Datalog as a Query Language for Data Exchange Systems

Marcelo Arenas ${ }^{1}$, Pablo Barceló ${ }^{2}$, and Juan L. Reutter ${ }^{3}$
${ }^{1}$ Dept. of Computer Science, Pontificia Universidad Católica de Chile
${ }^{2}$ Dept. of Computer Science, University of Chile
${ }^{3}$ School of Informatics, University of Edinburgh

Abstract

The class of unions of conjunctive queries (UCQ) has been shown to be particularly well-behaved for data exchange; its certain answers can be computed in polynomial time (in terms of data complexity). However, this is not the only class with this property; the certain answers to any Datalog program can also can be computed in polynomial time. The problem is that both UCQ and Datalog do not allow for negated atoms, while most database query languages are equipped with negation. Unfortunately, adding an unrestricted form of negation to these languages yields to intractability of the problem of computing certain answers.

In order to face this challenge, we have recently proposed a language, called Datalog ${ }^{\mathbf{C}(\neq)}$ [5], that extends Datalog with a restricted form of negation while keeping the good properties of DATALOG, and UCQ, for data exchange. In this article, we provide evidence in favor of the use of Datalog ${ }^{\mathbf{C}(\neq)}$ as a query language for data exchange systems. More precisely, we introduce the syntax and semantics of DataloG ${ }^{\mathbf{C}(\neq)}$, we present some of the fundamental results about this language shown in [5], and we extend those results to the case of data exchange settings that allow for constraints in the target schema. All of these results provide justification for the use of DATALOG ${ }^{\mathbf{C}(\neq)}$ in practice.

1 Introduction

Data exchange is the problem of computing an instance of a target schema, given an instance of a source schema and a specification of the relationship between source and target data. Although data exchange is considered to be an old database problem, its theoretical foundations have only been laid out very recently by the seminal work of Fagin, Kolaitis, Miller and Popa [10]. Both the study of data exchange and schema mappings have become an active area of research during the last few years in the database community (see e.g. [10|11|4|9|17|13|18|12]).

In its simplest form, a data exchange setting is a triple $\mathcal{M}=\left(\mathbf{S}, \mathbf{T}, \Sigma_{s t}\right)$, where \mathbf{S} is a source schema, \mathbf{T} is a target schema, and $\Sigma_{s t}$ is a mapping defined as a set of source-to-target dependencies of the form $\forall \bar{x} \forall \bar{y}\left(\phi_{\mathbf{S}}(\bar{x}, \bar{y}) \rightarrow \exists \bar{z} \psi_{\mathbf{T}}(\bar{x}, \bar{z})\right)$, where $\phi_{\mathbf{S}}$ and $\psi_{\mathbf{T}}$ are conjunctions of relational atoms over \mathbf{S} and \mathbf{T}, respectively. Given a source instance I, the goal in data exchange is to materialize a target instance J that is a solution for I, that is, J together with I satisfies each dependency in $\Sigma_{s t}$.

An important issue in data exchange is that the existing specification languages usually do not completely determine the relationship between source and target data and,
thus, each source instance has an infinite number of solutions. This immediately raises the question of which solution should be materialized. Initial work on data exchange [10] has identified a class of "good" solutions, called universal solutions. In formal terms, a solution is universal if it can be homomorphically embedded into every other solution. It was proved in [10] that for the class of data exchange settings defined above, a particular universal solution - called the canonical universal solution - can be computed in polynomial time.

A second important issue in data exchange is query answering. Queries in the data exchange context are posed over the target schema, and -given that there may be many solutions for a source instance- there is a general agreement in the literature that their semantics should be defined in terms of certain answers [14|1|15|10]. More formally, given a data exchange setting $\mathcal{M}=\left(\mathbf{S}, \mathbf{T}, \Sigma_{s t}\right)$ and a query Q over \mathbf{T}, a tuple \bar{t} is said to be a certain answer to Q over I under \mathcal{M}, if \bar{t} belongs to the evaluation of Q over every possible solution J for I under \mathcal{M}.

The definition of certain answers is highly non-effective, as it involves computing the intersection of infinitely many sets. Thus, it becomes particularly important to understand for which classes of relevant queries, the certain answers can be computed efficiently. In particular, it becomes relevant to understand whether it is possible to compute the certain answers to any of these classes by using some materialized solution. Fagin, Kolaitis, Miller, and Popa [10] have shown that this is the case for the class of union of conjunctive queries (UCQ); the certain answers to each union of conjunctive queries Q over a source instance I can be computed in polynomial time by directly posing Q over the canonical universal solution for I. It is important to notice that in this result the complexity is measured only in terms of the size of the source instances (in particular, the data exchange setting and the query are assumed to be fixed). Thus, the previous result is stated in terms of data complexity [20].

The good properties of UCQ for data exchange can be completely explained by the fact that unions of conjunctive queries are preserved under homomorphisms. But this is not the only language that satisfies this condition, as queries definable in Datalog, the recursive extension of UCQ, are also preserved under homomorphisms. Thus, Datalog retains several of the good properties of UCQ for data exchange. In particular, the certain answers to a DATALOG program Π over a source instance I can be computed efficiently by first materializing the canonical universal solution J for I, and then evaluating Π over J (since Datalog programs can be evaluated in polynomial time in the size of the data).

Unfortunately, both UCQ and Datalog keeps us in the realm of the positive, while most database query languages are equipped with negation. However, adding an unrestricted form of negation to Datalog (and even to the class of conjunctive queries) leads to intractability of the problem of computing certain answers. Thus, extending Datalog with some form of negation that, on the one hand, allows to express interesting data exchange queries, and, on the other hand, retains the good properties of DATALOG for data exchange, is a nontrivial task that must be handled carefully.

In order to face this challenge, we have recently proposed a language, called Datalog $^{\mathbf{C}(\neq)}$ [5], that extends Datalog with a restricted form of negation while keeping the good properties of Datalog, and UCQ, for data exchange. In this article,
we provide evidence in favor of the use of DATALOG ${ }^{\mathbf{C}}(\neq)$ as a query language for data exchange systems. More precisely, we start by introducing the syntax and semantics of DATALOG $^{\mathbf{C}}(\neq)$. Then we continue by presenting some of the fundamental results about this language shown in [5], which provide justification for the use of DataloG ${ }^{\mathbf{C}(\neq)}$ in practice. In particular, we show that the certain answers to a Datalog $\mathbf{C}(\neq)$ program can be computed in polynomial time, and that the language DATALOG ${ }^{\mathbf{C}(\neq)}$ can be used to express interesting queries in the data exchange context, as every union of conjunctive queries with at most one inequality or negated relational atom per disjunct can be efficiently expressed as a DATALOG ${ }^{\mathbf{C}}(\neq)$ program in the context of data exchange. We finish the paper by extending these results to the case of data exchange settings with constraints in the target, as explained below.

In addition to the data exchange scenario we have seen so far, it is common in the literature to assume that target schemas come with its own set of dependencies; i.e. each data exchange setting $\mathcal{M}=\left(\mathbf{S}, \mathbf{T}, \Sigma_{s t}\right)$ is extended with a set Σ_{t} of dependencies over the schema \mathbf{T}, which are called target constraints. In that case, a target instance J is said to be a solution for the source instance I under the setting $\mathcal{M}=\left(\mathbf{S}, \mathbf{T}, \Sigma_{s t}, \Sigma_{t}\right)$, if not only the pair (I, J) satisfies each dependency in $\Sigma_{s t}$, but also J satisfies each dependency in Σ_{t}.

As it is to be expected, the addition of target dependencies makes the fundamental data exchange tasks more difficult, starting from the fact that it is no longer true that solutions exist for each source instance. Even worst, it follows from [13] that even for simple data exchange settings with target dependencies, the problem of checking for the existence of solutions may be undecidable. In order to solve this problem, the data exchange literature has identified a relevant class of target dependencies - those that consist of a set of equality-generating dependencies (that subsume keys) and a weaklyacyclic set of tuple-generating dependencies - that have the following good properties for data exchange [10]: Checking the existence of solutions is a tractable problem; and for every source instance that has a solution, a canonical universal solution can be computed in polynomial time. The latter implies that, for the class of data exchange settings extended with a set of target dependencies that consists of a set of equalitygenerating dependencies and a weakly-acyclic set of tuple-generating dependencies, the certain answers to each union of conjunctive queries Q can still be computed in polynomial time (by simply posing Q over the canonical universal solution J for a given source instance I, in case such J exists).

In this paper, we investigate the feasibility of using $\operatorname{DataloG}^{\mathbf{C}(\neq)}$ as a query language for data exchange settings extended with equality-generating target dependencies and weakly-acyclic sets of tuple-generating target dependencies. In particular, we prove that for this class of data exchange settings, the certain answers to each DataloG $\mathbf{C}(\neq)$ program can be computed in polynomial time. Also, we study the expressiveness of DATALOG ${ }^{\mathbf{C}(\neq)}$ in this context, and show that every union of conjunctive queries with at most one inequality or negated relational atom per disjunct can be efficiently expressed as a DATALOG ${ }^{\mathbf{C}(\neq)}$ program if only equality-generating target dependencies are considered. We also show that this result fails if, in addition, target constraints are allowed to contain weakly-acyclic sets of tuple-generating target dependencies; indeed, we prove in the paper that there exist a data exchange setting $\mathcal{M}=\left(\mathbf{S}, \mathbf{T}, \Sigma_{s t}, \Sigma_{t}\right)$, where Σ_{t}
is the union of a set of equality-generating dependencies and a weakly-acyclic set of tuple-generating dependencies, and a conjunctive query Q over \mathbf{T} with one negated relational atom such that the problem of computing certain answers to Q under \mathcal{M} is undecidable.

Organization of the paper. In Section2, we introduce the terminology used in the paper. Then, in Section 3, we define the syntax and semantics of DATALOG $\mathbf{C}(\neq)$ programs, and show their good properties for data exchange. In Section 4 we study the expressive power of DATALOG ${ }^{\mathbf{C}(\neq)}$ programs. Concluding remarks are given in Section 5 .

2 Background

A schema \mathbf{R} is a finite set $\left\{R_{1}, \ldots, R_{k}\right\}$ of relation symbols, with each R_{i} having a fixed arity $n_{i}>0$. Let \mathbf{D} be a countably infinite domain. An instance I of \mathbf{R} assigns to each relation symbol R_{i} of \mathbf{R} a finite n_{i}-ary relation $R_{i}^{I} \subseteq \mathbf{D}^{n_{i}}$. The domain $\operatorname{dom}(I)$ of instance I is the set of all elements that occur in any of the relations R_{i}^{I}. We often define instances by simply listing the tuples attached to the corresponding relation symbols.

We assume familiarity with first-order logic (FO) and Datalog. In this paper, CQ is the class of conjunctive queries and UCQ is the class of unions of conjunctive queries. If we extend these classes by allowing inequalities or negation (of relational atoms), then we use superscripts \neq and \neg, respectively. Thus, for example, CQ^{\neq}is the class of conjunctive queries with inequalities, and UCQ\urcorner is the class of unions of conjunctive queries with negation. As usual in the database literature, we assume that every query Q in $\mathrm{UCQ}^{\neq,\urcorner}$is safe: (1) if Q_{1} and Q_{2} are disjuncts of Q, then Q_{1} and Q_{2} have the same free variables, (2) if Q_{1} is a disjunct of Q and $x \neq y$ is a conjunct of Q_{1}, then x and y appear in some non-negated relational atoms of Q_{1}, (3) if Q_{1} is a disjunct of Q and $\neg R(\bar{x})$ is a conjunct of Q_{1}, then every variable in \bar{x} appears in a non-negated relational atom of Q_{1}.

2.1 Data Exchange Settings and Solutions

As is customary in the data exchange literature, we consider instances with two types of values: constants and nulls [10|11]. More precisely, let \mathbf{C} and \mathbf{N} be infinite and disjoint sets of constants and nulls, respectively, and assume that $\mathbf{D}=\mathbf{C} \cup \mathbf{N}$. If we refer to a schema \mathbf{S} as a source schema, then we will assume that for every instance I of \mathbf{S}, it holds that $\operatorname{dom}(I) \subseteq \mathbf{C}$. On the other hand, if we refer to a schema \mathbf{T} as a target schema, then for every instance J of \mathbf{T}, it holds that $\operatorname{dom}(J) \subseteq \mathbf{C} \cup \mathbf{N}$. Slightly abusing notation, we also use \mathbf{C} to denote a built-in unary predicate such that $\mathbf{C}(a)$ holds if and only if a is a constant, that is $a \in \mathbf{C}$.

A data exchange setting is a tuple $\mathcal{M}=\left(\mathbf{S}, \mathbf{T}, \Sigma_{s t}\right)$, where \mathbf{S} is a source schema, \mathbf{T} is a target schema, \mathbf{S} and \mathbf{T} do not have predicate symbols in common and $\Sigma_{s t}$ is a set of FO-dependencies over $\mathbf{S} \cup \mathbf{T}$ (in [10] and [11] a more general class of data exchange settings is presented, that also includes target dependencies; we consider these settings in Section 4.11. As usual in the data exchange literature (e.g., [10]11]), we restrict the study to data exchange settings in which $\Sigma_{s t}$ consists of a set of source-to-target tuplegenerating dependencies. A source-to-target tuple-generating dependency (st-tgd) is an

FO-sentence of the form $\forall \bar{x} \forall \bar{y}(\phi(\bar{x}, \bar{y}) \rightarrow \exists \bar{z} \psi(\bar{x}, \bar{z}))$, where $\phi(\bar{x}, \bar{y})$ is a conjunction of relational atoms over \mathbf{S} and $\psi(\bar{x}, \bar{z})$ is a conjunction of relational atoms over $\mathbf{T}]^{11} \mathrm{~A}$ source (resp. target) instance K for \mathcal{M} is an instance of \mathbf{S} (resp. \mathbf{T}). We usually denote source instances by $I, I^{\prime}, I_{1}, \ldots$, and target instances by $J, J^{\prime}, J_{1}, \ldots$.

The class of data exchange settings considered in this paper is usually called GLAV (global-\&-local-as-view) in the database literature [15]. One of the restricted forms of this class that has been extensively studied for data integration and exchange is the class of LAV settings. Formally, a LAV setting (local-as-view) [15] is a data exchange setting $\mathcal{M}=\left(\mathbf{S}, \mathbf{T}, \Sigma_{s t}\right)$, in which every st-tgd in $\Sigma_{s t}$ is of the form $\forall \bar{x}(S(\bar{x}) \rightarrow \exists \bar{z} \psi(\bar{x}, \bar{z}))$, for some $S \in \mathbf{S}$.

An instance J of \mathbf{T} is said to be a solution for an instance I under $\mathcal{M}=\left(\mathbf{S}, \mathbf{T}, \Sigma_{s t}\right)$, if the instance $K=(I, J)$ of $\mathbf{S} \cup \mathbf{T}$ satisfies $\Sigma_{s t}$, where $S^{K}=S^{I}$ for every $S \in \mathbf{S}$ and $T^{K}=T^{J}$ for every $T \in \mathbf{T}$. If \mathcal{M} is clear from the context, we shall say that J is a solution for I.

Example 1. Let $\mathcal{M}=\left(\mathbf{S}, \mathbf{T}, \Sigma_{s t}\right)$ be a data exchange setting. Assume that \mathbf{S} consists of one binary relation symbol P, and \mathbf{T} consists of two binary relation symbols Q and R. Further, assume that $\Sigma_{s t}$ consists of st-tgds $P(x, y) \rightarrow Q(x, y)$ and $P(x, y) \rightarrow$ $\exists z R(x, z)$. Then \mathcal{M} is also a LAV setting.

Let $I=\{P(a, b), P(a, c)\}$ be a source instance. Then $J_{1}=\{Q(a, b), Q(a, c)$, $R(a, b)\}$ and $J_{2}=\{Q(a, b), Q(a, c), R(a, n)\}$, where $n \in \mathbf{N}$, are solutions for I. In fact, I has infinitely many solutions.

2.2 Universal Solutions and Canonical Universal Solution

It has been argued in [10] that the preferred solutions in data exchange are the universal solutions. In order to define this notion, we first have to revise the concept of homomorphism in data exchange. Let K_{1} and K_{2} be instances of the same schema \mathbf{R}. A homomorphism h from K_{1} to K_{2} is a function $h: \operatorname{dom}\left(K_{1}\right) \rightarrow \operatorname{dom}\left(K_{2}\right)$ such that: (1) $h(c)=c$ for every $c \in \mathbf{C} \cap \operatorname{dom}\left(K_{1}\right)$, and (2) for every $R \in \mathbf{R}$ and every tuple $\bar{a}=\left(a_{1}, \ldots, a_{k}\right) \in R^{K_{1}}$, it holds that $h(\bar{a})=\left(h\left(a_{1}\right), \ldots, h\left(a_{k}\right)\right) \in R^{K_{2}}$. Notice that this definition of homomorphism slightly differs from the usual one, as the additional constraint that homomorphisms are the identity on the constants is imposed.

Let \mathcal{M} be a data exchange setting, I a source instance and J a solution for I under \mathcal{M}. Then J is a universal solution for I under \mathcal{M}, if for every solution J^{\prime} for I under \mathcal{M}, there exists a homomorphism from J to J^{\prime}.

Example 2 (Example $\mathbb{1}$ continued). Solution J_{2} is a universal solution for I, while J_{1} is not since there is no homomorphism from J_{1} to J_{2}.

It follows from [10] that for the class of data exchange settings studied in this paper, every source instance has universal solutions. In particular, one of these solutions called the canonical universal solution - can be constructed in polynomial time from the given source instance (assuming the setting to be fixed), using the chase procedure [6] (see e.g. [10]).

[^0]Remark: Notice that each target instance J^{\prime} that contains the canonical universal solution J of a source instance I, is also a solution for I. Thus, each source instance has infinitely many solutions.

2.3 Certain Answers

Queries in a data exchange setting $\mathcal{M}=\left(\mathbf{S}, \mathbf{T}, \Sigma_{s t}\right)$ are posed over the target schema \mathbf{T}. Given that there are infinitely many solutions for a given source instance I with respect to \mathcal{M}, the standard approach in the data exchange literature is to define the semantics of the query based on the notion of certain answers [14|1|15|10].

Let I be a source instance. For a query Q of arity $n \geq 0$, in any of our logical formalisms, we denote by $\operatorname{certain}_{\mathcal{M}}(Q, I)$ the set of certain answers of Q over I under \mathcal{M}, that is, the set of n-tuples \bar{t} such that $\bar{t} \in Q(J)$, for every J that is a solution for I under \mathcal{M}. If $n=0$, then we say that Q is Boolean, and $\operatorname{certain}_{\mathcal{M}}(Q, I)=$ true if and only if Q holds for every J that is a solution for I under \mathcal{M}. We write $\operatorname{certain}_{\mathcal{M}}(Q, I)=\mathrm{false}$ if it is not the case that $\operatorname{certain}_{\mathcal{M}}(Q, I)=$ true.

Let $\mathcal{M}=\left(\mathbf{S}, \mathbf{T}, \Sigma_{s t}\right)$ be a data exchange setting and Q a query over \mathbf{T}. The main problem studied in this paper is:

```
PROBLEM : CERTAIN-ANSWERS(\mathcal{M},Q).
INPUT : A source instance I and a tuple}\overline{t}\mathrm{ of constants from I.
QUESTION : Does }\overline{t}\in\mp@subsup{\operatorname{certain}}{\mathcal{M}}{(Q,I)}\mathrm{ ?
```


3 Extending Query Languages for Data Exchange: DataloG ${ }^{\text {C }}(\neq)$ Programs

The class of unions of conjunctive queries is particularly well-behaved for data exchange; the certain answers of each union of conjunctive queries Q can be computed by directly posing Q over an arbitrary universal solution [10]. More formally, given a data exchange setting \mathcal{M}, a source instance I, a universal solution J for I under \mathcal{M}, and a tuple \bar{t} of constants, $\bar{t} \in \operatorname{certain}_{\mathcal{M}}(Q, I)$ if and only if $\bar{t} \in Q(J)$. This implies that for each data exchange setting \mathcal{M}, the problem Certain-Answers (\mathcal{M}, Q) can be solved in polynomial time if Q is a union of conjunctive queries (because the canonical universal solution for I can be computed in polynomial time and Q can be evaluated in polynomial time in the size of the data).

The fact that the certain answers of a union of conjunctive queries Q can be computed by posing Q over a universal solution, can be fully explained by the fact that Q is preserved under homomorphisms, that is, for every pair of instances J, J^{\prime}, homomorphism h from J to J^{\prime}, and tuple \bar{a} of elements in J, if $\bar{a} \in Q(J)$, then $h(\bar{a}) \in Q\left(J^{\prime}\right)$. But UCQ is not the only class of queries that is preserved under homomorphisms; also Datalog, the recursive extension of the class UCQ, has this property. Since each Datalog program can be evaluated in polynomial time in the size of the data, we have that the certain answers to each Datalog query Q can be obtained efficiently by first computing a universal solution J, and then evaluating Q over J. Thus, Datalog preserves the good properties of UCQ for data exchange.

Unfortunately, both UCQ and Datalog keep us in the realm of the positive (i.e. negated atoms are not allowed in queries), while most database query languages are equipped with negation. It seems then natural to extend UCQ (or Datalog) in the context of data exchange with some form of negation. Indeed, query languages with different forms of negation have been considered in the data exchange context [3|8], as they can be used to express interesting queries. Next, we show an example of this fact.

Example 3. Consider a data exchange setting with $\mathbf{S}=\{E(\cdot, \cdot), A(\cdot), B(\cdot)\}$, $\mathbf{T}=$ $\{G(\cdot, \cdot), P(\cdot), R(\cdot)\}$ and

$$
\Sigma_{s t}=\{E(x, y) \rightarrow G(x, y), A(x) \rightarrow P(x), B(x) \rightarrow R(x)\}
$$

Notice that if I is a source instance, then the canonical universal solution CAN (I) for I is such that $E^{I}=G^{\mathrm{CAN}(I)}, A^{I}=P^{\mathrm{CAN}(I)}$ and $B^{I}=R^{\mathrm{CAN}(I)}$.

Let $Q(x)$ be the following UCQ \urcorner query over \mathbf{T} :

$$
\exists x \exists y(P(x) \wedge R(y) \wedge G(x, y)) \vee \exists x \exists y \exists z(G(x, z) \wedge G(z, y) \wedge \neg G(x, y))
$$

It is not hard to prove that for every source instance I, $\operatorname{certain}_{\mathcal{M}}(Q, I)=$ true if and only if there exist elements $a, b \in \operatorname{dom}(\operatorname{CAN}(I))$ such that a belongs to $P^{\mathrm{CAN}(I)}, b$ belongs to $R^{\mathrm{CAN}(I)}$ and (a, b) belongs to the transitive closure of the relation $G^{\mathrm{CAN}(I)}$. That is, $\operatorname{certain}_{\mathcal{M}}(Q, I)=$ true if and only if there exist elements $a, b \in \operatorname{dom}(I)$ such that a belongs to A^{I}, b belongs to B^{I} and (a, b) belongs to the transitive closure of the relation E^{I}.

It is well-known (see e.g. [16]) that there is no union of conjunctive queries (indeed, not even an FO-query) that defines the transitive closure of a graph. Thus, if Q and \mathcal{M} are as in the previous example, then there is no union of conjunctive queries Q^{\prime} such that $Q^{\prime}(\operatorname{CaN}(I))=\operatorname{certain}_{\mathcal{M}}\left(Q^{\prime}, I\right)=\operatorname{certain}_{\mathcal{M}}(Q, I)$, for every source instance I. It immediately follows that negated relational atoms add expressive power to the class UCQ in the context of data exchange (see also [4]). And not only that, it follows from [10] that inequalities also add expressive power to UCQ in the context of data exchange.

Unfortunately, adding an unrestricted form of negation to Datalog (or even to CQ) not only destroys preservation under homomorphisms, but also easily leads to intractability of the problem of computing certain answers [1]10]. More precisely, there is a setting \mathcal{M} and a query Q in CQ^{\neq}such that the problem Certain-Answers (\mathcal{M}, Q) cannot be solved in polynomial time (unless Ptime $=\mathrm{NP}$). In particular, the set of certain answers of Q cannot be computed by evaluating Q over a polynomial-time computable universal solution.

3.1 DATALOG ${ }^{\text {C }}(\neq)$ Programs

We have recently proposed a language DATALOG ${ }^{\mathbf{C}(\neq)}$ [5] that adds negation in a natural way to DATALOG, while keeping the good properties of this language for data exchange. We define this language below.
Definition 1 (DATALOG ${ }^{\mathrm{C}(\neq)}$ programs). A constant-inequality Datalog rule is a rule of the form:

$$
\begin{equation*}
S(\bar{x}) \leftarrow S_{1}\left(\bar{x}_{1}\right), \ldots, S_{\ell}\left(\bar{x}_{\ell}\right), \mathbf{C}\left(y_{1}\right), \ldots, \mathbf{C}\left(y_{m}\right), u_{1} \neq v_{1}, \ldots, u_{n} \neq v_{n} \tag{1}
\end{equation*}
$$

where
(a) $S, S_{1}, \ldots, S_{\ell}$ are (non necessarily distinct) predicate symbols,
(b) every variable in \bar{x} is mentioned in some tuple $\bar{x}_{i}(i \in[1, \ell])$,
(c) every variable $y_{j}(j \in[1, m])$ is mentioned in some tuple $\bar{x}_{i}(i \in[1, \ell])$, and
(d) every variable $u_{j}(j \in[1, n])$, and every variable v_{j}, is equal to some variable y_{i} $(i \in[1, m])$.
Further, a constant-inequality Datalog program (DataLOG ${ }^{\mathbf{C}(\neq)}$ program) Π is a finite set of constant-inequality Datalog rules.

For example, the following is a constant-inequality Datalog program:

$$
\begin{aligned}
R(x, y) & \leftarrow T(x, z), S(z, y), \mathbf{C}(x), \mathbf{C}(z), x \neq z \\
S(x) & \leftarrow U(x, u, v, w), \mathbf{C}(x), \mathbf{C}(u), \mathbf{C}(v), \mathbf{C}(w), u \neq v, u \neq w
\end{aligned}
$$

For a rule of the form (1), we say that $S(\bar{x})$ is its head. The set of predicates of a Datalog $^{\mathbf{C}(\neq)}$ program Π, denoted by $\operatorname{Pred}(\Pi)$, is the set of predicate symbols mentioned in Π, while the set of intensional predicates of Π, denoted by $\operatorname{IPred}(\Pi)$, is the set of predicates symbols $R \in \operatorname{Pred}(\Pi)$ such that $R(\bar{x})$ appears as the head of some rule of Π.

Assume that Π is a DataloG ${ }^{\mathbf{C}}(\neq)$ program and I is a database instance of the relational schema $\operatorname{Pred}(\Pi)$. Then $\mathcal{T}(I)$ is an instance of $\operatorname{Pred}(\Pi)$ such that for every $R \in \operatorname{Pred}(\Pi)$ and every tuple \bar{t}, it holds that $\bar{t} \in R^{\mathcal{T}(I)}$ if and only if there exists a rule $R(\bar{x}) \leftarrow R_{1}\left(\bar{x}_{1}\right), \ldots, R_{\ell}\left(\bar{x}_{\ell}\right), \mathbf{C}\left(y_{1}\right), \ldots, \mathbf{C}\left(y_{m}\right), u_{1} \neq v_{1}, \ldots, u_{n} \neq v_{n}$ in Π and a variable assignment σ such that (a) $\sigma(\bar{x})=\bar{t}$, (b) $\sigma\left(\bar{x}_{i}\right) \in R_{i}^{I}$, for every $i \in[1, \ell]$, (c) $\sigma\left(y_{i}\right)$ is a constant, for every $i \in[1, m]$, and (d) $\sigma\left(u_{i}\right) \neq \sigma\left(v_{i}\right)$, for every $i \in[1, n]$. Operator \mathcal{T} is used to define the semantics of constant-inequality Datalog programs. More precisely, define $\mathcal{T}_{\Pi}^{0}(I)$ to be I and $\mathcal{T}_{\Pi}^{n+1}(I)$ to be $\mathcal{T}\left(\mathcal{T}_{\Pi I}^{n}(I)\right) \cup \mathcal{T}_{\Pi}^{n}(I)$, for every $n \geq 0$. Then the evaluation of Π over I is defined as $\mathcal{T}_{\Pi}^{\infty}(I)=\bigcup_{n>0} \mathcal{T}_{\Pi}^{n}(I)$.

A constant-inequality Datalog program Π is said to be defined over a relational schema \mathbf{R} if $\mathbf{R}=\operatorname{Pred}(\Pi) \backslash \operatorname{IPred}(\Pi)$ and Answer $\in \operatorname{IPred}(\Pi)$. Given an instance I of \mathbf{R} and a tuple \bar{t} in $\operatorname{dom}(I)^{n}$, where n is the arity of ANSWER, we say that $\bar{t} \in \Pi(I)$ if $\bar{t} \in$ Answer $^{\mathcal{T}_{\Pi}^{\infty}\left(I_{0}\right)}$, where I_{0} is an extension of I defined as: $R^{I_{0}}=R^{I}$ for $R \in \mathbf{R}$ and $R^{I_{0}}=\emptyset$ for $R \in \operatorname{IPred}(\Pi)$.

3.2 Certain Answers for DataloG ${ }^{C}(\neq)$ Programs

As we mentioned before, the homomorphisms in data exchange are not arbitrary; they are the identity on the constants. Thus, given that inequalities are witnessed by constants in Datalog ${ }^{\mathbf{C}(\neq)}$ programs, we have that these programs are preserved under homomorphisms. From this we conclude that the certain answers to a $\operatorname{DataloG}^{\mathbf{C}(\neq)}$ program Π can be computed by directly evaluating Π over a universal solution. Thus, DATALOG ${ }^{\mathbf{C}(\neq)}$ programs preserve the good properties of DATALOG, and UCQ, for data exchange.

Proposition 1 ([5]). Let $\mathcal{M}=\left(\mathbf{S}, \mathbf{T}, \Sigma_{s t}\right)$ be a data exchange setting, I a source instance, J a universal solution for I under \mathcal{M}, and Π a DATALOG $^{\mathbf{C}(\neq)}{ }^{(J)}$ program over T. Then for every tuple \bar{t} of constants, $\bar{t} \in \operatorname{certain}_{\mathcal{M}}(\Pi, I)$ iff $\bar{t} \in \Pi(J)$.

Thus, the certain answers of a DATALOG ${ }^{\mathbf{C}(\neq)}$ program Π over I can be computed by directly posing Π over $\operatorname{CAN}(I)$ and discarding tuples that contain nulls. This implies that for each data exchange setting \mathcal{M}, the problem Certain-Answers (\mathcal{M}, Π) can be solved in polynomial time if Π is a DATALOG ${ }^{\mathbf{C}(\neq)}$ program (since CAN (I) can be computed in polynomial time and Π can be evaluated in polynomial time in the size of the data).

Corollary 1. The problem CERTAIN-ANSWERS (\mathcal{M}, Π) can be solved in polynomial time, for every data exchange setting \mathcal{M} and DATALOG $^{\mathbf{C}}(\neq)$ program Π.

4 On the Expressive Power of DataloG ${ }^{C}(\neq)$ Programs

We have shown in [5] that DATALOG $\mathbf{C}(\neq)$ programs are capable of expressing relevant data exchange properties. In particular, these programs are expressive enough to capture the class of unions of conjunctive queries with at most one negated atom per disjunct. This class has proved to be relevant for data exchange, as its restriction with inequalities (that is, the class of queries in UCQ^{\neq}with at most one inequality per disjunct) not only can express relevant queries but also is one of the few known extensions of the class UCQ for which the problem of computing certain answers is tractable [10].

Theorem 1 ([5]). Let Q be a $\mathrm{UCQ}^{\neq, \neg ~ q u e r y ~ o v e r ~ a ~ s c h e m a ~} \mathbf{T}$, with at most one inequality or negated relational atom per disjunct. Then there exists a DATALOG $\mathbf{C}(\neq)$ program Π_{Q} over \mathbf{T} such that for every data exchange setting $\mathcal{M}=\left(\mathbf{S}, \mathbf{T}, \Sigma_{s t}\right)$ and instance I of \mathbf{S}, certain $\left.\mathcal{M}^{(Q}, I\right)=\operatorname{certain}_{\mathcal{M}}\left(\Pi_{Q}, I\right)$. Moreover, Π_{Q} can be effectively constructed from Q in polynomial time.

We sketch the proof of this theorem by means of an example, since we prove a stronger result later (Theorem 4).

Example 4. Let \mathcal{M} be a data exchange setting such that $\mathbf{S}=\{E(\cdot, \cdot), A(\cdot)\}$, $\mathbf{T}=$ $\{G(\cdot, \cdot), P(\cdot)\}$ and

$$
\Sigma_{s t}=\{E(x, y) \rightarrow \exists z(G(x, z) \wedge G(z, y)), A(x) \rightarrow P(x)\}
$$

Also, let $Q(x)$ be the following query in $\mathrm{UCQ}^{\neq, \neg}$:

$$
(P(x) \wedge G(x, x)) \vee \exists y(G(x, y) \wedge x \neq y) \vee \exists y \exists z(G(x, z) \wedge G(z, y) \wedge \neg G(x, y))
$$

We construct a DATALOG ${ }^{\mathbf{C}(\neq)}$ program Π_{Q} such that $\operatorname{certain}_{\mathcal{M}}(Q, I)=$ $\operatorname{certain}_{\mathcal{M}}\left(\Pi_{Q}, I\right)$. The set of intensional predicates of the DATALOG $\mathbf{C}(\neq)$ program Π_{Q} is $\left\{U_{1}(\cdot, \cdot, \cdot), U_{2}(\cdot, \cdot), \operatorname{Dom}(\cdot), \operatorname{EQUAL}(\cdot, \cdot, \cdot)\right.$, AnSwer $\left.(\cdot)\right\}$. The program Π_{Q} over \mathbf{T} is defined as follows.

First, the program collects in $\operatorname{DOM}(x)$ all the elements that belong to the active domain of the instance of \mathbf{T} where Π_{Q} is evaluated:

$$
\begin{align*}
& \operatorname{Dom}(x) \leftarrow G(x, z) \tag{2}\\
& \operatorname{Dom}(x) \leftarrow G(z, x) \tag{3}\\
& \operatorname{Dom}(x) \leftarrow P(x) \tag{4}
\end{align*}
$$

Second, the program Π_{Q} includes the following rules that formalize the idea that $\operatorname{EQUAL}(x, y, z)$ holds if x and y are the same elements:

$$
\begin{align*}
& \operatorname{EQUAL}(x, x, z) \leftarrow \operatorname{Dom}(x), \operatorname{Dom}(z) \tag{5}\\
& \operatorname{EQUAL}(x, y, z) \leftarrow \operatorname{EQUAL}(y, x, z) \tag{6}\\
& \operatorname{EQUAL}(x, y, z) \leftarrow \operatorname{EQUAL}(x, w, z), \operatorname{EQUAL}(w, y, z) \tag{7}
\end{align*}
$$

Predicate EQUAL includes an extra argument that keeps track of the element z where the query is being evaluated. Notice that we cannot simply use the rule $\operatorname{EqUAL}(x, x, z) \leftarrow$ to say that EQUAL is reflexive, as DATALOG ${ }^{\mathbf{C}(\neq)}$ programs are safe, i.e. every variable that appears in the head of a rule also has to appear in its body.

Third, Π_{Q} includes the rules:

$$
\begin{align*}
U_{1}(x, y, z) & \leftarrow G(x, y), \operatorname{Dom}(z) \tag{8}\\
U_{2}(x, z) & \leftarrow P(x), \operatorname{Dom}(z) \tag{9}\\
U_{1}(x, y, z) & \leftarrow U_{1}(u, v, z), \operatorname{EQUAL}(u, x, z), \operatorname{EQUAL}(v, y, z) \tag{10}\\
U_{2}(x, z) & \leftarrow U_{2}(u, z), \operatorname{EQUAL}(u, x, z) \tag{11}
\end{align*}
$$

Intuitively, the first two rules create in U_{1} and U_{2} a copy of G and P, respectively, but again with an extra argument for keeping track of the element where Π_{Q} is being evaluated. The last two rules allow to replace equal elements in the interpretation of U_{1} and U_{2}.

Fourth, Π_{Q} includes the following rule for the third disjunct of $Q(x)$:

$$
\begin{equation*}
U_{1}(x, y, x) \leftarrow U_{1}(x, z, x), U_{1}(z, y, x) \tag{12}
\end{equation*}
$$

Intuitively, this rule expresses that if a is an element that does not belong to the set of certain answers to $Q(x)$, then for every pair of elements b and c such that (a, b) and (b, c) belong to the interpretation of G, it must be the case that (a, c) also belongs to it.

Fifth, Π_{Q} includes the following rule for the second disjunct of $Q(x)$:

$$
\begin{equation*}
\operatorname{EQUAL}(x, y, x) \leftarrow U_{1}(x, y, x) \tag{13}
\end{equation*}
$$

Intuitively, this rule expresses that if a is an element that does not belong to the set of certain answers to $Q(x)$, then for every element b such that the pair (a, b) belongs to the interpretation of G, it must be the case that $a=b$.

Finally, Π_{Q} includes two rules for collecting the certain answers to $Q(x)$:

$$
\begin{align*}
\operatorname{ANSWER}(x) & \leftarrow U_{2}(x, x), U_{1}(x, x, x), \mathbf{C}(x) \tag{14}\\
\operatorname{ANSWER}(x) & \leftarrow \operatorname{EQUAL}(y, z, x), \mathbf{C}(x), \mathbf{C}(y), \mathbf{C}(z), y \neq z \tag{15}
\end{align*}
$$

Intuitively, rule (14) says that if a constant a belongs to the interpretation of P and (a, a) belongs to the interpretation of G, then a belongs to the set of certain answers to $Q(x)$. Indeed, this means that if J is an arbitrary solution where the program is being evaluated, then a belongs to the evaluation of the first disjunct of $Q(x)$ over J.

Rule (15) says that if in the process of evaluating Π_{Q} with parameter a, two distinct constants b and c are declared to be equal ($\operatorname{EQUAL}(b, c, a)$ holds), then a belongs to
the set of certain answers to $Q(x)$. We show the application of this rule with an example. Let I be a source instance, and assume that (a, n) and (n, b) belong to G in the canonical universal solution for I, where n is a null value. By applying rule (2), we have that $\operatorname{Dom}(a)$ holds in $\operatorname{Can}(I)$. Thus, we conclude by applying rule (8) that $U_{1}(a, n, a)$ and $U_{1}(n, b, a)$ hold in $\operatorname{Can}(I)$ and, therefore, we obtain by using rule (13) that $\operatorname{Equal}(a, n, a)$ holds in $\operatorname{Can}(I)$. Notice that this rule is trying to prove that a is not in the certain answers to $Q(x)$ and, hence, it forces n to be equal to a. Now by using rule (6), we obtain that $\operatorname{EQUAL}(n, a, a)$ holds in $\operatorname{CAN}(I)$. But we also have that $\operatorname{EQUAL}(b, b, a)$ holds in $\operatorname{Can}(I)$ (by applying rules (3) and (5)). Thus, by applying rule (10), we obtain that $U_{1}(a, b, a)$ holds in CAN (I). Therefore, by applying rule (13) again, we obtain that $\operatorname{EqUaL}(a, b, a)$ holds in $\operatorname{Can}(I)$. This time, rule (13) tries to prove that a is not in the certain answers to $Q(x)$ by forcing constants a and b to be the same value. But this cannot be the case since a and b are distinct constants and, thus, rule (15) is used to conclude that a is in the certain answers to $Q(x)$. It is important to notice that this conclusion is correct. If J is an arbitrary solution for I, then we have that there exists a homomorphism $h: \operatorname{CAN}(I) \rightarrow J$. Given that a and b are distinct constants, we have that $a \neq h(n)$ or $b \neq h(n)$. It follows that there is an element c in J such that $a \neq c$ and the pair (a, c) belongs to the interpretation of G. Thus, we conclude that a belongs to the evaluation of the second disjunct of $Q(x)$ over J.

It is now an easy exercise to show that the set of certain answers to $Q(x)$ coincide with the set of certain answers to Π_{Q}, for every source instance I.

As an immediate corollary to Theorem 1 and Corollary we obtain the following:
Corollary 2. The problem CERTAIN-ANSWERS (\mathcal{M}, Q) can be solved in polynomial time, for every data exchange setting \mathcal{M} and every union of conjunctive queries Q with at most one inequality or negated relational atom per disjunct.

We note that this slightly generalizes one of the polynomial time results in [10], which is stated for the class of unions of conjunctive queries with at most one inequality per disjunct. The proof of the result in [10] uses different techniques, based on the chase procedure.

It is important to notice that Corollary 2 is, in a sense, optimal, as there is a LAV data exchange setting \mathcal{M} and a conjunctive query with two inequalities, such that Certain-Answers (\mathcal{M}, Q) is conP-complete [19]. This shows that Theorem 1 cannot be further extended to deal with arbitrary conjunctive queries with negated atoms.

A natural question at this point is whether the problem CERTAIN-Answers (\mathcal{M}, Q) is PTIME-complete for some data exchange setting \mathcal{M} and union of conjunctive queries Q with at most one negated atom per disjunct. The following proposition shows that this is indeed the case.

Proposition 2 ([5]). There exist a LAV data exchange setting \mathcal{M} and a Boolean conjunctive query Q with one inequality such that $\operatorname{Certain}-\operatorname{Answers}(\mathcal{M}, Q)$ is Ptimecomplete, under LOGSPACE reductions.

The previous result establishes a difference with the class of unions of conjunctive queries (UCQ), for which the problem of computing certain answers under a setting \mathcal{M} can be solved in Logspace.

4.1 Adding Target Dependencies

In addition to the simple data exchange scenario we have seen so far, it is common in the literature to assume that target schemas come with its own set of dependencies Σ_{t}. Formally, data exchange settings with target dependencies (as presented, for instance, in [10|11]) are tuples of the form $\mathcal{M}=\left(\mathbf{S}, \mathbf{T}, \Sigma_{s t}, \Sigma_{t}\right)$, where \mathbf{S}, \mathbf{T} and $\Sigma_{s t}$ are as before, and Σ_{t} is the union of (1) a set of tuple-generating dependencies (tgds), i.e. dependencies of the form $\forall \bar{x} \forall \bar{y}(\phi(\bar{x}, \bar{y}) \rightarrow \exists \bar{z} \psi(\bar{x}, \bar{z}))$, where $\phi(\bar{x}, \bar{y})$ and $\psi(\bar{x}, \bar{z})$ are conjunctions of atomic formulas in \mathbf{T}, and (2) a set of equality-generating dependencies (egds), i.e. dependencies of the form $\forall \bar{x}\left(\phi(\bar{x}) \rightarrow x_{i}=x_{j}\right)$, where $\phi(\bar{x})$ is a conjunction of atomic formulas in \mathbf{T}, and x_{i}, x_{j} are variables among those in \bar{x}

For settings with target dependencies, the solutions also have to satisfy the dependencies in Σ_{t}. That is, if $\mathcal{M}=\left(\mathbf{S}, \mathbf{T}, \Sigma_{s t}, \Sigma_{t}\right)$ is a data exchange setting and I is an instance of \mathbf{S}, then an instance J of \mathbf{T} is a solution for I if not only the pair (I, J) satisfies each dependency in $\Sigma_{s t}$, but also J satisfies each dependency in Σ_{t}.

As it is to be expected, the addition of target dependencies makes the fundamental data exchange tasks more difficult, starting from the fact that it is no longer true that solutions exist for each source instance. Even worst, it follows from [13] that there exists a data exchange setting $\mathcal{M}=\left(\mathbf{S}, \mathbf{T}, \Sigma_{s t}, \Sigma_{t}\right)$ with target dependencies such that the problem of checking for the existence of solutions under \mathcal{M} is undecidable.

In order to overcome the aforementioned limitations, the data exchange community has identified a relevant class of target dependencies that has good properties for data exchange. To define this class, we need to introduce some terminology. Assume that Σ is a set of tgds over a schema \mathbf{T}. Then the dependency graph G_{Σ} of Σ is defined as follows:
(1) add a node (R, i) to G_{Σ} for every relation $R \in \mathbf{T}$ and $i \in\{1, \ldots, n\}$, where n is the arity of R;
(2) add an edge $(R, i) \rightarrow(T, j)$ to G_{Σ} if there exist a $\operatorname{tgd} \phi(\bar{x}, \bar{y}) \rightarrow \exists \bar{z} \psi(\bar{x}, \bar{z})$ in Σ and a variable x such that x is mentioned in \bar{x}, x occurs in the i-th attribute of R in ϕ and x occurs in the j-th attribute of T in ψ;
(3) add a special edge $(R, i) \rightarrow^{*}(T, j)$ to G_{Σ} if there exists a $\operatorname{tgd} \phi(\bar{x}, \bar{y}) \rightarrow$ $\exists \bar{z} \psi(\bar{x}, \bar{z})$ in Σ such that a variable x occurs in the i-th attribute of R in ϕ and an existentially quantified variable z occurs in the j-th attribute of T in ψ.

Moreover, Σ is said to be weakly acyclic if the dependency graph G_{Σ} of Σ does not have a cycle going through an edge labeled $*[10]$. Next theorem shows that the class of settings with weakly acyclic sets of tgds has good properties for data exchange.

Theorem $2\left([\mathbf{1 0]})\right.$. Let $\mathcal{M}=\left(\mathbf{S}, \mathbf{T}, \Sigma_{s t}, \Sigma_{t}\right)$ be a data exchange setting, where Σ_{t} is the union of a set of egds and a weakly-acyclic set of tgds. Then there is a polynomial time algorithm such that for every source instance I, it first decides whether a solution for I exists, and if that is the case, it computes a canonical universal solution for I in polynomial time.

[^1]The latter implies that for the class of data exchange settings whose target dependencies consist of a set of equality-generating dependencies and a weakly-acyclic set of tuplegenerating dependencies, the certain answers to each union of conjunctive queries Q for a source instance I, can be computed in polynomial time by simply posing Q over the canonical universal solution J for I and then discarding the tuples that contain nulls (in case such a solution J exists). Notice, however, that using exactly the same argument one can prove the stronger result that certain answers to DATALOG ${ }^{\mathbf{C}}(\neq)$ programs can be computed in polynomial time under the class of settings specified in Theorem 2. This is because DATALOG ${ }^{\mathbf{C}(\neq)}$ programs are preserved under data exchange homomorphisms and can be evaluated in polynomial time in the size of the data. Indeed,

Corollary 3. Let $\mathcal{M}=\left(\mathbf{S}, \mathbf{T}, \Sigma_{s t}, \Sigma_{t}\right)$ be a data exchange setting, where Σ_{t} is the union of a set of egds and a weakly acyclic set of tgds, and let Π be a $\operatorname{DataloG}^{\mathbf{C}(\neq)}$ program over \mathbf{T}. Then the problem CERTAIN-AnSWERS (\mathcal{M}, Π) can be solved in polynomial time.

Let us recall Corollary 2. It says that the certain answers to a union of conjunctive queries with at most one negated atom per disjunct, can be computed in polynomial time for settings without target dependencies. A natural question at this point is whether this positive result continues to hold if target schemas are allowed to contain dependencies of the form specified in Theorem 2 The following result shows that not only this is not the case, but also that the problem of computing certain answers to unions of conjunctive queries with at most one negated atom per disjunct is undecidable for this class of settings

Theorem 3. There exists a data exchange setting $\mathcal{M}=\left(\mathbf{S}, \mathbf{T}, \Sigma_{s t}, \Sigma_{t}\right)$, where Σ_{t} is the union of a set of egds and a weakly-acyclic set of tgds, and a Boolean CQ^{\urcorner}query Q over \mathbf{T} with a single negated relational atom such that $\operatorname{CERTAIN}-\operatorname{ANSWERS}(\mathcal{M}, Q)$ is undecidable.

Proof. Let \mathbf{S}^{\star} be a source schema consisting of a ternary relation P, T^{\star} a target schema consisting of a ternary relation R and $\mathcal{M}^{\star}=\left(\mathbf{S}^{\star}, T^{\star}, \Sigma_{s t}^{\star}, \Sigma_{t}^{\star}\right)$ a data exchange setting, where $\Sigma_{s t}^{\star}$ consists of the following dependency:

$$
P(x, y, x) \rightarrow R(x, y, z)
$$

and Σ_{t}^{\star} consists of the egd:

$$
R(x, y, z) \wedge R(x, y, w) \rightarrow z=w
$$

and the following tgds:

$$
\begin{aligned}
& R(x, y, u) \wedge R(y, z, v) \wedge R(u, z, w) \rightarrow R(x, v, w) \\
& R(x, y, z) \wedge R\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \rightarrow \exists w_{1} \exists w_{2} \exists w_{3} \exists w_{4} \exists w_{5} \exists w_{6} \exists w_{7} \exists w_{8} \exists w_{9}\left(R\left(x, x^{\prime}, w_{1}\right) \wedge\right. \\
& R\left(x, y^{\prime}, w_{2}\right) \wedge R\left(x, z^{\prime}, w_{3}\right) \wedge R\left(y, x^{\prime}, w_{4}\right) \wedge R\left(y, y^{\prime}, w_{5}\right) \wedge \\
& R\left(y, z^{\prime}, w_{6}\right)\left.\wedge R\left(z, x^{\prime}, w_{7}\right) \wedge R\left(z, y^{\prime}, w_{8}\right) \wedge R\left(z, z^{\prime}, w_{9}\right)\right) .
\end{aligned}
$$

In [13], it was proved that the problem of verifying, given an instance I of \mathbf{S}^{\star}, whether there exists at least one solution for I under \mathcal{M}^{\star} is undecidable. Next we show how to reduce this problem to the complement of our problem. More precisely, we define a data exchange setting $\mathcal{M}=\left(\mathbf{S}, \mathbf{T}, \Sigma_{s t}, \Sigma_{t}\right)$, where $\mathbf{S}=\mathbf{S}^{\star}$ and Σ_{t} is the union of a set of egds and a weakly-acyclic set of tgds, and a Boolean CQ\urcorner query Q over \mathbf{T} with a single negated relational atom such that for every instance I of \mathbf{S}^{\star} : There exists at least one solution for I under \mathcal{M}^{\star} if and only if $\operatorname{certain}_{\mathcal{M}}(Q, I)=$ false. From this, we conclude that Certain-Answers (\mathcal{M}, Q) is undecidable.

Let $\mathbf{S}=\mathbf{S}^{\star}, \mathbf{T}=\mathbf{T}^{\star} \cup\{S\}$, where S is a ternary predicate, $\Sigma_{s t}=\Sigma_{s t}^{\star}$ and Σ_{t} be a set of target dependencies consisting of the egd:

$$
R(x, y, z) \wedge R(x, y, w) \rightarrow z=w
$$

and the following tgds:

$$
\begin{aligned}
& R(x, y, u) \wedge R(y, z, v) \wedge R(u, z, w) \rightarrow R(x, v, w) \\
& R(x, y, z) \wedge R\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \rightarrow \exists w_{1} \exists w_{2} \exists w_{3} \exists w_{4} \exists w_{5} \exists w_{6} \exists w_{7} \exists w_{8} \exists w_{9}\left(S\left(x, x^{\prime}, w_{1}\right) \wedge\right. \\
& S\left(x, y^{\prime}, w_{2}\right) \wedge S\left(x, z^{\prime}, w_{3}\right) \wedge S\left(y, x^{\prime}, w_{4}\right) \wedge S\left(y, y^{\prime}, w_{5}\right) \wedge \\
& \left.S\left(y, z^{\prime}, w_{6}\right) \wedge S\left(z, x^{\prime}, w_{7}\right) \wedge S\left(z, y^{\prime}, w_{8}\right) \wedge S\left(z, z^{\prime}, w_{9}\right)\right) .
\end{aligned}
$$

Moreover, let Q be the following Boolean query:

$$
\exists x \exists y \exists z(S(x, y, z) \wedge \neg R(x, y, z))
$$

It is important to notice that the set of tgds in Σ_{t}^{\star} is not weakly acyclic, while the set of tgds in Σ_{t} is weakly acyclic. Next we show that for every instance I of \mathbf{S}^{\star}, it holds that there exists at least one solution for I under \mathcal{M}^{\star} if and only if $\operatorname{certain}_{\mathcal{M}}(Q, I)=$ false.
(\Rightarrow) Let I be an instance of \mathbf{S}^{\star} and J^{\star} a solution for I under \mathcal{M}^{\star}. Define J as the following instance of $\mathbf{T}: R^{T}=R^{T^{\star}}$ and $S^{T}=R^{T^{\star}}$. Given that $\left(I, J^{\star}\right)$ satisfies $\Sigma_{s t}^{\star}$ and J^{\star} satisfies Σ_{t}^{\star}, we have that (I, J) satisfies $\Sigma_{s t}$ and J satisfies Σ_{t} and, therefore, J is a solution for I under \mathcal{M}. Thus, given that Q does not hold in J (since $R^{T}=S^{T}$), we conclude that $\operatorname{certain}_{\mathcal{M}}(Q, I)=\mathrm{false}$.
(\Leftarrow) Assume that I is an instance of \mathbf{S}^{\star} such that $\operatorname{certain}_{\mathcal{M}}(Q, I)=$ false. Then let J be a solution of I under \mathcal{M} such that Q does not hold in J, and J^{\star} an instance of \mathbf{T}^{\star} defined as $R^{T^{\star}}=R^{T}$. Given that (I, J) satisfies $\Sigma_{s t}$, we have that $\left(I, J^{\star}\right)$ satisfies $\Sigma_{s t}^{\star}$. Furthermore, given that Q does not hold in J, we have that J satisfies dependency:

$$
\forall x \forall y \forall z(S(x, y, z) \rightarrow R(x, y, z))
$$

Thus, given that J satisfies Σ_{t}, we conclude that J^{\star} satisfies Σ_{t}^{\star}. Hence, we have that J^{\star} is a solution for I under \mathcal{M}^{\star}, from which we deduce that there exists at least one solution for I under \mathcal{M}^{\star}. This concludes the proof of the theorem.

A natural way to ensure that the problem of computing certain answers to unions of conjunctive queries with at most one negated atom per disjunct remains tractable, in
the presence of target dependencies, is by restricting the class of target dependencies allowed. Indeed, we prove below that this is the case for the class of data exchange settings that only allow egds in the target. The interesting part of this is not the result itself - which is a slight extension of a result in [10] - but the fact that our proof relies again on the translation of the problem of computing certain answers for this class of queries, under the settings described above, into the problem of computing certain answers to DATALOG ${ }^{\mathbf{C}}(\neq)$ programs.

A naïve approach to prove this result would be the following. Let $\mathcal{M}=$ $\left(\mathbf{S}, \mathbf{T}, \Sigma_{s t}, \Sigma_{t}\right)$ be a data exchange setting, where Σ_{t} consists of a set of equalitygenerating dependencies, and let \mathcal{M}^{\prime} be the setting obtained from \mathcal{M} by removing Σ_{t}. As we have mentioned above, for each union of conjunctive queries Q, with at most one inequality or negated relational atom per disjunct, one can construct a $\operatorname{DataLOG}^{\mathbf{C}(\neq)}$ program Π_{Q} such that the certain answers to Q under \mathcal{M}^{\prime} coincide with the certain answers to Π_{Q} under \mathcal{M}^{\prime}. Then one could implement the following algorithm for computing certain answers to Q under \mathcal{M} : Given a source instance I, compute the canonical universal solution J for I under \mathcal{M} (in case such a solution exists); evaluate Π_{Q} over J; discard tuples that contain nulls.

Unfortunately, this simple algorithm is not correct for the following reason. Evaluating the program Π_{Q} over J may force some elements in J to be equal, which, in turn, may imply some of the dependencies in Σ_{t} to be triggered in the process. This suggests that if one wants to compute the certain answers to Q (under \mathcal{M}) with a DataloG ${ }^{\mathbf{C}(\neq)}$ program Π_{Q}, then Π_{Q} must take into consideration not only Q but also Σ_{t}. Indeed, we show next that for each union of conjunctive queries, with at most one negated atom per disjunct, it is possible to construct a DataloG ${ }^{\mathbf{C}(\neq)}$ program $\Pi_{Q, \Sigma_{t}}$ such that the certain answers to Q and to $\Pi_{Q, \Sigma_{t}}($ under $\mathcal{M})$ coincide. Formally,

Theorem 4. Let Q be a $\mathrm{UCQ}^{\neq, \neg} k$-ary query over a schema $\mathbf{T}(k \geq 0)$, with at most one inequality or negated relational atom per disjunct. Further, let Σ_{t} be a set of egds over \mathbf{T}. Then there exists a DATALOG ${ }^{\mathbf{C}}(\neq)$ program $\Pi_{Q, \Sigma_{t}}$ over \mathbf{T} such that for every data exchange setting $\mathcal{M}=\left(\mathbf{S}, \mathbf{T}, \Sigma_{s t}, \Sigma_{t}\right)$, instance I of \mathbf{S} and tuple $\bar{a} \in \operatorname{dom}(I)^{k}$:

$$
\bar{a} \in \operatorname{certain}_{\mathcal{M}}(Q, I) \text { if and only if } \bar{a} \in \operatorname{certain}_{\mathcal{M}}\left(\Pi_{Q, \Sigma_{t}}, I\right)
$$

Moreover, $\Pi_{Q, \Sigma_{t}}$ can be effectively constructed from Q and Σ_{t} in polynomial time.
Proof. Assume that $\mathbf{T}=\left\{T_{1}, \ldots, T_{k}\right\}$, where each T_{i} has arity $n_{i}>0$, that $Q(\bar{x})=$ $Q_{1}(\bar{x}) \vee \cdots \vee Q_{\ell}(\bar{x})$, where $\bar{x}=\left(x_{1}, \ldots, x_{m}\right)$ and each $Q_{i}(\bar{x})$ is a conjunctive query with at most one inequality or negated relational atom, and that $\Sigma_{t}=\left\{\alpha_{1}, \ldots, \alpha_{q}\right\}$ is a set of egds.

Then the set of intensional predicates of DATALOG ${ }^{\mathbf{C}(\neq)}$ program $\Pi_{Q, \Sigma_{t}}$ is

$$
\left\{U_{1}, \ldots, U_{k}, \text { DOM, EQUAL, ANSWER }\right\},
$$

where each $U_{i}(i \in[1, k])$ has arity $n_{i}+m$, Dom has arity 1 , EQUAL has arity $2+m$ and ANSWER has arity m. Moreover, the set of rules of $\Pi_{Q, \Sigma_{t}}$ is defined as follows.

- For every predicate $T_{i} \in \mathbf{T}, \Pi_{Q, \Sigma_{t}}$ includes the following k rules:

$$
\begin{aligned}
\operatorname{Dom}(x) & \leftarrow T_{i}\left(x, y_{2}, y_{3}, \ldots, y_{n_{i}-1}, y_{n_{i}}\right) \\
\operatorname{Dom}(x) & \leftarrow T_{i}\left(y_{1}, x, y_{3}, \ldots, y_{n_{i}-1}, y_{n_{i}}\right) \\
& \ldots \\
\operatorname{Dom}(x) & \leftarrow T_{i}\left(y_{1}, y_{2}, y_{3}, \ldots, y_{n_{i}-1}, x\right)
\end{aligned}
$$

- $\Pi_{Q, \Sigma_{t}}$ includes the following rules for predicate EQUAL:
$\operatorname{EQUAL}\left(x, x, z_{1}, \ldots, z_{m}\right) \leftarrow \operatorname{DOM}(x), \operatorname{DOM}\left(z_{1}\right), \ldots, \operatorname{DOM}\left(z_{m}\right)$
$\operatorname{EQUAL}\left(x, y, z_{1}, \ldots, z_{m}\right) \leftarrow \operatorname{EQUAL}\left(y, x, z_{1}, \ldots, z_{m}\right)$
$\operatorname{EQUAL}\left(x, y, z_{1}, \ldots, z_{m}\right) \leftarrow \operatorname{EQUAL}\left(x, w, z_{1}, \ldots, z_{m}\right), \operatorname{EQUAL}\left(w, y, z_{1}, \ldots, z_{m}\right)$
- For every predicate $U_{i}, \Pi_{Q, \Sigma_{t}}$ includes the following rules:

$$
\begin{aligned}
U_{i}\left(y_{1}, \ldots, y_{n_{i}}, z_{1}, \ldots, z_{m}\right) \leftarrow & T_{i}\left(y_{1}, \ldots, y_{n_{i}}\right), \operatorname{Dom}\left(z_{1}\right), \ldots, \operatorname{Dom}\left(z_{m}\right) \\
U_{i}\left(y_{1}, \ldots, y_{n_{i}}, z_{1}, \ldots, z_{m}\right) \leftarrow & U_{i}\left(w_{1}, \ldots, w_{n_{i}}, z_{1}, \ldots, z_{m}\right), \\
& \operatorname{EQUAL}\left(w_{1}, y_{1}, z_{1}, \ldots, z_{m}\right), \ldots, \\
& \operatorname{EQUAL}\left(w_{n_{i}}, y_{n_{i}}, z_{1}, \ldots, z_{m}\right)
\end{aligned}
$$

- Let $i \in[1, \ell]$. First, assume that $Q_{i}(\bar{x})$ does not contain any negated atom. Then $Q_{i}(\bar{x})$ is equal to $\exists \bar{u}\left(T_{p_{1}}\left(\bar{u}_{1}\right) \wedge \cdots \wedge T_{p_{n}}\left(\bar{u}_{n}\right)\right)$, where $p_{j} \in[1, k]$ and every variable in \bar{u}_{j} is mentioned in either \bar{u} or \bar{x}, for every $j \in[1, n]$. In this case, program $\Pi_{Q, \Sigma_{t}}$ includes the following rule:

$$
\begin{equation*}
\operatorname{ANSWER}(\bar{x}) \leftarrow U_{p_{1}}\left(\bar{u}_{1}, \bar{x}\right), \ldots, U_{p_{n}}\left(\bar{u}_{n}, \bar{x}\right), \mathbf{C}\left(x_{1}\right), \ldots, \mathbf{C}\left(x_{m}\right) \tag{16}
\end{equation*}
$$

Notice that this rule is well defined since the set \bar{x} is the set of free variables of $\exists \bar{u}\left(T_{p_{1}}\left(\bar{u}_{1}\right) \wedge \cdots \wedge T_{p_{n}}\left(\bar{u}_{n}\right)\right)$. Second, assume that $Q_{i}(\bar{x})$ contains a negated relational atom. Then $Q_{i}(\bar{x})$ is equal to $\exists \bar{u}\left(T_{p_{1}}\left(\bar{u}_{1}\right) \wedge \cdots \wedge T_{p_{n}}\left(\bar{u}_{n}\right) \wedge \neg T_{p_{n+1}}\left(\bar{u}_{n+1}\right)\right)$, where $p_{j} \in[1, k]$ and every variable in \bar{u}_{j} is mentioned in either \bar{u} or \bar{x}, for every $j \in[1, n+1]$. In this case, program $\Pi_{Q, \Sigma_{t}}$ includes the following rule:

$$
\begin{equation*}
U_{p_{n+1}}\left(\bar{u}_{n+1}, \bar{x}\right) \leftarrow U_{p_{1}}\left(\bar{u}_{1}, \bar{x}\right), \ldots, U_{p_{n}}\left(\bar{u}_{n}, \bar{x}\right) . \tag{17}
\end{equation*}
$$

This rule is well defined since $\exists \bar{u}\left(T_{p_{1}}\left(\bar{u}_{1}\right) \wedge \cdots \wedge T_{p_{n}}\left(\bar{u}_{n}\right) \wedge \neg T_{p_{n+1}}\left(\bar{u}_{n+1}\right)\right)$ is a safe query. Finally, assume that $Q_{i}(\bar{x})$ contains an inequality. Then $Q_{i}(\bar{x})$ is equal to $\exists \bar{u}\left(T_{p_{1}}\left(\bar{u}_{1}\right) \wedge \cdots \wedge T_{p_{n}}\left(\bar{u}_{n}\right) \wedge v_{1} \neq v_{2}\right)$, where $p_{j} \in[1, k]$ and every variable in \bar{u}_{j} is mentioned in either \bar{u} or \bar{x}, for every $j \in[1, n]$, and v_{1}, v_{2} are mentioned in \bar{u} or \bar{x}. In this case, program $\Pi_{Q, \Sigma_{t}}$ includes the following rule:

$$
\begin{equation*}
\operatorname{EQUAL}\left(v_{1}, v_{2}, \bar{x}\right) \leftarrow U_{p_{1}}\left(\bar{u}_{1}, \bar{x}\right), \ldots, U_{p_{n}}\left(\bar{u}_{n}, \bar{x}\right) \tag{18}
\end{equation*}
$$

We note that the rule above is well defined since $\exists \bar{u}\left(T_{p_{1}}\left(\bar{u}_{1}\right) \wedge \cdots \wedge T_{p_{n}}\left(\bar{u}_{n}\right) \wedge v_{1} \neq\right.$ v_{2}) is a safe query.

- For each $i \in[1, q]$, assume that dependency α_{i} is of form $\left(T_{p_{1}}\left(\bar{x}_{1}\right) \wedge \cdots \wedge\right.$ $\left.T_{p_{n}}\left(\bar{x}_{n}\right) \rightarrow u=v\right)$, where each $p_{j} \in[1, k]$ and variables u and v are mentioned in $\bar{x}_{1}, \ldots, \bar{x}_{n}$. Then the program $\Pi_{Q, \Sigma_{t}}$ includes the following rule:

$$
\begin{equation*}
\operatorname{EQUAL}(u, v, \bar{x}) \leftarrow U_{p_{1}}\left(\bar{x}_{1}, \bar{x}\right), \ldots, U_{p_{n}}\left(\bar{x}_{n}, \bar{x}\right) \tag{19}
\end{equation*}
$$

- Finally, if Q has at least one inequality, or if Σ_{t} is nonempty, program $\Pi_{Q, \Sigma_{t}}$ includes the rule:

$$
\begin{equation*}
\operatorname{ANsWER}(\bar{x}) \leftarrow \operatorname{EQUAL}(u, v, \bar{x}), \mathbf{C}(u), \mathbf{C}(v), u \neq v, \mathbf{C}\left(x_{1}\right), \ldots, \mathbf{C}\left(x_{m}\right) \tag{20}
\end{equation*}
$$

Let \bar{a} be a tuple of elements from the domain of a source instance I. Each predicate U_{i} in $\Pi_{Q, \Sigma_{t}}$ is used as a copy of T_{i} but with m extra arguments that store tuple \bar{a}. These predicates are used when testing whether \bar{a} is a certain answer for Q over I. More specifically, the rules of $\Pi_{Q, \Sigma_{t}}$ try to construct from the canonical universal solution CAN (I) a solution J for I such that $\bar{a} \notin Q(J)$. Thus, if in a solution J for I, it holds that $\bar{a} \in Q(J)$ because $\bar{a} \in Q_{i}(J)$, where $Q_{i}(\bar{x})$ is equal to $\exists \bar{u}\left(T_{p_{1}}\left(\bar{u}_{1}\right) \wedge \cdots \wedge T_{p_{n}}\left(\bar{u}_{n}\right) \wedge\right.$ $\neg T_{p_{n+1}}\left(\bar{u}_{n+1}\right)$), then $\Pi_{Q, \Sigma_{t}}$ uses rule (17) to create a new solution where the negative atom of Q_{i} does not hold. In the same way, if in a solution J for I, it holds that $\bar{a} \in Q(J)$ because $\bar{a} \in Q_{i}(J)$, where $Q_{i}(\bar{x})$ is equal to $\exists \bar{u}\left(T_{p_{1}}\left(\bar{u}_{1}\right) \wedge \cdots \wedge T_{p_{n}}\left(\bar{u}_{n}\right) \wedge v_{1} \neq v_{2}\right)$, then $\Pi_{Q, \Sigma_{t}}$ uses rule (18) to create a new solution where the values assigned to v_{1} and v_{2} are equal (predicate EQUAL is used to store this fact). If v_{1} or v_{2} is assigned a null value, then it is possible to create a solution where the values assigned to these variables are the same. But this is not possible if both v_{1} and v_{2} are assigned different constant values. In fact, it follows from [10] that this implies that it is not possible to find a solution J^{\prime} for I where $\bar{a} \notin Q\left(J^{\prime}\right)$, and in this case rule (20) is used to indicate that \bar{a} is a certain answer for Q over I. Notice, however, that every solution for I must satisfy the dependencies in Σ_{t}. Thus, if for some Q_{i} the program uses rules (17) or (18) to create an instance J such that $\bar{a} \notin Q_{i}(J)$, but J does not satisfies a dependency $\phi(\bar{x}) \rightarrow x_{i}=x_{j}$ in Σ_{t}, then rule (19) must be used to repair that instance, obtaining a solution J^{\prime} for I in which the values assigned to x_{i} and x_{j} are the same, but still holds that $\bar{a} \notin Q_{i}(J)$. This will not be possible if both x_{i} and x_{j} are assigned different constant values; in this case, it can be proved using results in [10] that it is not possible to create a solution such that $\bar{a} \notin Q_{i}(J)$, and thus rule (20) is used to indicate that \bar{a} is a certain answer for Q over I.

By using the above observations, it is not difficult to prove that the statement of the theorem holds, which was to be shown.

As a corollary of Theorem 4 and Corollary 1 we immediately obtain the following desired result:

Corollary 4. Let Q be a $\mathrm{UCQ}^{\neq, \neg}$ query over a schema \mathbf{T}, with at most one inequality or negated relational atom per disjunct, and let $\mathcal{M}=\left(\mathbf{S}, \mathbf{T}, \Sigma_{s t}, \Sigma_{t}\right)$ be a data exchange setting such that Σ_{t} consists of a set of egds. Then the problem Certain-Answers (\mathcal{M}, Q) can be solved in polynomial time.

Another possible way to retain tractability of the problem Certain-Answers (\mathcal{M}, Q), where Q is a union of conjunctive queries with at most one negated atom per disjunct and \mathcal{M} is a setting with target dependencies, is by restricting the class of queries allowed. Indeed, it has been proved in [10] that for the class of settings whose sets of target dependencies consist of egds and weakly-acyclic sets of tgds, the certain answers to a union of conjunctive queries with at most one inequality per disjunct can be computed in polynomial time by using an algorithm based on the chase procedure. It is an interesting open problem whether this result can also be proved with the help of DATALOG $^{\mathbf{C}}(\neq)$ programs, in the style of Theorem4 and Corollary 4

5 Concluding Remarks

In this paper, we presented the language Datalog ${ }^{\mathbf{C}(\neq)}$ that extends Datalog with a restricted form of negation, and studied some of its fundamental properties. In particular, we showed that the certain answers to a DATALOG ${ }^{\mathbf{C}(\neq)}$ program can be computed in polynomial time, and we used this property to find tractable fragments of the class of unions of conjunctive queries with inequalities (even in the presence of target dependencies).

Both the problem of the existence of solutions and the computation of certain answers are defined in the paper assuming settings to be fixed. That is, in terms of Vardi's taxonomy [20], we study the data complexity of these problems. This makes sense in the database context, as usually specifications and queries are much smaller than source instances. However, a more refined complexity analysis of these problems should not consider any of their parameters to be fixed. This corresponds to the combined complexity of the problems mentioned above. The combined complexity of the problem of existence of solutions was studied in [13|7], while the combined complexity of the problem of computing certain answers was studied in [5].

Many problems related to DATALOG ${ }^{\mathbf{C}}(\neq)$ programs remain open. In particular, it would be interesting to know if it is decidable whether the certain answers to a query Q in UCQ^{\neq}can be computed as the certain answers to a DATALOG ${ }^{\mathbf{C}(\neq)}$ program Π_{Q}, and whether there exist a setting \mathcal{M} and a query Q in $U C Q^{\neq}$such that the problem Certain-Answers (\mathcal{M}, Q) is in Ptime, but the certain answers to Q cannot be computed as the certain answers to a DATALOG ${ }^{\mathbf{C}(\neq)}$ program Π_{Q}.

Acknowledgments. We are very grateful to Jorge Pérez for many helpful discussions. The authors were supported by: Arenas - FONDECYT grant 1090565; Barceló FONDECYT grant 11080011; Reutter - EPSRC grant G049165.

References

1. Abiteboul, S., Duschka, O.: Answering queries using materialized views. Gemo report 383
2. Abiteboul, S., Hull, R., Vianu, V.: Foundations of databases. Addison-Wesley, Reading (1995)
3. Afrati, F.N., Li, C., Pavlaki, V.: Data exchange in the presence of arithmetic comparisons. In: EDBT, pp. 487-498 (2008)
4. Arenas, M., Barceló, P., Fagin, R., Libkin, L.: Locally consistent transformations and query answering in data exchange. In: PODS, pp. 229-240 (2004)
5. Arenas, M., Barceló, P., Reutter, J.: Query languages for data exchange: Beyond unions of conjunctive queries. Accepted for publication in Theory of Computing Systems, ToCS (2010); Preliminary version in Proceedings 12th International Conference on Database Theory (ICDT 2009), pp. 73-83 (2009)
6. Beeri, C., Vardi, M.Y.: A proof procedure for data dependencies. Journal of the ACM 31(4), 718-741 (1984)
7. Calì, A., Gottlob, G., Pieris, A.: Query answering under non-guarded rules in datalog+/-. In: Hitzler, P., Lukasiewicz, T. (eds.) RR 2010. LNCS, vol. 6333, pp. 1-17. Springer, Heidelberg (2010)
8. Deutsch, A., Nash, A., Remmel, J.B.: The chase revisited. In: PODS, pp. 149-158 (2008)
9. Fagin, R., Kolaitis, P., Popa, L., Tan, W.C.: Composing schema mappings: Second-order dependencies to the rescue. In: PODS, pp. 83-94 (2004)
10. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: semantics and query answering. Theoretical Computer Science 336(1), 89-124 (2005)
11. Fagin, R., Kolaitis, P.G., Popa, L.: Data exchange: getting to the core. ACM Transactions on Database Systems 30(1), 174-210 (2005)
12. Kolaitis, P.: Schema mappings, data exchange, and metadata management. In: PODS, pp. 61-75 (2005)
13. Kolaitis, P., Panttaja, J., Tan, W.-C.: The complexity of data exchange. In: PODS, pp. 30-39 (2006)
14. Imielinski, T., Lipski, W.: Incomplete information in relational databases. Journal of the ACM 31, 761-791 (1984)
15. Lenzerini, M.: Data integration: A theoretical perspective. In: PODS, pp. 233-246 (2002)
16. Libkin, L.: Elements of Finite Model Theory. Springer, Heidelberg (2004)
17. Libkin, L.: Data exchange and incomplete information. In: PODS, pp. 60-69 (2006)
18. Libkin, L., Sirangelo, C.: Data exchange and schema mappings in open and closed worlds. In: PODS, pp. 139-148 (2008)
19. Mądry, A.: Data exchange: On the complexity of answering queries with inequalities. Information Processing Letters 94(6), 253-257 (2005)
20. Vardi, M.Y.: The complexity of relational query languages. In: STOC, pp. 137-146 (1982)

[^0]: ${ }^{1}$ We usually omit universal quantification in front of st-tgds and express them simply as $\phi(\bar{x}, \bar{y}) \rightarrow \exists \bar{z} \psi(\bar{x}, \bar{z})$.

[^1]: ${ }^{2}$ As usual, we omit universal quantifiers in front of tgds and egds.

