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Synonyms
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Definitions

Navigational query languages for graph
databases allow to recursively traverse the edges
of a graph while checking for the existence of
a path that satisfies certain regular conditions.
The basic building block of such languages is
the class of regular path queries (RPQs), which
are expressions that compute the pairs of nodes
that are linked by a path whose label satisfies
a regular expression. RPQs are often extended
with features that turn them more flexible for
practical applications, e.g., with the ability to
traverse edges in the backward direction (RPQs
with inverses) or to express arbitrary patterns
over the data (conjunctive RPQs).

Overview

Graph Databases
Graph databases provide a natural encoding of
many types of data where one needs to deal
with objects and relationships between them. An
object is represented as a node, and a relationship
between two objects is represented as an edge,
where labels are assigned to these edges to in-
dicate what types of relationships they represent.
This interpretation of data often arises in situa-
tions where one needs to navigate in the graph
and reason about the paths in it. To talk about
such navigation, we can abstract graph databases
as edge-labeled graphs. Formally, assuming that
L is a fixed infinite set of edge labels, we have the
following formal definition of a graph database.

Definition 1 A graph database G is a pair
.N;E/, where:

1. N is a finite set of nodes; and
2. E is a finite set of labeled edges, that is, a finite

subset of V � L � V . ut

Example 1 Figure 1 shows a simple graph
database G D .N;E/ storing information about
people and their relationships. Here N has four
nodes:

fAlice; George; John; Paulg

and E contains six labeled edges:

© Springer International Publishing AG 2018
S. Sakr, A. Zomaya (eds.), Encyclopedia of Big Data Technologies,
https://doi.org/10.1007/978-3-319-63962-8_214-1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-63962-8_1&domain=pdf
http://link.springer.com/Navigational queries
http://link.springer.com/Path queries
http://link.springer.com/Regular path queries
https://doi.org/10.1007/978-3-319-63962-8_214-1


2 Graph Path Navigation

Alice George

John Paul
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Graph Path Navigation, Fig. 1 A graph database

f.Alice; knows; George/;

.George; knows; Paul/;

.Alice; friendOf; Paul/;

.Paul; friendOf; Alice/;

.John; friendOf; Paul/;

.Paul; friendOf; John/g: ut

Path Queries
The simplest type of query on a graph database
extracts nodes according to the relationship be-
tween them. We assume that V is an infinite set
of variables that is disjoint with L. Then given
x; y 2 V and ` 2 L, the following is a basic
query

x
`
�! y

that asks for the pairs of nodes in a graph database
connected by an edge-labeled `. The semantics
of a such a query Q on a graph database
G D .N;E/, denoted by �Q�G , is the set
of matchings h W fx; yg ! N such that
.h.x/; `; h.y// 2 E.

Example 2 Evaluating the basic query Q1 D

x
knows
����! y over the graph database G in Fig. 1

produces as a result:

x y

h1 Alice George

h2 George Paul

As depicted in the table, we have that �Q1�G D

fh1; h2g, where h1.x/ D Alice, h1.y/ D
George, h2.x/ D George, and h2.y/ D Paul.
ut

While basic queries like the one above allow
for extracting valuable information from a graph
database, it is often useful to provide more flex-
ible querying mechanisms that allow to navigate
the topology of the data. One example of such
a query is to find all friends-of-a-friend of some
person in a social network. We are not only
interested in immediate acquaintances of a person
but also in people he/she might know through
other people, namely, his/her friends-of-a-friend,
their friends, and so on. For instance, in the graph
in Fig. 1, we may want to discover that Alice is
connected with John through a common friend.

Queries such as the one above are called path
queries, since they require navigation in a graph
using paths of arbitrary lengths. Path queries have
found applications in areas such as the Semantic
Web (Alkhateeb et al. 2009; Pérez et al. 2010;
Paths 2009), provenance (Holland et al. 2008),
and route-finding systems (Barrett et al. 2000),
among others. In this entry, we provide a brief
overview of path queries and some of their exten-
sions; for detailed surveys, the reader is referred
to Barceló (2013) and Angles et al. (2017).

Regular Path Queries
A path p in a graph database G is a sequence e1,
e2, : : :, en of edges of the form ei D .ai ; `i ; bi /

such that n � 0 and bj D ajC1 for every
j 2 f1; : : : ; n � 1g. That is, each edge in a path
starts in the node where the previous edge ends.
If n D 0 we refer to p as the empty path. We
write labels.p/ for the string of labels formed by
the sequence of edges in p, that is, labels.p/ D "
if n D 0 and labels.p/ D `1`2 � � � `n otherwise.
Finally, we say that a1 is the starting node of p
and bn is the ending node of p.

Example 3 p D .Alice; knows; George/,
.George; knows; Paul/ is a path in the graph
database in Fig. 1. This path p is a path of length
2, its starting node is Alice, its ending node is
Paul, and labels.p/ D knows knows. ut
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Definition 2 A regular path query (RPQ) Q is
an expression of the form

x
r
�! y;

where x; y 2 V and r is a regular expression over
L. The evaluation of Q over a graph database
G D .N;E/, denoted by �Q�G , is the set of
matchings h W fx; yg ! N for which there
exists a path p in G whose starting node is h.x/,
ending node is h.y/, and labels.p/ is a string in
the regular language defined by r . ut

Thus, an RPQ x
r
�! y asks for the pair of nodes in

a graph database that are the endpoints of a path
whose labels conform to the regular expression r .

Example 4 Assume that Q2 is the RPQ

x
knowsC

�����! y, where knowsC is a regular
expression that defines the language of nonempty
strings of the form knows knows � � � knows. The
following is the result of evaluating Q2 over the
graph database G shown in Fig. 1:

x y

h1 Alice George

h2 George Paul

h3 Alice Paul

In this case, h3 2 �Q2�G since for the path p D
.Alice; knows; George/, .George; knows; Paul/
in G, we have that the starting node of p is
Alice, the ending node of p is Paul, labels.p/ D
knows knows, and knows knows is a string in the
regular language defined by knowsC. ut

Notice that Definition 2 does not impose the
restriction that x and y be distinct variables, so an

RPQ of the form x
r
�! x is valid, and its semantics

is well defined. Such an RPQ asks for cycles
whose labels conform to the regular expression
r .

Constant values are usually allowed in RPQs.
For the sake of readability, we do not consider
them separately, as the syntax and semantics of
an RPQ with constants are defined exactly in
the same way as in Definition 2. We only give

an example of such a query to illustrate how
constants are used in RPQs.

Example 5 Assume that Q3 is the RPQ

Alice
knowsC

�����! ´, where ´ is a variable and
Alice is a constant representing a node in a
graph. The following is the result of evaluating
Q3 over the graph database shown in Fig. 1:

´

h4 George

h5 Paul

ut

Regular Path Queries with Inverse
Let G be the graph database shown in Fig. 2,
which is an extension of our running example
with information about creations. Assume that
we want to retrieve pairs of people that are co-
creators of the same artifact. We can think of this
query as a path in G: starting from a person, we
traverse an edge with label creatorOf to reach
an artifact, and then from there we traverse again
an edge with label creatorOf to reach a person,
who is then another creator of the artifact. But
there is an issue with such a path as the second
edge with label creatorOf has to be traversed in
the opposite direction.

To overcome this problem, RPQs are often
extended with the ability to traverse edges in
both directions, which gives rise to the notion of
RPQ with inverses (Calvanese et al. 2000). To
define this, let L˙ be the extension of L with
the symbol `�, for each ` 2 L. Moreover, for
a graph database G D .N;E/, let G˙ be the
extension ofG by adding the edges .b; `�; a/, for
each .a; `; b/ 2 E.

Definition 3 A regular path query with inverses
(2RPQ) Q is an expression of the form

x
r
�! y;

where x; y 2 V and r is a regular expression over
L˙. The evaluation of Q over a graph database
G, denoted by �Q�G , is defined as �Q�G˙ . ut
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Graph Path Navigation, Fig. 2 A graph database in-
cluding information about creations

In this definition, �Q�G˙ is well defined as Q is
an RPQ over G˙.

Example 6 The following 2RPQQ4 can be used
to retrieve pairs of people that are co-creators of
the same artifact in the graph database shown in
Fig. 2:

x
creatorOf creatorOf�

����������������! y

In particular, if h6 is a matching such
that h6.x/ D John and h6.y/ D Paul,
then we have that h6 2 �Q�G as p D

.John; creatorOf; Databases/, .Databases;

creatorOf�; Paul/ is a path in G˙ such that
labels.p/ is a string that conforms to the regular
expression creatorOf creatorOf�.

Notice that we can retrieve pairs of people who
are connected by a co-creation path of arbitrary
length by using the following 2RPQ:

x
.creatorOf creatorOf�/C

�������������������! y

ut

Conjunctive Regular Path Queries
A more expressive form of graph database
queries is obtained by viewing RPQs as basic
building blocks and then defining conjunctive
queries over them. Recall that conjunctive

queries, over relational databases, are obtained
by closing relational atoms under conjunction
and existential quantification (or, equivalently,
under selection, projection, and join operations
of relational algebra). When the same operations
are applied to RPQs, they give rise to the notion
of conjunctive RPQs.

Definition 4 A conjunctive regular path query
(CRPQ) is an expression of the form

ans.u1; : : : ; uk/ :-
n̂

iD1

vi
ri
�! wi (1)

where each vi
ri
�! wi , for i 2 f1; : : : ; ng, is an

RPQ that may include constants and u1, : : :, uk is
a sequence of pairwise distinct variables among
those that occur as vi s and wi s. ut

The left-hand side of (1) is called the head
of the query, and its right-hand side is called
the body. Variables in the body of (1) need not
be pairwise distinct; in fact, sharing variables
allows joining results of the RPQs in the body
of the query, which is a fundamental feature of
CRPQs. As in the case of relational conjunctive
queries, variables mentioned in the body of (1)
but not in the head (i.e., those that are not in the
answer) are assumed to be existentially quantified
(in other words, projected away). Finally, if k D
0, then (1) is called a Boolean CRPQ, as its
evaluation results in either a set containing a
matching with empty domain or an empty set of
matchings, which represent the values true and
false, respectively.

The semantics of (1) is defined as follows.
Assume thatG D .N;E/ is a graph database, and
let x1; : : : ; xm be the variables occurring in the
body of (1). Then a matching h W fx1; : : : ; xmg !
N is said to satisfy the body of (1) if for every
i 2 f1; : : : ; ng:

hjfvi ;wi g\V 2 �vi
ri
�! wi�G ;

where hjfvi ;wi g\V is the restriction of matching
h to the domain fvi ;wig \ V. A matching g W
fu1; : : : ; ukg ! N is an answer to (1) over G if
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there is an extension h W fx1; : : : ; xmg ! N of
g that satisfies the body of (1). The evaluation of
a CRPQ Q over G, written �Q�G , is the set of
answers to Q over G.

Example 7 Let G D .N;E/ be the graph
database in Fig. 2. Then the following CRPQ
Q5 can be used to retrieve the pairs of people
that are co-authors of the same book:

ans.x; y/ :- x
creatorOf
�������! ´ ^

y
creatorOf
�������! ´ ^

´
type
���! book

Let g W fx; yg ! N and h W fx; y; ´g ! N

be matchings such that g.x/ D John, g.y/ D
Paul, h.x/ D John, h.y/ D Paul, and h.´/ D
Databases. We have that g 2 �Q5�G since

g D hjfx;yg, hjfx;´g 2 �x
creatorOf
�������! ´�G ,

hjfy;´g 2 �y
creatorOf
�������! ´�G , and hjf´g 2

�´
type
���! book�G . ut

Key Research Findings

The Complexity of Evaluating Path Queries
We now consider the cost of evaluating a query in
a graph query language L . More precisely, the
complexity of the problem L -EVAL is defined
as follows: Given a graph database G, a query
Q 2 L , and a matching h, does h belong to
the evaluation of Q over G? (in symbols, is
h 2 �Q�G?). Notice that the input to L -EVAL

consists of a graph database G, a query Q and a
matching h, and, thus, it measures the combined
complexity of the evaluation problem. Since the
size of h is bounded by the size of Q and the
size of G, it suffices to measure the combined
complexity in terms of jQj and jGj, the sizes of
Q and G.

In practice, queries are usually much smaller
than graph databases, so one is also interested in
the data complexity of the evaluation problem,
which is measured only in terms of the size of

the graph database (i.e., the query is assumed to
be fixed).

The combined and data complexities of RPQ-
EVAL, 2RPQ-EVAL, and CRPQ-EVAL are shown
in Fig. 3.

When we state that data complexity is
NLOGSPACE-complete, we mean that for each
fixed query Q in those language, the evaluation
problem can be solved in NLOGSPACE, and there
are some queries – in fact, RPQs – for which it is
NLOGSPACE-hard.

We now outline the key ideas behind the
O.jGj � jQj/ algorithm as well as NLOGSPACE-
completeness and NP-completeness.

Given a database graph G D .N;E/, a 2RPQ

Q D x
r
�! y, and a matching h W fx; yg ! N ,

we show that 2RPQ-EVAL can be solved in time
O.jGj � jQj/. The idea is from Mendelzon and
Wood (1995). Assume that h.x/ D a and h.y/ D
b. First, we compute G˙ from G in timeO.jGj/,
and then we compute in time O.jQj/, a nonde-
terministic finite automaton with "-transitions ("-
NFA) Ar that defines the same regular language
as r . LetG˙.a; b/ be the NFA obtained fromG˙

by setting its initial and final states to be a and
b, respectively. We know that h 2 �Q�G if and
only if h 2 �Q�G˙ , and the latter is equivalent to
checking whether there exists a word accepted by
both G˙.a; b/ and Ar . In turn, this is equivalent
to checking the product of G˙.a; b/ and Ar for
nonemptiness, which can be done in linear time
in the size of the product automaton, i.e., in time
O.jG˙j � jAr j/. The whole process takes time
O.jGjC jQjC jG˙j � jAr j/, that is,O.jGj � jQj/.

If the query Q is fixed, the same algorithm
can be performed in NLOGSPACE. Indeed, we
just need to compute reachability in the product
automaton, and reachability in graphs is com-
putable in NLOGSPACE. Of course the whole
product requires more than logarithmic space,
but it need not be built, as reachability can be
checked by using standard on the fly techniques.
Moreover, reachability in graphs is known to
be NLOGSPACE-complete, so even RPQ query
evaluation can be NLOGSPACE-complete in data
complexity.
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Graph Path Navigation,
Fig. 3 The complexity of
the evaluation problem for
path queries

Combined complexity Data complexity
RPQ-EVAL O(|G| · |Q|) NLOGSPACE-complete
2RPQ-EVAL O(|G| · |Q|) NLOGSPACE-complete
CRPQ-EVAL NP-complete NLOGSPACE-complete

Finally, to see that CRPQs can be evaluated
in NP in combined complexity, it just suffices
to guess the values of all the vi s and wj s and
then check in polynomial time that all the RPQs
from (1) hold. And since the evaluation problem
for relational conjunctive queries over graphs is
NP-hard in data complexity, so is the evaluation
problem for the more expressive CRPQs.

Simple Path Semantics
The evaluation of RPQs as defined here is based
on a semantics of arbitrary paths. It has been
argued, on the other hand, that for some applica-
tions it is more reasonable to apply a semantics
based on simple paths only, i.e., those without
repeating nodes. Under such a semantics, an RPQ

x
r
�! y computes the pairs of nodes that are

linked by a simple path whose label satisfies r .
However, evaluation of RPQs under the simple
path semantics becomes NP-complete even in
data complexity (Mendelzon and Wood 1995).

While this casts doubt on its practical ap-
plicability, a closely related semantics was im-
plemented in a practical graph DBMS, namely,
Neo4j (Robinson et al. 2013). There, paths in
graph patterns can only be matched by paths
that do not have repeated edges. While still NP-
complete in data complexity in the worst case,
in practice this semantics could behave well, as
worst-case scenarios do not frequently occur in
real life.

Extensions
(C)RPQs have been extended with several fea-
tures. One extension is a nesting operator that
allows one to perform existential tests over the
nodes of a path, similarly to what is done in the
XML navigational language XPath (Pérez et al.
2010). Another extension is the ability to com-
pare paths (Barceló et al. 2012). The idea is that

paths are named in an RPQ, like x
�Wr
��! y, and

then the name � can be used in the query. Without

defining them formally, we give an example:

ans.x; y/ :- x
p1Wa

�

����! ´ ^ ´
p2Wb

�

����! y ^

equal_length.p1; p2/

says that there is a path p1 from x to ´ labeled
with as and a path p2 from ´ to y labeled with bs
and these paths have equal lengths (expressed by
the predicate equal_length.p1; p2/). The equal
length predicate belongs to the well-known class
of regular relations, but the above query says
that there is a path from x to y whose label is
of the form anbn for some n. This of course
is not a regular property, even though we only
used regular languages and relations in the query.
Such extended CRPQs still behave well: their
data complexity remains in NLOGSPACE, and
their combined complexity goes up to PSPACE,
which is exactly the combined complexity of re-
lational algebra. However such additions must be
handled with care: if we add common predicates
on paths such as subsequence or subword, query
evaluation becomes completely infeasible or even
undecidable. We refer to Barceló et al. (2012) and
Barceló (2013) for further discussions.

The last extension is constituted by adding
mechanisms for checking regular properties over
an extended data model in which each node
carries data values from an infinite domain. This
models graph databases as they occur in real
life, namely, property graphs, where nodes and
edges can carry tuples of key-value pairs. Ex-
tending RPQs and CRPQs requires choosing a
proper analog of regular expressions. There are
many proposals, but with few exceptions they
lead to very high complexity of query evaluation.
The one that maintains good complexity is given
by register automata. Such extensions still have
NLOGSPACE data complexity and PSPACE com-
bined complexity and come with different syntac-
tic ways of describing navigation that mixes data
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and topology of the graph. We refer the reader
to Libkin et al. (2016) for details and the surveys
by Barceló (2013) and Angles et al. (2017) for a
thorough review of the literature on extensions of
CRPQs.

Cross-References

�Graph Data Management Systems
�Graph Pattern Matching
�Graph Query Languages
�Graph Query Processing
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