
Datalog as a Query Language for
Data Exchange Systems

Marcelo Arenas1, Pablo Barceló2, and Juan L. Reutter3

1 Dept. of Computer Science, Pontificia Universidad Católica de Chile
2 Dept. of Computer Science, University of Chile
3 School of Informatics, University of Edinburgh

Abstract. The class of unions of conjunctive queries (UCQ) has been shown to
be particularly well-behaved for data exchange; its certain answers can be com-
puted in polynomial time (in terms of data complexity). However, this is not the
only class with this property; the certain answers to any DATALOG program can
also can be computed in polynomial time. The problem is that both UCQ and
DATALOG do not allow for negated atoms, while most database query languages
are equipped with negation. Unfortunately, adding an unrestricted form of nega-
tion to these languages yields to intractability of the problem of computing certain
answers.

In order to face this challenge, we have recently proposed a language, called
DATALOGC(�=) [5], that extends DATALOG with a restricted form of negation
while keeping the good properties of DATALOG, and UCQ, for data exchange. In
this article, we provide evidence in favor of the use of DATALOGC(�=) as a query
language for data exchange systems. More precisely, we introduce the syntax
and semantics of DATALOGC(�=), we present some of the fundamental results
about this language shown in [5], and we extend those results to the case of data
exchange settings that allow for constraints in the target schema. All of these
results provide justification for the use of DATALOGC(�=) in practice.

1 Introduction

Data exchange is the problem of computing an instance of a target schema, given an
instance of a source schema and a specification of the relationship between source and
target data. Although data exchange is considered to be an old database problem, its the-
oretical foundations have only been laid out very recently by the seminal work of Fagin,
Kolaitis, Miller and Popa [10]. Both the study of data exchange and schema mappings
have become an active area of research during the last few years in the database com-
munity (see e.g. [10,11,4,9,17,13,18,12]).

In its simplest form, a data exchange setting is a tripleM = (S, T, Σst), where S is
a source schema, T is a target schema, and Σst is a mapping defined as a set of source-
to-target dependencies of the form ∀x̄∀ȳ (φS(x̄, ȳ)→ ∃z̄ ψT(x̄, z̄)), where φS and ψT

are conjunctions of relational atoms over S and T, respectively. Given a source instance
I , the goal in data exchange is to materialize a target instance J that is a solution for I ,
that is, J together with I satisfies each dependency in Σst.

An important issue in data exchange is that the existing specification languages usu-
ally do not completely determine the relationship between source and target data and,

O. de Moor et al. (Eds.): Datalog 2010, LNCS 6702, pp. 302–320, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Datalog as a Query Language for Data Exchange Systems 303

thus, each source instance has an infinite number of solutions. This immediately raises
the question of which solution should be materialized. Initial work on data exchange
[10] has identified a class of “good” solutions, called universal solutions. In formal
terms, a solution is universal if it can be homomorphically embedded into every other
solution. It was proved in [10] that for the class of data exchange settings defined above,
a particular universal solution – called the canonical universal solution – can be com-
puted in polynomial time.

A second important issue in data exchange is query answering. Queries in the data
exchange context are posed over the target schema, and –given that there may be many
solutions for a source instance– there is a general agreement in the literature that their
semantics should be defined in terms of certain answers [14,1,15,10]. More formally,
given a data exchange settingM = (S,T, Σst) and a queryQ over T, a tuple t̄ is said
to be a certain answer to Q over I underM, if t̄ belongs to the evaluation of Q over
every possible solution J for I underM.

The definition of certain answers is highly non-effective, as it involves computing
the intersection of infinitely many sets. Thus, it becomes particularly important to un-
derstand for which classes of relevant queries, the certain answers can be computed
efficiently. In particular, it becomes relevant to understand whether it is possible to
compute the certain answers to any of these classes by using some materialized solu-
tion. Fagin, Kolaitis, Miller, and Popa [10] have shown that this is the case for the class
of union of conjunctive queries (UCQ); the certain answers to each union of conjunc-
tive queriesQ over a source instance I can be computed in polynomial time by directly
posingQ over the canonical universal solution for I . It is important to notice that in this
result the complexity is measured only in terms of the size of the source instances (in
particular, the data exchange setting and the query are assumed to be fixed). Thus, the
previous result is stated in terms of data complexity [20].

The good properties of UCQ for data exchange can be completely explained by the
fact that unions of conjunctive queries are preserved under homomorphisms. But this is
not the only language that satisfies this condition, as queries definable in DATALOG,
the recursive extension of UCQ, are also preserved under homomorphisms. Thus,
DATALOG retains several of the good properties of UCQ for data exchange. In par-
ticular, the certain answers to a DATALOG program Π over a source instance I can be
computed efficiently by first materializing the canonical universal solution J for I , and
then evaluating Π over J (since DATALOG programs can be evaluated in polynomial
time in the size of the data).

Unfortunately, both UCQ and DATALOG keeps us in the realm of the positive, while
most database query languages are equipped with negation. However, adding an unre-
stricted form of negation to DATALOG (and even to the class of conjunctive queries)
leads to intractability of the problem of computing certain answers. Thus, extending
DATALOG with some form of negation that, on the one hand, allows to express inter-
esting data exchange queries, and, on the other hand, retains the good properties of
DATALOG for data exchange, is a nontrivial task that must be handled carefully.

In order to face this challenge, we have recently proposed a language, called
DATALOGC(�=) [5], that extends DATALOG with a restricted form of negation while
keeping the good properties of DATALOG, and UCQ, for data exchange. In this article,

304 M. Arenas, P. Barceló, and J.L. Reutter

we provide evidence in favor of the use of DATALOGC(�=) as a query language for data
exchange systems. More precisely, we start by introducing the syntax and semantics of
DATALOGC(�=). Then we continue by presenting some of the fundamental results about
this language shown in [5], which provide justification for the use of DATALOGC(�=) in
practice. In particular, we show that the certain answers to a DATALOGC(�=) program
can be computed in polynomial time, and that the language DATALOGC(�=) can be used
to express interesting queries in the data exchange context, as every union of conjunc-
tive queries with at most one inequality or negated relational atom per disjunct can be
efficiently expressed as a DATALOGC(�=) program in the context of data exchange. We
finish the paper by extending these results to the case of data exchange settings with
constraints in the target, as explained below.

In addition to the data exchange scenario we have seen so far, it is common in the
literature to assume that target schemas come with its own set of dependencies; i.e. each
data exchange settingM = (S,T, Σst) is extended with a set Σt of dependencies over
the schema T, which are called target constraints. In that case, a target instance J is
said to be a solution for the source instance I under the settingM = (S,T, Σst, Σt),
if not only the pair (I, J) satisfies each dependency in Σst, but also J satisfies each
dependency in Σt.

As it is to be expected, the addition of target dependencies makes the fundamental
data exchange tasks more difficult, starting from the fact that it is no longer true that
solutions exist for each source instance. Even worst, it follows from [13] that even for
simple data exchange settings with target dependencies, the problem of checking for
the existence of solutions may be undecidable. In order to solve this problem, the data
exchange literature has identified a relevant class of target dependencies – those that
consist of a set of equality-generating dependencies (that subsume keys) and a weakly-
acyclic set of tuple-generating dependencies – that have the following good properties
for data exchange [10]: Checking the existence of solutions is a tractable problem;
and for every source instance that has a solution, a canonical universal solution can
be computed in polynomial time. The latter implies that, for the class of data exchange
settings extended with a set of target dependencies that consists of a set of equality-
generating dependencies and a weakly-acyclic set of tuple-generating dependencies,
the certain answers to each union of conjunctive queries Q can still be computed in
polynomial time (by simply posing Q over the canonical universal solution J for a
given source instance I , in case such J exists).

In this paper, we investigate the feasibility of using DATALOGC(�=) as a query lan-
guage for data exchange settings extended with equality-generating target dependencies
and weakly-acyclic sets of tuple-generating target dependencies. In particular, we prove
that for this class of data exchange settings, the certain answers to each DATALOGC(�=)

program can be computed in polynomial time. Also, we study the expressiveness of
DATALOGC(�=) in this context, and show that every union of conjunctive queries with at
most one inequality or negated relational atom per disjunct can be efficiently expressed
as a DATALOGC(�=) program if only equality-generating target dependencies are consid-
ered. We also show that this result fails if, in addition, target constraints are allowed to
contain weakly-acyclic sets of tuple-generating target dependencies; indeed, we prove
in the paper that there exist a data exchange settingM = (S,T, Σst, Σt), where Σt

Datalog as a Query Language for Data Exchange Systems 305

is the union of a set of equality-generating dependencies and a weakly-acyclic set of
tuple-generating dependencies, and a conjunctive query Q over T with one negated
relational atom such that the problem of computing certain answers to Q underM is
undecidable.

Organization of the paper. In Section 2, we introduce the terminology used in the pa-
per. Then, in Section 3, we define the syntax and semantics of DATALOGC(�=) programs,
and show their good properties for data exchange. In Section 4 we study the expressive
power of DATALOGC(�=) programs. Concluding remarks are given in Section 5.

2 Background

A schema R is a finite set {R1, . . . , Rk} of relation symbols, with each Ri having a
fixed arity ni > 0. Let D be a countably infinite domain. An instance I of R assigns to
each relation symbolRi of R a finite ni-ary relationRI

i ⊆ Dni . The domain dom(I) of
instance I is the set of all elements that occur in any of the relationsRI

i . We often define
instances by simply listing the tuples attached to the corresponding relation symbols.

We assume familiarity with first-order logic (FO) and DATALOG. In this paper, CQ is
the class of conjunctive queries and UCQ is the class of unions of conjunctive queries.
If we extend these classes by allowing inequalities or negation (of relational atoms),
then we use superscripts �= and ¬, respectively. Thus, for example, CQ �= is the class of
conjunctive queries with inequalities, and UCQ¬ is the class of unions of conjunctive
queries with negation. As usual in the database literature, we assume that every query
Q in UCQ �=,¬ is safe: (1) if Q1 and Q2 are disjuncts of Q, then Q1 and Q2 have the
same free variables, (2) if Q1 is a disjunct of Q and x �= y is a conjunct of Q1, then
x and y appear in some non-negated relational atoms of Q1, (3) if Q1 is a disjunct of
Q and ¬R(x̄) is a conjunct of Q1, then every variable in x̄ appears in a non-negated
relational atom of Q1.

2.1 Data Exchange Settings and Solutions

As is customary in the data exchange literature, we consider instances with two types of
values: constants and nulls [10,11]. More precisely, let C and N be infinite and disjoint
sets of constants and nulls, respectively, and assume that D = C ∪ N. If we refer
to a schema S as a source schema, then we will assume that for every instance I of
S, it holds that dom(I) ⊆ C. On the other hand, if we refer to a schema T as a target
schema, then for every instance J of T, it holds that dom(J) ⊆ C∪N. Slightly abusing
notation, we also use C to denote a built-in unary predicate such that C(a) holds if and
only if a is a constant, that is a ∈ C.

A data exchange setting is a tupleM = (S,T, Σst), where S is a source schema, T
is a target schema, S and T do not have predicate symbols in common and Σst is a set
of FO-dependencies over S∪T (in [10] and [11] a more general class of data exchange
settings is presented, that also includes target dependencies; we consider these settings
in Section 4.1). As usual in the data exchange literature (e.g., [10,11]), we restrict the
study to data exchange settings in which Σst consists of a set of source-to-target tuple-
generating dependencies. A source-to-target tuple-generating dependency (st-tgd) is an

306 M. Arenas, P. Barceló, and J.L. Reutter

FO-sentence of the form ∀x̄∀ȳ (φ(x̄, ȳ)→ ∃z̄ ψ(x̄, z̄)), where φ(x̄, ȳ) is a conjunction
of relational atoms over S and ψ(x̄, z̄) is a conjunction of relational atoms over T.1 A
source (resp. target) instance K forM is an instance of S (resp. T). We usually denote
source instances by I, I ′, I1, . . . , and target instances by J, J ′, J1,

The class of data exchange settings considered in this paper is usually called GLAV

(global-&-local-as-view) in the database literature [15]. One of the restricted forms of
this class that has been extensively studied for data integration and exchange is the class
of LAV settings. Formally, a LAV setting (local-as-view) [15] is a data exchange setting
M = (S,T, Σst), in which every st-tgd in Σst is of the form ∀x̄ (S(x̄)→ ∃z̄ ψ(x̄, z̄)),
for some S ∈ S.

An instance J of T is said to be a solution for an instance I underM = (S,T, Σst),
if the instance K = (I, J) of S ∪ T satisfies Σst, where SK = SI for every S ∈ S
and TK = T J for every T ∈ T. IfM is clear from the context, we shall say that J is a
solution for I .

Example 1. LetM = (S,T, Σst) be a data exchange setting. Assume that S consists
of one binary relation symbol P , and T consists of two binary relation symbols Q and
R. Further, assume that Σst consists of st-tgds P (x, y) → Q(x, y) and P (x, y) →
∃zR(x, z). ThenM is also a LAV setting.

Let I = {P (a, b), P (a, c)} be a source instance. Then J1 = {Q(a, b), Q(a, c),
R(a, b)} and J2 = {Q(a, b), Q(a, c), R(a, n)}, where n ∈ N, are solutions for I . In
fact, I has infinitely many solutions. �

2.2 Universal Solutions and Canonical Universal Solution

It has been argued in [10] that the preferred solutions in data exchange are the universal
solutions. In order to define this notion, we first have to revise the concept of homo-
morphism in data exchange. Let K1 and K2 be instances of the same schema R. A
homomorphism h from K1 to K2 is a function h : dom(K1) → dom(K2) such that:
(1) h(c) = c for every c ∈ C ∩ dom(K1), and (2) for every R ∈ R and every tuple
ā = (a1, . . . , ak) ∈ RK1 , it holds that h(ā) = (h(a1), . . . , h(ak)) ∈ RK2 . Notice that
this definition of homomorphism slightly differs from the usual one, as the additional
constraint that homomorphisms are the identity on the constants is imposed.

LetM be a data exchange setting, I a source instance and J a solution for I under
M. Then J is a universal solution for I underM, if for every solution J ′ for I under
M, there exists a homomorphism from J to J ′.

Example 2 (Example 1 continued). Solution J2 is a universal solution for I , while J1

is not since there is no homomorphism from J1 to J2. �

It follows from [10] that for the class of data exchange settings studied in this paper,
every source instance has universal solutions. In particular, one of these solutions -
called the canonical universal solution - can be constructed in polynomial time from
the given source instance (assuming the setting to be fixed), using the chase procedure
[6] (see e.g. [10]).

1 We usually omit universal quantification in front of st-tgds and express them simply as
φ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄).

Datalog as a Query Language for Data Exchange Systems 307

Remark: Notice that each target instance J ′ that contains the canonical universal solu-
tion J of a source instance I , is also a solution for I . Thus, each source instance has
infinitely many solutions.

2.3 Certain Answers

Queries in a data exchange settingM = (S,T, Σst) are posed over the target schema
T. Given that there are infinitely many solutions for a given source instance I with
respect to M, the standard approach in the data exchange literature is to define the
semantics of the query based on the notion of certain answers [14,1,15,10].

Let I be a source instance. For a query Q of arity n ≥ 0, in any of our logical
formalisms, we denote by certainM(Q, I) the set of certain answers ofQ over I under
M, that is, the set of n-tuples t̄ such that t̄ ∈ Q(J), for every J that is a solution
for I under M. If n = 0, then we say that Q is Boolean, and certainM(Q, I) =
true if and only if Q holds for every J that is a solution for I under M. We write
certainM(Q, I) = false if it is not the case that certainM(Q, I) = true.

LetM = (S,T, Σst) be a data exchange setting and Q a query over T. The main
problem studied in this paper is:

PROBLEM : CERTAIN-ANSWERS(M, Q).
INPUT : A source instance I and a tuple t̄ of constants from I .
QUESTION : Does t̄ ∈ certainM(Q, I)?

3 Extending Query Languages for Data Exchange: DATALOGC(�=)

Programs

The class of unions of conjunctive queries is particularly well-behaved for data ex-
change; the certain answers of each union of conjunctive queriesQ can be computed by
directly posing Q over an arbitrary universal solution [10]. More formally, given a data
exchange setting M, a source instance I , a universal solution J for I underM, and
a tuple t̄ of constants, t̄ ∈ certainM(Q, I) if and only if t̄ ∈ Q(J). This implies that
for each data exchange setting M, the problem CERTAIN-ANSWERS(M, Q) can be
solved in polynomial time if Q is a union of conjunctive queries (because the canonical
universal solution for I can be computed in polynomial time and Q can be evaluated in
polynomial time in the size of the data).

The fact that the certain answers of a union of conjunctive queries Q can be com-
puted by posingQ over a universal solution, can be fully explained by the fact that Q is
preserved under homomorphisms, that is, for every pair of instances J, J ′, homomor-
phism h from J to J ′, and tuple ā of elements in J , if ā ∈ Q(J), then h(ā) ∈ Q(J ′).
But UCQ is not the only class of queries that is preserved under homomorphisms; also
DATALOG, the recursive extension of the class UCQ, has this property. Since each
DATALOG program can be evaluated in polynomial time in the size of the data, we
have that the certain answers to each DATALOG query Q can be obtained efficiently by
first computing a universal solution J , and then evaluating Q over J . Thus, DATALOG

preserves the good properties of UCQ for data exchange.

308 M. Arenas, P. Barceló, and J.L. Reutter

Unfortunately, both UCQ and DATALOG keep us in the realm of the positive (i.e.
negated atoms are not allowed in queries), while most database query languages are
equipped with negation. It seems then natural to extend UCQ (or DATALOG) in the
context of data exchange with some form of negation. Indeed, query languages with
different forms of negation have been considered in the data exchange context [3,8], as
they can be used to express interesting queries. Next, we show an example of this fact.

Example 3. Consider a data exchange setting with S = {E(·, ·), A(·), B(·)}, T =
{G(·, ·), P (·), R(·)} and

Σst = {E(x, y)→ G(x, y), A(x)→ P (x), B(x)→ R(x)}.

Notice that if I is a source instance, then the canonical universal solution CAN(I) for I
is such that EI = GCAN(I), AI = P CAN(I) and BI = RCAN(I).

Let Q(x) be the following UCQ¬ query over T:

∃x∃y (P (x) ∧R(y) ∧G(x, y)) ∨ ∃x∃y∃z (G(x, z) ∧G(z, y) ∧ ¬G(x, y)).

It is not hard to prove that for every source instance I , certainM(Q, I) = true if and
only if there exist elements a, b ∈ dom(CAN(I)) such that a belongs to P CAN(I), b
belongs to RCAN(I) and (a, b) belongs to the transitive closure of the relation GCAN(I).
That is, certainM(Q, I) = true if and only if there exist elements a, b ∈ dom(I) such
that a belongs to AI , b belongs to BI and (a, b) belongs to the transitive closure of the
relation EI . �

It is well-known (see e.g. [16]) that there is no union of conjunctive queries (indeed,
not even an FO-query) that defines the transitive closure of a graph. Thus, if Q andM
are as in the previous example, then there is no union of conjunctive queries Q′ such
that Q′(CAN(I)) = certainM(Q′, I) = certainM(Q, I), for every source instance I .
It immediately follows that negated relational atoms add expressive power to the class
UCQ in the context of data exchange (see also [4]). And not only that, it follows from
[10] that inequalities also add expressive power to UCQ in the context of data exchange.

Unfortunately, adding an unrestricted form of negation to DATALOG (or even to
CQ) not only destroys preservation under homomorphisms, but also easily leads to in-
tractability of the problem of computing certain answers [1,10]. More precisely, there is
a settingM and a queryQ in CQ �= such that the problem CERTAIN-ANSWERS(M, Q)
cannot be solved in polynomial time (unless PTIME = NP). In particular, the set of
certain answers ofQ cannot be computed by evaluatingQ over a polynomial-time com-
putable universal solution.

3.1 DATALOGC(�=) Programs

We have recently proposed a language DATALOGC(�=) [5] that adds negation in a natural
way to DATALOG, while keeping the good properties of this language for data exchange.
We define this language below.

Definition 1 (DATALOGC(�=) programs). A constant-inequality Datalog rule is a rule
of the form:

S(x̄) ← S1(x̄1), . . . , S�(x̄�),C(y1), . . . ,C(ym), u1 �= v1, . . . , un �= vn, (1)

Datalog as a Query Language for Data Exchange Systems 309

where

(a) S, S1, . . ., S� are (non necessarily distinct) predicate symbols,
(b) every variable in x̄ is mentioned in some tuple x̄i (i ∈ [1, �]),
(c) every variable yj (j ∈ [1,m]) is mentioned in some tuple x̄i (i ∈ [1, �]), and
(d) every variable uj (j ∈ [1, n]), and every variable vj , is equal to some variable yi

(i ∈ [1,m]).

Further, a constant-inequality Datalog program (DATALOGC(�=) program)Π is a finite
set of constant-inequality Datalog rules.

For example, the following is a constant-inequality Datalog program:

R(x, y)← T (x, z), S(z, y),C(x),C(z), x �= z

S(x)← U(x, u, v, w),C(x),C(u),C(v),C(w), u �= v, u �= w

For a rule of the form (1), we say that S(x̄) is its head. The set of predicates of a
DATALOGC(�=) programΠ , denoted by Pred(Π), is the set of predicate symbols men-
tioned in Π , while the set of intensional predicates of Π , denoted by IPred(Π), is the
set of predicates symbols R ∈ Pred(Π) such that R(x̄) appears as the head of some
rule of Π .

Assume that Π is a DATALOGC(�=) program and I is a database instance of the
relational schema Pred(Π). Then T (I) is an instance of Pred(Π) such that for every
R ∈ Pred(Π) and every tuple t̄, it holds that t̄ ∈ RT (I) if and only if there exists a rule
R(x̄) ← R1(x̄1), . . . , R�(x̄�),C(y1), . . . ,C(ym), u1 �= v1, . . . , un �= vn in Π and a
variable assignment σ such that (a) σ(x̄) = t̄, (b) σ(x̄i) ∈ RI

i , for every i ∈ [1, �], (c)
σ(yi) is a constant, for every i ∈ [1,m], and (d) σ(ui) �= σ(vi), for every i ∈ [1, n].
Operator T is used to define the semantics of constant-inequality Datalog programs.
More precisely, define T 0

Π(I) to be I and T n+1
Π (I) to be T (T n

Π (I))∪ T n
Π (I), for every

n ≥ 0. Then the evaluation of Π over I is defined as T ∞
Π (I) =

⋃
n≥0 T n

Π (I).
A constant-inequality Datalog program Π is said to be defined over a relational

schema R if R = Pred(Π) � IPred(Π) and ANSWER ∈ IPred(Π). Given an in-
stance I of R and a tuple t̄ in dom(I)n, where n is the arity of ANSWER, we say that
t̄ ∈ Π(I) if t̄ ∈ ANSWERT ∞

Π (I0), where I0 is an extension of I defined as: RI0 = RI

for R ∈ R and RI0 = ∅ for R ∈ IPred(Π).

3.2 Certain Answers for DATALOGC(�=) Programs

As we mentioned before, the homomorphisms in data exchange are not arbitrary; they
are the identity on the constants. Thus, given that inequalities are witnessed by con-
stants in DATALOGC(�=) programs, we have that these programs are preserved under
homomorphisms. From this we conclude that the certain answers to a DATALOGC(�=)

program Π can be computed by directly evaluating Π over a universal solution. Thus,
DATALOGC(�=) programs preserve the good properties of DATALOG, and UCQ, for data
exchange.

Proposition 1 ([5]). Let M = (S,T, Σst) be a data exchange setting, I a source
instance, J a universal solution for I underM, and Π a DATALOGC(�=) program over
T. Then for every tuple t̄ of constants, t̄ ∈ certainM(Π, I) iff t̄ ∈ Π(J).

310 M. Arenas, P. Barceló, and J.L. Reutter

Thus, the certain answers of a DATALOGC(�=) program Π over I can be computed by
directly posing Π over CAN(I) and discarding tuples that contain nulls. This implies
that for each data exchange settingM, the problem CERTAIN-ANSWERS(M, Π) can
be solved in polynomial time if Π is a DATALOGC(�=) program (since CAN(I) can be
computed in polynomial time and Π can be evaluated in polynomial time in the size of
the data).

Corollary 1. The problem CERTAIN-ANSWERS(M, Π) can be solved in polynomial
time, for every data exchange settingM and DATALOGC(�=) program Π .

4 On the Expressive Power of DATALOGC(�=) Programs

We have shown in [5] that DATALOGC(�=) programs are capable of expressing relevant
data exchange properties. In particular, these programs are expressive enough to capture
the class of unions of conjunctive queries with at most one negated atom per disjunct.
This class has proved to be relevant for data exchange, as its restriction with inequalities
(that is, the class of queries in UCQ �= with at most one inequality per disjunct) not only
can express relevant queries but also is one of the few known extensions of the class
UCQ for which the problem of computing certain answers is tractable [10].

Theorem 1 ([5]). Let Q be a UCQ �=,¬ query over a schema T, with at most one in-
equality or negated relational atom per disjunct. Then there exists a DATALOGC(�=)

program ΠQ over T such that for every data exchange settingM = (S,T, Σst) and
instance I of S, certainM(Q, I) = certainM(ΠQ, I). Moreover,ΠQ can be effectively
constructed from Q in polynomial time.

We sketch the proof of this theorem by means of an example, since we prove a stronger
result later (Theorem 4).

Example 4. Let M be a data exchange setting such that S = {E(·, ·), A(·)}, T =
{G(·, ·), P (·)} and

Σst = {E(x, y)→ ∃z(G(x, z) ∧G(z, y)), A(x)→ P (x)}.

Also, let Q(x) be the following query in UCQ �=,¬:

(P (x) ∧G(x, x)) ∨ ∃y (G(x, y) ∧ x �= y) ∨ ∃y∃z (G(x, z) ∧G(z, y) ∧ ¬G(x, y)).

We construct a DATALOGC(�=) program ΠQ such that certainM(Q, I) =
certainM(ΠQ, I). The set of intensional predicates of the DATALOGC(�=) programΠQ

is {U1(·, ·, ·), U2(·, ·), DOM(·), EQUAL(·, ·, ·), ANSWER(·)}. The program ΠQ over T
is defined as follows.

First, the program collects in DOM(x) all the elements that belong to the active
domain of the instance of T where ΠQ is evaluated:

DOM(x)← G(x, z) (2)

DOM(x)← G(z, x) (3)

DOM(x)← P (x) (4)

Datalog as a Query Language for Data Exchange Systems 311

Second, the program ΠQ includes the following rules that formalize the idea that
EQUAL(x, y, z) holds if x and y are the same elements:

EQUAL(x, x, z)← DOM(x),DOM(z) (5)

EQUAL(x, y, z)← EQUAL(y, x, z) (6)

EQUAL(x, y, z)← EQUAL(x,w, z), EQUAL(w, y, z) (7)

Predicate EQUAL includes an extra argument that keeps track of the element z where the
query is being evaluated. Notice that we cannot simply use the rule EQUAL(x, x, z)←
to say that EQUAL is reflexive, as DATALOGC(�=) programs are safe, i.e. every variable
that appears in the head of a rule also has to appear in its body.

Third, ΠQ includes the rules:

U1(x, y, z)← G(x, y),DOM(z) (8)

U2(x, z)← P (x),DOM(z) (9)

U1(x, y, z)← U1(u, v, z), EQUAL(u, x, z), EQUAL(v, y, z) (10)

U2(x, z)← U2(u, z), EQUAL(u, x, z) (11)

Intuitively, the first two rules create in U1 and U2 a copy of G and P , respectively,
but again with an extra argument for keeping track of the element where ΠQ is being
evaluated. The last two rules allow to replace equal elements in the interpretation of U1

and U2.
Fourth, ΠQ includes the following rule for the third disjunct of Q(x):

U1(x, y, x)← U1(x, z, x), U1(z, y, x) (12)

Intuitively, this rule expresses that if a is an element that does not belong to the set of
certain answers to Q(x), then for every pair of elements b and c such that (a, b) and
(b, c) belong to the interpretation of G, it must be the case that (a, c) also belongs to it.

Fifth, ΠQ includes the following rule for the second disjunct of Q(x):

EQUAL(x, y, x)← U1(x, y, x) (13)

Intuitively, this rule expresses that if a is an element that does not belong to the set of
certain answers to Q(x), then for every element b such that the pair (a, b) belongs to
the interpretation of G, it must be the case that a = b.

Finally, ΠQ includes two rules for collecting the certain answers to Q(x):

ANSWER(x)← U2(x, x), U1(x, x, x),C(x) (14)

ANSWER(x)← EQUAL(y, z, x),C(x),C(y),C(z), y �= z (15)

Intuitively, rule (14) says that if a constant a belongs to the interpretation of P and
(a, a) belongs to the interpretation of G, then a belongs to the set of certain answers to
Q(x). Indeed, this means that if J is an arbitrary solution where the program is being
evaluated, then a belongs to the evaluation of the first disjunct of Q(x) over J .

Rule (15) says that if in the process of evaluatingΠQ with parameter a, two distinct
constants b and c are declared to be equal (EQUAL(b, c, a) holds), then a belongs to

312 M. Arenas, P. Barceló, and J.L. Reutter

the set of certain answers to Q(x). We show the application of this rule with an ex-
ample. Let I be a source instance, and assume that (a, n) and (n, b) belong to G in
the canonical universal solution for I , where n is a null value. By applying rule (2),
we have that DOM(a) holds in CAN(I). Thus, we conclude by applying rule (8) that
U1(a, n, a) and U1(n, b, a) hold in CAN(I) and, therefore, we obtain by using rule (13)
that EQUAL(a, n, a) holds in CAN(I). Notice that this rule is trying to prove that a
is not in the certain answers to Q(x) and, hence, it forces n to be equal to a. Now
by using rule (6), we obtain that EQUAL(n, a, a) holds in CAN(I). But we also have
that EQUAL(b, b, a) holds in CAN(I) (by applying rules (3) and (5)). Thus, by apply-
ing rule (10), we obtain that U1(a, b, a) holds in CAN(I). Therefore, by applying rule
(13) again, we obtain that EQUAL(a, b, a) holds in CAN(I). This time, rule (13) tries to
prove that a is not in the certain answers to Q(x) by forcing constants a and b to be the
same value. But this cannot be the case since a and b are distinct constants and, thus,
rule (15) is used to conclude that a is in the certain answers to Q(x). It is important to
notice that this conclusion is correct. If J is an arbitrary solution for I , then we have
that there exists a homomorphism h : CAN(I) → J . Given that a and b are distinct
constants, we have that a �= h(n) or b �= h(n). It follows that there is an element c in J
such that a �= c and the pair (a, c) belongs to the interpretation ofG. Thus, we conclude
that a belongs to the evaluation of the second disjunct of Q(x) over J .

It is now an easy exercise to show that the set of certain answers to Q(x) coincide
with the set of certain answers to ΠQ, for every source instance I . �

As an immediate corollary to Theorem 1 and Corollary 1 we obtain the following:

Corollary 2. The problem CERTAIN-ANSWERS(M, Q) can be solved in polynomial
time, for every data exchange settingM and every union of conjunctive queriesQ with
at most one inequality or negated relational atom per disjunct.

We note that this slightly generalizes one of the polynomial time results in [10], which
is stated for the class of unions of conjunctive queries with at most one inequality per
disjunct. The proof of the result in [10] uses different techniques, based on the chase
procedure.

It is important to notice that Corollary 2 is, in a sense, optimal, as there is a LAV

data exchange setting M and a conjunctive query with two inequalities, such that
CERTAIN-ANSWERS(M, Q) is CONP-complete [19]. This shows that Theorem 1 can-
not be further extended to deal with arbitrary conjunctive queries with negated atoms.

A natural question at this point is whether the problem CERTAIN-ANSWERS(M, Q)
is PTIME-complete for some data exchange settingM and union of conjunctive queries
Q with at most one negated atom per disjunct. The following proposition shows that
this is indeed the case.

Proposition 2 ([5]). There exist a LAV data exchange settingM and a Boolean con-
junctive query Q with one inequality such that CERTAIN-ANSWERS(M, Q) is PTIME-
complete, under LOGSPACE reductions.

The previous result establishes a difference with the class of unions of conjunctive
queries (UCQ), for which the problem of computing certain answers under a setting
M can be solved in LOGSPACE.

Datalog as a Query Language for Data Exchange Systems 313

4.1 Adding Target Dependencies

In addition to the simple data exchange scenario we have seen so far, it is common in
the literature to assume that target schemas come with its own set of dependenciesΣt.
Formally, data exchange settings with target dependencies (as presented, for instance,
in [10,11]) are tuples of the form M = (S,T, Σst, Σt), where S, T and Σst are as
before, and Σt is the union of (1) a set of tuple-generating dependencies (tgds), i.e.
dependencies of the form ∀x̄∀ȳ (φ(x̄, ȳ)→ ∃z̄ ψ(x̄, z̄)), where φ(x̄, ȳ) and ψ(x̄, z̄) are
conjunctions of atomic formulas in T, and (2) a set of equality-generating dependencies
(egds), i.e. dependencies of the form ∀x̄ (φ(x̄)→ xi = xj), where φ(x̄) is a conjunction
of atomic formulas in T, and xi, xj are variables among those in x̄.2

For settings with target dependencies, the solutions also have to satisfy the depen-
dencies in Σt. That is, ifM = (S,T, Σst, Σt) is a data exchange setting and I is an
instance of S, then an instance J of T is a solution for I if not only the pair (I, J)
satisfies each dependency in Σst, but also J satisfies each dependency in Σt.

As it is to be expected, the addition of target dependencies makes the fundamental
data exchange tasks more difficult, starting from the fact that it is no longer true that
solutions exist for each source instance. Even worst, it follows from [13] that there
exists a data exchange settingM = (S,T, Σst, Σt) with target dependencies such that
the problem of checking for the existence of solutions underM is undecidable.

In order to overcome the aforementioned limitations, the data exchange community
has identified a relevant class of target dependencies that has good properties for data
exchange. To define this class, we need to introduce some terminology. Assume that Σ
is a set of tgds over a schema T. Then the dependency graph GΣ of Σ is defined as
follows:

(1) add a node (R, i) to GΣ for every relation R ∈ T and i ∈ {1, . . . , n}, where n is
the arity of R;

(2) add an edge (R, i) → (T, j) to GΣ if there exist a tgd φ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄) in Σ
and a variable x such that x is mentioned in x̄, x occurs in the i-th attribute of R in
φ and x occurs in the j-th attribute of T in ψ;

(3) add a special edge (R, i) →∗ (T, j) to GΣ if there exists a tgd φ(x̄, ȳ) →
∃z̄ ψ(x̄, z̄) in Σ such that a variable x occurs in the i-th attribute of R in φ and
an existentially quantified variable z occurs in the j-th attribute of T in ψ.

Moreover, Σ is said to be weakly acyclic if the dependency graph GΣ of Σ does not
have a cycle going through an edge labeled ∗ [10]. Next theorem shows that the class
of settings with weakly acyclic sets of tgds has good properties for data exchange.

Theorem 2 ([10]). LetM = (S,T, Σst, Σt) be a data exchange setting, where Σt is
the union of a set of egds and a weakly-acyclic set of tgds. Then there is a polynomial
time algorithm such that for every source instance I , it first decides whether a solution
for I exists, and if that is the case, it computes a canonical universal solution for I in
polynomial time.

2 As usual, we omit universal quantifiers in front of tgds and egds.

314 M. Arenas, P. Barceló, and J.L. Reutter

The latter implies that for the class of data exchange settings whose target dependencies
consist of a set of equality-generating dependencies and a weakly-acyclic set of tuple-
generating dependencies, the certain answers to each union of conjunctive queriesQ for
a source instance I , can be computed in polynomial time by simply posing Q over the
canonical universal solution J for I and then discarding the tuples that contain nulls (in
case such a solution J exists). Notice, however, that using exactly the same argument
one can prove the stronger result that certain answers to DATALOGC(�=) programs can be
computed in polynomial time under the class of settings specified in Theorem 2. This is
because DATALOGC(�=) programs are preserved under data exchange homomorphisms
and can be evaluated in polynomial time in the size of the data. Indeed,

Corollary 3. Let M = (S,T, Σst, Σt) be a data exchange setting, where Σt is the
union of a set of egds and a weakly acyclic set of tgds, and let Π be a DATALOGC(�=)

program over T. Then the problem CERTAIN-ANSWERS(M, Π) can be solved in poly-
nomial time.

Let us recall Corollary 2. It says that the certain answers to a union of conjunctive
queries with at most one negated atom per disjunct, can be computed in polynomial
time for settings without target dependencies. A natural question at this point is whether
this positive result continues to hold if target schemas are allowed to contain dependen-
cies of the form specified in Theorem 2. The following result shows that not only this
is not the case, but also that the problem of computing certain answers to unions of
conjunctive queries with at most one negated atom per disjunct is undecidable for this
class of settings

Theorem 3. There exists a data exchange settingM = (S,T, Σst, Σt), where Σt is
the union of a set of egds and a weakly-acyclic set of tgds, and a Boolean CQ¬ query
Q over T with a single negated relational atom such that CERTAIN-ANSWERS(M, Q)
is undecidable.

Proof. Let S� be a source schema consisting of a ternary relation P , T � a target schema
consisting of a ternary relationR andM� = (S�, T �, Σ�

st, Σ
�
t) a data exchange setting,

where Σ�
st consists of the following dependency:

P (x, y, x)→ R(x, y, z),

and Σ�
t consists of the egd:

R(x, y, z) ∧R(x, y, w)→ z = w,

and the following tgds:

R(x, y, u)∧ R(y, z, v) ∧R(u, z, w)→ R(x, v, w),
R(x, y, z)∧ R(x′, y′, z′)→ ∃w1∃w2∃w3∃w4∃w5∃w6∃w7∃w8∃w9 (R(x, x′, w1) ∧

R(x, y′, w2) ∧R(x, z′, w3) ∧R(y, x′, w4) ∧R(y, y′, w5) ∧
R(y, z′, w6) ∧R(z, x′, w7) ∧R(z, y′, w8) ∧R(z, z′, w9)).

Datalog as a Query Language for Data Exchange Systems 315

In [13], it was proved that the problem of verifying, given an instance I of S�, whether
there exists at least one solution for I underM� is undecidable. Next we show how
to reduce this problem to the complement of our problem. More precisely, we define a
data exchange settingM = (S,T, Σst, Σt), where S = S� andΣt is the union of a set
of egds and a weakly-acyclic set of tgds, and a Boolean CQ¬ query Q over T with a
single negated relational atom such that for every instance I of S�: There exists at least
one solution for I underM� if and only if certainM(Q, I) = false. From this, we
conclude that CERTAIN-ANSWERS(M, Q) is undecidable.

Let S = S�, T = T� ∪ {S}, where S is a ternary predicate, Σst = Σ�
st and Σt be a

set of target dependencies consisting of the egd:

R(x, y, z) ∧R(x, y, w)→ z = w,

and the following tgds:

R(x, y, u)∧ R(y, z, v) ∧R(u, z, w)→ R(x, v, w),
R(x, y, z)∧ R(x′, y′, z′)→ ∃w1∃w2∃w3∃w4∃w5∃w6∃w7∃w8∃w9 (S(x, x′, w1) ∧

S(x, y′, w2) ∧ S(x, z′, w3) ∧ S(y, x′, w4) ∧ S(y, y′, w5) ∧
S(y, z′, w6) ∧ S(z, x′, w7) ∧ S(z, y′, w8) ∧ S(z, z′, w9)).

Moreover, let Q be the following Boolean query:

∃x∃y∃z (S(x, y, z) ∧ ¬R(x, y, z)).

It is important to notice that the set of tgds in Σ�
t is not weakly acyclic, while the set

of tgds in Σt is weakly acyclic. Next we show that for every instance I of S�, it holds
that there exists at least one solution for I underM� if and only if certainM(Q, I) =
false.

(⇒) Let I be an instance of S� and J� a solution for I underM�. Define J as the
following instance of T: RT = RT �

and ST = RT �

. Given that (I, J�) satisfies Σ�
st

and J� satisfies Σ�
t , we have that (I, J) satisfies Σst and J satisfies Σt and, therefore,

J is a solution for I underM. Thus, given that Q does not hold in J (since RT = ST),
we conclude that certainM(Q, I) = false.

(⇐) Assume that I is an instance of S� such that certainM(Q, I) = false. Then
let J be a solution of I underM such that Q does not hold in J , and J� an instance of
T� defined as RT �

= RT . Given that (I, J) satisfies Σst, we have that (I, J�) satisfies
Σ�

st. Furthermore, given thatQ does not hold in J , we have that J satisfies dependency:

∀x∀y∀z (S(x, y, z)→ R(x, y, z)).

Thus, given that J satisfies Σt, we conclude that J� satisfies Σ�
t . Hence, we have that

J� is a solution for I underM�, from which we deduce that there exists at least one
solution for I underM�. This concludes the proof of the theorem. �

A natural way to ensure that the problem of computing certain answers to unions of
conjunctive queries with at most one negated atom per disjunct remains tractable, in

316 M. Arenas, P. Barceló, and J.L. Reutter

the presence of target dependencies, is by restricting the class of target dependencies
allowed. Indeed, we prove below that this is the case for the class of data exchange
settings that only allow egds in the target. The interesting part of this is not the result
itself – which is a slight extension of a result in [10] – but the fact that our proof relies
again on the translation of the problem of computing certain answers for this class
of queries, under the settings described above, into the problem of computing certain
answers to DATALOGC(�=) programs.

A naı̈ve approach to prove this result would be the following. Let M =
(S,T, Σst, Σt) be a data exchange setting, where Σt consists of a set of equality-
generating dependencies, and letM′ be the setting obtained fromM by removingΣt.
As we have mentioned above, for each union of conjunctive queriesQ, with at most one
inequality or negated relational atom per disjunct, one can construct a DATALOGC(�=)

program ΠQ such that the certain answers to Q under M′ coincide with the certain
answers to ΠQ underM′. Then one could implement the following algorithm for com-
puting certain answers toQ underM: Given a source instance I , compute the canonical
universal solution J for I underM (in case such a solution exists); evaluate ΠQ over
J ; discard tuples that contain nulls.

Unfortunately, this simple algorithm is not correct for the following reason. Evaluat-
ing the program ΠQ over J may force some elements in J to be equal, which, in turn,
may imply some of the dependencies in Σt to be triggered in the process. This suggests
that if one wants to compute the certain answers to Q (underM) with a DATALOGC(�=)

programΠQ, thenΠQ must take into consideration not only Q but also Σt. Indeed, we
show next that for each union of conjunctive queries, with at most one negated atom
per disjunct, it is possible to construct a DATALOGC(�=) program ΠQ,Σt such that the
certain answers to Q and to ΠQ,Σt (underM) coincide. Formally,

Theorem 4. Let Q be a UCQ �=,¬ k-ary query over a schema T (k ≥ 0), with at most
one inequality or negated relational atom per disjunct. Further, let Σt be a set of egds
over T. Then there exists a DATALOGC(�=) program ΠQ,Σt over T such that for every
data exchange settingM = (S,T, Σst, Σt), instance I of S and tuple ā ∈ dom(I)k:

ā ∈ certainM(Q, I) if and only if ā ∈ certainM(ΠQ,Σt , I).

Moreover, ΠQ,Σt can be effectively constructed from Q and Σt in polynomial time.

Proof. Assume that T = {T1, . . . , Tk}, where each Ti has arity ni > 0, that Q(x̄) =
Q1(x̄) ∨ · · · ∨Q�(x̄), where x̄ = (x1, . . . , xm) and each Qi(x̄) is a conjunctive query
with at most one inequality or negated relational atom, and that Σt = {α1, . . . , αq} is
a set of egds.

Then the set of intensional predicates of DATALOGC(�=) programΠQ,Σt is

{U1, . . . , Uk,DOM, EQUAL,ANSWER},

where each Ui (i ∈ [1, k]) has arity ni +m, DOM has arity 1, EQUAL has arity 2 +m
and ANSWER has arity m. Moreover, the set of rules of ΠQ,Σt is defined as follows.

Datalog as a Query Language for Data Exchange Systems 317

– For every predicate Ti ∈ T, ΠQ,Σt includes the following k rules:

DOM(x) ← Ti(x, y2, y3, . . . , yni−1, yni)
DOM(x) ← Ti(y1, x, y3, . . . , yni−1, yni)

· · ·
DOM(x) ← Ti(y1, y2, y3, . . . , yni−1, x)

– ΠQ,Σt includes the following rules for predicate EQUAL:

EQUAL(x, x, z1, . . . , zm)← DOM(x),DOM(z1), . . . ,DOM(zm)
EQUAL(x, y, z1, . . . , zm)← EQUAL(y, x, z1, . . . , zm)
EQUAL(x, y, z1, . . . , zm)← EQUAL(x,w, z1, . . . , zm), EQUAL(w, y, z1, . . . , zm)

– For every predicate Ui, ΠQ,Σt includes the following rules:

Ui(y1, . . . , yni , z1, . . . , zm)← Ti(y1, . . . , yni),DOM(z1), . . . ,DOM(zm)
Ui(y1, . . . , yni , z1, . . . , zm)← Ui(w1, . . . , wni , z1, . . . , zm),

EQUAL(w1, y1, z1, . . . , zm), . . . ,
EQUAL(wni , yni , z1, . . . , zm)

– Let i ∈ [1, �]. First, assume that Qi(x̄) does not contain any negated atom. Then
Qi(x̄) is equal to ∃ū (Tp1(ū1)∧· · ·∧Tpn(ūn)), where pj ∈ [1, k] and every variable
in ūj is mentioned in either ū or x̄, for every j ∈ [1, n]. In this case, programΠQ,Σt

includes the following rule:

ANSWER(x̄)← Up1(ū1, x̄), . . . , Upn(ūn, x̄),C(x1), . . . ,C(xm) (16)

Notice that this rule is well defined since the set x̄ is the set of free variables of
∃ū (Tp1(ū1)∧ · · · ∧ Tpn(ūn)). Second, assume that Qi(x̄) contains a negated rela-
tional atom. ThenQi(x̄) is equal to ∃ū (Tp1(ū1)∧· · ·∧Tpn(ūn)∧¬Tpn+1(ūn+1)),
where pj ∈ [1, k] and every variable in ūj is mentioned in either ū or x̄, for every
j ∈ [1, n+ 1]. In this case, programΠQ,Σt includes the following rule:

Upn+1(ūn+1, x̄)← Up1(ū1, x̄), . . . , Upn(ūn, x̄). (17)

This rule is well defined since ∃ū (Tp1(ū1) ∧ · · · ∧ Tpn(ūn) ∧ ¬Tpn+1(ūn+1)) is a
safe query. Finally, assume that Qi(x̄) contains an inequality. Then Qi(x̄) is equal
to ∃ū (Tp1(ū1) ∧ · · · ∧ Tpn(ūn) ∧ v1 �= v2), where pj ∈ [1, k] and every variable
in ūj is mentioned in either ū or x̄, for every j ∈ [1, n], and v1, v2 are mentioned
in ū or x̄. In this case, programΠQ,Σt includes the following rule:

EQUAL(v1, v2, x̄)← Up1(ū1, x̄), . . . , Upn(ūn, x̄) (18)

We note that the rule above is well defined since ∃ū (Tp1(ū1)∧· · ·∧Tpn(ūn)∧v1 �=
v2) is a safe query.

318 M. Arenas, P. Barceló, and J.L. Reutter

– For each i ∈ [1, q], assume that dependency αi is of form (Tp1(x̄1) ∧ · · · ∧
Tpn(x̄n)→ u = v), where each pj ∈ [1, k] and variables u and v are mentioned in
x̄1, . . . , x̄n. Then the programΠQ,Σt includes the following rule:

EQUAL(u, v, x̄)← Up1(x̄1, x̄), . . . , Upn(x̄n, x̄) (19)

– Finally, if Q has at least one inequality, or if Σt is nonempty, program ΠQ,Σt

includes the rule:

ANSWER(x̄)← EQUAL(u, v, x̄),C(u),C(v), u �= v,C(x1), . . . ,C(xm) (20)

Let ā be a tuple of elements from the domain of a source instance I . Each predicate Ui

in ΠQ,Σt is used as a copy of Ti but with m extra arguments that store tuple ā. These
predicates are used when testing whether ā is a certain answer for Q over I . More
specifically, the rules of ΠQ,Σt try to construct from the canonical universal solution
CAN(I) a solution J for I such that ā �∈ Q(J). Thus, if in a solution J for I , it holds that
ā ∈ Q(J) because ā ∈ Qi(J), where Qi(x̄) is equal to ∃ū (Tp1(ū1) ∧ · · · ∧ Tpn(ūn) ∧
¬Tpn+1(ūn+1)), then ΠQ,Σt uses rule (17) to create a new solution where the negative
atom ofQi does not hold. In the same way, if in a solution J for I , it holds that ā ∈ Q(J)
because ā ∈ Qi(J), where Qi(x̄) is equal to ∃ū (Tp1(ū1) ∧ · · · ∧ Tpn(ūn) ∧ v1 �= v2),
then ΠQ,Σt uses rule (18) to create a new solution where the values assigned to v1
and v2 are equal (predicate EQUAL is used to store this fact). If v1 or v2 is assigned
a null value, then it is possible to create a solution where the values assigned to these
variables are the same. But this is not possible if both v1 and v2 are assigned different
constant values. In fact, it follows from [10] that this implies that it is not possible to
find a solution J ′ for I where ā �∈ Q(J ′), and in this case rule (20) is used to indicate
that ā is a certain answer for Q over I . Notice, however, that every solution for I must
satisfy the dependencies in Σt. Thus, if for some Qi the program uses rules (17) or
(18) to create an instance J such that ā �∈ Qi(J), but J does not satisfies a dependency
φ(x̄) → xi = xj in Σt, then rule (19) must be used to repair that instance, obtaining
a solution J ′ for I in which the values assigned to xi and xj are the same, but still
holds that ā �∈ Qi(J). This will not be possible if both xi and xj are assigned different
constant values; in this case, it can be proved using results in [10] that it is not possible
to create a solution such that ā �∈ Qi(J), and thus rule (20) is used to indicate that ā is
a certain answer for Q over I .

By using the above observations, it is not difficult to prove that the statement of the
theorem holds, which was to be shown. �

As a corollary of Theorem 4 and Corollary 1, we immediately obtain the following
desired result:

Corollary 4. Let Q be a UCQ �=,¬ query over a schema T, with at most one in-
equality or negated relational atom per disjunct, and let M = (S,T, Σst, Σt) be
a data exchange setting such that Σt consists of a set of egds. Then the problem
CERTAIN-ANSWERS(M, Q) can be solved in polynomial time.

Datalog as a Query Language for Data Exchange Systems 319

Another possible way to retain tractability of the problem CERTAIN-ANSWERS(M, Q),
where Q is a union of conjunctive queries with at most one negated atom per disjunct
and M is a setting with target dependencies, is by restricting the class of queries al-
lowed. Indeed, it has been proved in [10] that for the class of settings whose sets of
target dependencies consist of egds and weakly-acyclic sets of tgds, the certain answers
to a union of conjunctive queries with at most one inequality per disjunct can be com-
puted in polynomial time by using an algorithm based on the chase procedure. It is
an interesting open problem whether this result can also be proved with the help of
DATALOGC(�=) programs, in the style of Theorem 4 and Corollary 4.

5 Concluding Remarks

In this paper, we presented the language DATALOGC(�=) that extends DATALOG with a
restricted form of negation, and studied some of its fundamental properties. In particu-
lar, we showed that the certain answers to a DATALOGC(�=) program can be computed
in polynomial time, and we used this property to find tractable fragments of the class
of unions of conjunctive queries with inequalities (even in the presence of target depen-
dencies).

Both the problem of the existence of solutions and the computation of certain an-
swers are defined in the paper assuming settings to be fixed. That is, in terms of Vardi’s
taxonomy [20], we study the data complexity of these problems. This makes sense in
the database context, as usually specifications and queries are much smaller than source
instances. However, a more refined complexity analysis of these problems should not
consider any of their parameters to be fixed. This corresponds to the combined com-
plexity of the problems mentioned above. The combined complexity of the problem
of existence of solutions was studied in [13,7], while the combined complexity of the
problem of computing certain answers was studied in [5].

Many problems related to DATALOGC(�=) programs remain open. In particular, it
would be interesting to know if it is decidable whether the certain answers to a query
Q in UCQ �= can be computed as the certain answers to a DATALOGC(�=) programΠQ,
and whether there exist a setting M and a query Q in UCQ �= such that the problem
CERTAIN-ANSWERS(M, Q) is in PTIME, but the certain answers to Q cannot be com-
puted as the certain answers to a DATALOGC(�=) programΠQ.

Acknowledgments. We are very grateful to Jorge Pérez for many helpful discus-
sions. The authors were supported by: Arenas - FONDECYT grant 1090565; Barceló -
FONDECYT grant 11080011; Reutter - EPSRC grant G049165.

References

1. Abiteboul, S., Duschka, O.: Answering queries using materialized views. Gemo report 383
2. Abiteboul, S., Hull, R., Vianu, V.: Foundations of databases. Addison-Wesley, Reading

(1995)
3. Afrati, F.N., Li, C., Pavlaki, V.: Data exchange in the presence of arithmetic comparisons. In:

EDBT, pp. 487–498 (2008)

320 M. Arenas, P. Barceló, and J.L. Reutter

4. Arenas, M., Barceló, P., Fagin, R., Libkin, L.: Locally consistent transformations and query
answering in data exchange. In: PODS, pp. 229–240 (2004)

5. Arenas, M., Barceló, P., Reutter, J.: Query languages for data exchange: Beyond unions
of conjunctive queries. Accepted for publication in Theory of Computing Systems, ToCS
(2010); Preliminary version in Proceedings 12th International Conference on Database The-
ory (ICDT 2009), pp. 73–83 (2009)

6. Beeri, C., Vardi, M.Y.: A proof procedure for data dependencies. Journal of the ACM 31(4),
718–741 (1984)

7. Calı̀, A., Gottlob, G., Pieris, A.: Query answering under non-guarded rules in datalog+/-. In:
Hitzler, P., Lukasiewicz, T. (eds.) RR 2010. LNCS, vol. 6333, pp. 1–17. Springer, Heidelberg
(2010)

8. Deutsch, A., Nash, A., Remmel, J.B.: The chase revisited. In: PODS, pp. 149–158 (2008)
9. Fagin, R., Kolaitis, P., Popa, L., Tan, W.C.: Composing schema mappings: Second-order

dependencies to the rescue. In: PODS, pp. 83–94 (2004)
10. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: semantics and query answer-

ing. Theoretical Computer Science 336(1), 89–124 (2005)
11. Fagin, R., Kolaitis, P.G., Popa, L.: Data exchange: getting to the core. ACM Transactions on

Database Systems 30(1), 174–210 (2005)
12. Kolaitis, P.: Schema mappings, data exchange, and metadata management. In: PODS, pp.

61–75 (2005)
13. Kolaitis, P., Panttaja, J., Tan, W.-C.: The complexity of data exchange. In: PODS, pp. 30–39

(2006)
14. Imielinski, T., Lipski, W.: Incomplete information in relational databases. Journal of the

ACM 31, 761–791 (1984)
15. Lenzerini, M.: Data integration: A theoretical perspective. In: PODS, pp. 233–246 (2002)
16. Libkin, L.: Elements of Finite Model Theory. Springer, Heidelberg (2004)
17. Libkin, L.: Data exchange and incomplete information. In: PODS, pp. 60–69 (2006)
18. Libkin, L., Sirangelo, C.: Data exchange and schema mappings in open and closed worlds.

In: PODS, pp. 139–148 (2008)
19. Ma̧dry, A.: Data exchange: On the complexity of answering queries with inequalities. Infor-

mation Processing Letters 94(6), 253–257 (2005)
20. Vardi, M.Y.: The complexity of relational query languages. In: STOC, pp. 137–146 (1982)

	Datalog as a Query Language for Data Exchange Systems
	Introduction
	Background
	Data Exchange Settings and Solutions
	Universal Solutions and Canonical Universal Solution
	Certain Answers

	Extending Query Languages for Data Exchange: DatalogC(=) Programs
	DatalogC(=) Programs
	Certain Answers for DatalogC(=) Programs

	On the Expressive Power of DatalogC(=) Programs
	Adding Target Dependencies

	Concluding Remarks
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

