data as RDF. This has resulted in the creation of the RDB2RDF W3C Working Group,
whose goal is to standardize a language for mapping relational data into RDF [7,2].
Next we show the current proposal of the Working Group about the use of blank nodes
in the mapping language.

Support for blank nodes. The input of the mapping language being developed by
the RDB2RDF Working Group is a relational database, including the schema of the
relations being translated and the set of keys and foreign keys defined over them. The
output of this language is an RDF graph that may contain blank nodes.

Features requiring blank nodes. The RDF graph generated in the translation process
identifies each tuple in the source relational database by means of a URI. If the tuple
contains a primary key, then this URI is based on the value of the primary key. If the
tuple does not contain such a constraint, then a blank node is used to identify it in the
generated RDF graph [2].

Issues with blank nodes. In the mapping process, blank nodes are used as identifiers
of tuples without primary keys [2], and as such, two of these blank nodes should not be

2 Further note that blank nodes are scoped to Basic Graph Patterns (BGPs) of queries.
3 http://jena.sourceforge.net/ARQ/
4 http://virtuoso.openlinksw.com/

http://jena.sourceforge.net/ARQ/
http://virtuoso.openlinksw.com/
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considered as having the same value. Thus, the existential semantics of blank nodes in
RDF is not appropriate for this use.

5 Blank Nodes in Publishing

In this section, we survey the use of blank nodes in RDF data published on the Web.
The recent growth in RDF Web data is thanks largely to the pragmatic influence of
the Linked Data community [4,15], whose guidelines are unequivocal on the subject of
blank node usage; in a recent book, Bizer et al. [15] only mention blank nodes in the
section entitled “RDF Features Best Avoided in the Linked Data Context”, as follows:

“The scope of blank nodes is limited to the document in which they appear, [...]
reducing the potential for interlinking between different Linked Data sources.
[...] it becomes much more difficult to merge data from different sources when
blank nodes are used, [...] Therefore, all resources in a data set should be
named using URI references.” —[15, § 2.4.1]

With this (recent) guideline discouraging blank nodes in mind, we now provide an em-
pirical study of the prevalence of blank nodes in published data (§ 5.1.1), and of the
morphology of blank nodes in such data (§ 5.1.2). Finally, we briefly discuss the results
of a poll conducted on public Semantic Web mailing lists (§ 5.2).

5.1 Empirical Survey of Blank Nodes in Linked Data

With the previous guidelines in mind, we now present an empirical survey of the preva-
lence and nature of blank nodes in Linked Data published on the Web. Our survey is
conducted over a corpus of 1.118 g quadruples (965 m unique triples) extracted from
3.985 m RDF/XML documents through an open-domain crawl conducted in May 2010.
The corpus consists of data from 783 different pay-level domains, which are direct sub-
domains of either top-level domains (such as dbpedia.org), or country code second-level
domains (such as bbc.co.uk). We performed a domain-balanced crawl: we assign a queue
to each domain, and in each round, poll a URI to crawl from each queue in a round-
robin fashion. This strategy led to 53.2% of our raw data coming from the hi5.com FOAF
exporter, which publishes documents with an average of 2,327 triples per document: an
order of magnitude greater than the 140 triple/doc average from all other domains [16].
Note that this corpus represents a domain-agnostic sample of RDF published on the
Web. The bias of sampling given by the dominance of hi5.com is important to note; thus,
along with measures from the monolithic dataset, we also present per-domain statistics.
Details of the crawl and the corpus are available (in significant depth) in [16, § 4].

5.1.1 Prevalence of Blank Nodes in Published Data
We looked at terms in the data-level position of triples in our corpus: i.e., positions
other than the predicate or object of rdf:type triples which are occupied by property and
class terms respectively. We found 286.3 m unique terms in such positions, of which
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Table 1. Top publishers of blank nodes in our corpus

# domain bnodes %bnodes LOD?
1 hi5.com 148,409,536 87.5 X
2 livejournal.com 8,892,569 58.0 X
3 ontologycentral.com 2,882,803 86.0 X
4 opiumfield.com 1,979,915 17.4 X
5 freebase.com 1,109,485 15.6 �
6 vox.com 843,503 58.0 X
7 rdfabout.com 464,797 41.7 �
8 opencalais.com 160,441 44.9 �
9 soton.ac.uk 117,390 19.1 �

10 bbc.co.uk 101,899 7.4 �

165.4 m (57.8%) were blank nodes, 92.1 m (32.2%) were URIs, and 28.9 m (10%) were
literals. Each blank node had on average 5.233 data-level occurrences (the analogous
figure for URIs was 9.41 data-level occurrences: 1.8× that for blank nodes). Each blank
node occurred, on average, 0.995 times in the object position of a non-rdf:type triple,
with 3.1 m blank nodes (1.9% of all blank nodes) not occurring in the object position;
conversely, each blank node occurred on average 4.239 times in the subject position
of a triple, with 69 k (0.04%) not occurring in the subject position.5 Thus, we surmise
that (i) blank nodes are prevalent on the Web; (ii) most blank nodes appear in both the
subject and object position, but occur most prevalently in the former, possibly due to
the tree-based RDF/XML syntax.

Again, much of our corpus consists of data crawled from high-volume exporters
of FOAF profiles—however, such datasets are often not considered as Linked Data,
where, e.g., they are omitted from the Linked Open Data (LOD) cloud diagram due to
lack of links to external domains.6 Table 1 lists the top ten domains in terms of pub-
lishing unique blank nodes found in our corpus; “%bnodes” refers to the percentage
of all unique data-level terms appearing in the domain’s corpus which are blank nodes;
“LOD?” indicates whether the domain features in the LOD cloud diagram. Of the 783
domains contributing to our corpus, 345 (44.1%) did not publish any blank nodes. The
average percentage of unique terms which were blank nodes for each domain—i.e.,
the average of %bnodes for all domains—was 7.5%, indicating that although a small
number of high-volume domains publish many blank nodes, many other domains pub-
lish blank nodes more infrequently. The analogous figure including only those domains
appearing in the LOD cloud diagram was 6.1%.

5.1.2 Structure of Blank Nodes in Published Data

As per Section 3.1, checking G |= H has the upper bound O(n2 +mn2k), where k is
one plus the treewidth of the blank node structure blank(H) [22]. Intuitively, treewidth

5 We note that in RDF/XML syntax—essentially a tree-based syntax—blank nodes can only ever
occur once in the object position of a triple unless rdf:nodeID is used, but can occur multiple
times in the subject position.

6 See http://lod-cloud.net/

http://lod-cloud.net/
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provides a measure of how close a given graph is to being a tree; for example, the
treewidth of trees and forests is 1, the treewidth of cycles is 2 (a cycle is “almost” a
tree: take out an edge from a cycle and you have a tree) and the treewidth of a complete
graph on n vertexes is n − 1. A detailed treatment is out of scope, but we refer the
interested reader to [22]. However, we note that all graphs whose treewidth is greater
than 1 are cyclic. From this, it follows that simple entailment checking only becomes
difficult when blank nodes form cycles:

“[...] in practice, an RDF graph contains rarely blank nodes, and even less
blank triples.7 Hence, most of the real RDF graphs are acyclic or have low
treewidth such as 2, and the entailment can be tested efficiently [...].” —[22,
§ 4]

To cross-check this claim, we ran the following analysis over all documents (RDF
graphs) in our corpus. For each document G, we extracted blank(G) and separated
out the connected components thereof using a UNION-FIND algorithm [25]. We found
918 k documents (23% of all documents) containing blank nodes, with 376 k (9% of
all documents) containing “non-reflexive” blank triples. We found a total of 527 k non-
singleton connected components, an average of 1.4 components per document with
some blank triple. We then checked the treewidth of all 527 k components using the
QUICKBB algorithm [10], where the distribution of values is given in Table 2. Notably,
98.4% of the components are acyclical, but a significant number are cyclical (treewidth
greater than 1). One document8 contained a single component C with 451 blank nodes
and 887 (undirected) edges and a treewidth of 7. Figure 2 renders this graph, where
vertexes are blank nodes and edges are based on blank triples; for clarity, we collapse
groups of n disconnected vertexes with the same neighbors into single nodes labeled n
(note that these are not n-cliques).

We conclude that the majority of documents surveyed contain tree-based blank node
structures. However, a small fraction contain complex blank node structures for which
entailment is potentially very expensive to compute.

Table 2. tw distribution

treewidth # components
1 518,831
2 8,134
3 208
4 99
5 23
6 –
7 1 Fig. 2. C where tw(C) = 7

7 In the terminology of [22], a blank triple is an element of B× U × B.
8 http://www.rdfabout.com/rdf/usgov/congress/people/B000084

http://www.rdfabout.com/rdf/usgov/congress/people/B000084
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5.2 Survey of Publishing

To further understand how blank nodes are used, we made a simple poll9 asking users
what is their intended meaning when they publish triples with blank nodes. Herein,
we briefly discuss the results, and we refer the interested reader to the web page for
more details. We sent the poll to two W3C’s public mailing lists: Semantic Web and
Linked Open Data, and got 88 responses. In order to identify active publishers, we
asked participants to indicate which datasets appearing in the LOD cloud (if any) they
have contributed to; 10 publishers claimed contributions to a current LOD dataset.

At the top of the web page, before the questions, we explicitly stated that “. . . the
poll is trying to determine what you intend when you publish blank nodes. It is not a
quiz on RDF Semantics. There is no correct answer”.

In the first question, we asked participants in which scenarios they would publish a
graph containing (only) the following triple: :John :telephone _:b. We chose the :telephone
predicate as an abstract example which could be read as having a literal or URI value.
Participants were told to select multiple options which would cover their reason(s) for
publishing such a triple. The options were: (1.a) John has a tel. number whose value
is unknown; (1.b) John has a tel. number but its value is hidden, e.g., for privacy; (1.c)
John has no tel. number; (1.d) John may or may not have a tel. number; (1.e) John’s
number should not be externally referenced; (1.f ) I do not want to mint a URI for the
tel. number; and (1.g) I would not publish such a triple. The results were as follows:

1.a 1.b 1.c 1.d 1.e 1.f 1.g
all (88) 46.6% 23.9% 0% 2.3% 18.2% 37.5% 41.0%

lod (10) 20% 0% 0% 0% 0% 30% 70%

In the second, we asked participants to select zero or more scenarios in which they
would publish a graph containing (only) the following triples: :John :telephone _:b1,

_:b2. The options were (2.a) John does not have a tel. number; (2.b) John may not have
a tel. number; (2.c) John has at least one tel. number; (2.d) John has two different tel.
numbers; (2.e) John has at least two different tel. numbers; and (2.f ) I would not publish
such triples. The results were as follows:

2.a 2.b 2.c 2.d 2.e 2.f
all (88) 0% 0% 23.9% 23.9% 35.2% 50.0%

lod (10) 0% 0% 0% 10% 40% 70%

The poll had an optional section for comments; a number of criticisms (∼12) were
raised about the :telephone example used and the restriction of having only one or two
triples in the graph. This leaves ambiguity as to whether the participant would publish
blank nodes at all (intended) or would not publish that specific example (unintended).
Thus, we note that answers 1.g and 2.f might be over-represented. Also, one concern
was raised about the “right” semantics of blank nodes in RDF (namely, that John has
a telephone number, without saying anything about our knowledge of the number) not
being an alternative; this was a deliberate choice.

9 http://db.ing.puc.cl/amallea/blank-nodes-poll

http://db.ing.puc.cl/amallea/blank-nodes-poll
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Table 2. Implications of existential semantics, local constants semantics and total absence of
blank nodes in theoretical aspects, standards and publishing

standard issue Existential Local constants No Blank Nodes

T
H

E
O

R
Y RDF

entailment NP-Complete X NP-Complete X PTime �
equivalence NP-Complete X NP-Complete X PTime �

RDFS entailment NP-Complete X NP-Complete X PTime �

S
T

A
N

D
A

R
D

S

Syntaxes shortcuts no change � no change � Sk. scheme ∼
OWL RDF mapping no change � no change � needs attention X
RIF — — — — — — —

SPARQL
semantics mismatch X aligns � aligns �
query syntax no change � may need attention ∼ may need attention ∼
round tripping Sk. scheme ∼ Sk. scheme ∼ no change �

RDB2RDF no primary key mismatch X aligns � Sk. scheme ∼

P
U

B
L

.

RDF
unknown values no change � no change � Sk. scheme ∼
legacy data ambiguous ∼ unambiguous � unambiguous �

Despite the limitations of the poll, we can see that blank nodes are not typically pub-
lished with the intent of a non-existent/non-applicable semantics (1c,1d,2b). Obvious
as it might be, the most conclusive result is that blank nodes are a divisive issue.

6 Alternative Treatments of Blank Nodes

Having covered the various desiderata for blank nodes across the several stakeholders,
we now consider some high-level alternatives in light of the discussion thus far. Table
2 summarizes the implications of three conceptual paradigms for blank nodes in dif-
ferent aspects of theory and practice. In the column “Existential”, we consider blank
nodes with the current semantics of RDF (existential variables). In the column “Local
constants” we consider blank nodes as constants with local scope. In the last column,
we assume that blank nodes are eliminated from the standard.

The approaches in the second and third columns often require an agreed Skolemiza-
tion scheme or at least the definition of frame conditions/best practices that guarantee
non-conflicting Skolemization across the Web (when considering to eliminate blank
nodes in published datasets) or within implementations (when merging datasets with
“local constants”). Wherever we state “Sk. scheme”, we refer to issues which may be
solved by such agreed mechanisms used to generate globally unique URIs from syntax
with implicit or locally scoped labels. We discuss the practicalities of (and proposals
for) such schemes in Section 6.1. The core principle here is that locally-scoped artifacts
can not “interfere” with each other across documents. For example, to enable syntactic
shortcuts in the absence of blank nodes (i.e., when the RDF universe consists of UL),
the URIs generated must be globally unique to ensure that legacy resources are not
unintentionally referenced and redefined when labels are not given.

In terms of the SPARQL query syntax, the use of blank nodes is purely syntactic
and is decoupled from how RDF handles them. Even if blank nodes were discontinued,
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the blank node syntax in queries could still be supported (though a fresh syntax may
be preferable). In terms of SPARQL round tripping, we refer to enabling blank nodes
(either local or existential) to persist across scopes, where one possible solution is,
again, Skolemization schemes. Note that SPARQL 1.1 will allow to “mint” custom
URIs in results as an alternative to blank nodes.

For RDB2RDF mappings where no primary key is available, when removing blank
nodes completely, the problem is again essentially one of implicit labeling, where a
(possibly specialized) Skolemization scheme would be needed. We note that, unlike for
existentials, a constant semantics for blank nodes would align better with the underlying
semantics of the database.

For RDF legacy data, our intention is to note that for a consumer, how ad-hoc data
should be interpreted remains ambiguous in the presence of non-leanness. Again, taking
our original example and assuming it has been found on the Web, with the existential
blank node semantics it is not clear whether leaning the data would honor the intent of
the original publisher. Deciding whether to lean or not may then, e.g., affect SPARQL
query answers. For the other alternatives, leanness is not possible and so the ambiguity
disappears. Conversely, we note that in a practical sense, publishers do not lose the
ability to state unknown values in the absence of existential variables; such values can
be expressed as unique constants which have no further information attached. Finally,
we note that Table 2 does not quite cover all concrete alternatives. One other possibility
we considered was not allowing blank nodes to ever be explicitly labeled, such that they
form trees in the syntaxes, essentially enforcing all graphs to have a blank-treewidth of
1. Note that some syntaxes (like Turtle and RDF/XML without nodeID) guarantee a
tree-structure for blank nodes. As discussed in Sections 3.1 & 4.1, this would make the
isomorphism-checks and simple and RDF(S) entailment-checks tractable, although still
with an implementational cost.

6.1 Skolemization Schemes

The following ideas have been proposed as recommended treatment of blank nodes in
RDF. They do not necessarily require changes in the standards—or at least not to the
semantics of RDF—but are intended as guidelines for publishers (i.e., “best practices”).
We will consider a set S of Skolem constants, such that every time Skolemization oc-
curs, blank nodes are replaced with elements of S. Different alternatives will consider
different behaviors and nature for this set.

6.1.1 S ⊆ U, Centralized
The idea of this alternative is to offer a centralized service that “gives out” fresh URIs
upon request, ensuring uniqueness of the generated constants on a global scale. For-
mally, there would be a distinguished subset of the URIs, S ⊆ U, such that all Skolem
constants belong to S. Every time the service gets a request, it returns an element s ∈ S
such that s has not been used before. This is very similar to what URL shorteners do10.
Since the returned constants are also URIs, they can be used in published documents.

It is not clear who should pay and take responsibility for such a service (the obvious
candidate being the W3C). The costs of bandwidth and maintenance can be too high.

10 See, for example, http://bit.ly/ or http://is.gd/.

http://bit.ly/
http://is.gd/
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For example, the system should be able to cope with huge individual requests (see
table 1). Also, the very idea of centralizing a service like this seems to go against the
spirit of the Semantic Web community, though this might not be relevant for everyone.
Further, the mere existence of such a system will not guarantee that users will only
use this option when Skolemizing. Publishers will still have the freedom of using other
methods to replace blank nodes with constants of their own choice.

6.1.2 S ⊆ U, Decentralized
Similar to the previous case, but with no central service, so each publisher will generate
their constants locally. This has been discussed already by the RDF Working Group11

and by the general community through the public mailing list of the Semantic Web
Interest Group12. In both cases, the proposal is to establish a standard (but voluntary)
process for generating globally unique URIs to replace blank nodes for querying, pub-
lishing and performing other operations with RDF graphs. A requirement of this pro-
cess is that it contains a best practice that avoids naming conflicts between documents.
Naming conflicts on the Web are typically avoided by pay level domains, since they
guarantee a certain level of “authority”[16]. Along these lines, at the time of writing,
the proposal of the RDF Working Group is to add a small section on how to replace
blank nodes with URIs to the document “RDF Concepts” [18, §6.6]. The idea would be
that blank nodes are replaced with well-known URIs [21] with a registered name that
is to be decided (probably “genid” or “bnode”) and a locally-unique identifier, which
would make a globally-unique URI, since publishers would only be supposed to use
their own domains. For example, the authority responsible for the domain example.com
could mint the following URI for a blank node:

http://example.com/.well-known/bnode/zpHvSwfgDjU7kXTsrc0R

This URI can be recognized as the product of Skolemization. If desired, a user could
replace it with a blank node. Moreover, publishers can encode information about the
original blank node in the identifier, such as the name of the source graph, the label of
the blank node in that graph, and the date-time of Skolemization.

It should be noted though that, although no central control authority is needed for
such decentralized Skolemization, this proposal would allow third parties malicious,
non-authoritative use of bnode-URIs which are not in their control (i.e. outside their
domain): the often overlooked “feature” of blank nodes as local constants not modifi-
able/redefinable outside the graph in which they are published would be lost.

7 Conclusions

In this paper, we have provided detailed discussion on the controversial and divisive
issue of blank nodes. Starting with formal considerations, we covered treatment of blank
nodes in the W3C standards, how they are supported, and what they are needed for. The
main use-case for blank nodes is as locally-scoped artifacts which need not be explicitly

11 See http://www.w3.org/2011/rdf-wg/wiki/Skolemisation.
12 See http://www.w3.org/wiki/BnodeSkolemization.

http://www.w3.org/2011/rdf-wg/wiki/Skolemisation
http://www.w3.org/wiki/BnodeSkolemization
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labeled. We also looked at how blank nodes are being published in Linked Data, where
they are perhaps more prevalent than the best-practices would suggest; we also note that
although rare, complex structures of blank nodes are present on the Web.

Informed by our earlier discussion, we proposed and compared three conceptual
paradigms for viewing blank nodes. The first one is rather radical and involves eliminat-
ing blank nodes from the standard, with the additional consequences of having to deal
with legacy data and with possible changes in other standards that rely on blank nodes in
one way or another. The second one consists in standardizing the already widespread in-
terpretation of blank nodes as local constants; most standards (like OWL and SPARQL)
would not need to change at all. The third one is twofold: keeping the existential nature
of blank nodes in RDF, and ensuring this is the meaning that other standards follow, for
example, by means of a best-practices document; in this case, even if SPARQL were to
follow the notions of leanness and entailment, query answering would not be expensive
in most cases due to a good structure for blank nodes in currently published data. In
all these alternatives, a Skolemization scheme would be handy as an aid for publishers
to update their would-be obsolete data. Finally, we note that no alternative stands out
as “the one solution to all issues with blank nodes”. Discussion is still open and pro-
posals are welcome, but as the amount of published data grows rapidly, a consensus is
very much needed. However, in the absence of an undisputed solution, the community
may need to take an alternative which might not be the most beneficial, but the least
damaging for current and future users.
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